Scarpelli, Graziela; Alves, Sergio Henrique; Landeira-Fernandez, J.; Mello Cruz, Antonio Pedro de
Effects of two selective 5-HT2C receptor-acting compounds into the ventral hippocampus of rats
exposed to the elevated plus-maze
Psychology & Neuroscience, vol. 1, núm. 1, enero-junio, 2008, pp. 87-95
Pontifícia Universidade Católica do Rio de Janeiro
Rio de Janeiro, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=207015669014
Effects of two selective 5-HT\textsubscript{2C} receptor-acting compounds into the ventral hippocampus of rats exposed to the elevated plus-maze

Graziela Scarpelli1, Sergio Henrique Alves2, J. Landeira-Fernandez3,4 and Antonio Pedro de Mello Cruz2

1 Instituto de Ensino Superior de Brasilia, Brazil
2 Universidade de Brasilia, Brazil
3 Pontifícia Universidade Católica, Rio de Janeiro, Brazil
4 Universidade Estácio de Sá, Rio de Janeiro, Brazil

Abstract
This study investigated the effects of two selective serotonin 2C (5-hydroxytryptamine, 5-HT\textsubscript{2C}) receptor-acting compounds into the ventral hippocampus (VH) of rats exposed to the elevated plus-maze (EPM). In the first experiment, rats were exposed to the EPM 10 min following VH infusions of either vehicle or the selective 5-HT\textsubscript{2C}-receptor agonist RO-60-0175 (0.3, 1.0, 3.0 and 10.0µg). In addition, conventional parameters of open arm exploration (i.e. percentages of open arm entries and of time spent in these arms), risk assessment-related behaviors were recorded as anxiety-like measures in EPM scoring. RO-60-0175 selectively decreased open arm exploration at the dose of 1.0 µg, while inducing locomotor-suppressant effects at the two highest doses. In the second experiment, VH infusions of the selective 5-HT\textsubscript{2C} antagonist RS 102221 (0.75, 1.25 and 2.5 µg) did not affect open arm exploration, while reducing risk assessment in the closed ones. This behavioral profile of risk assessment is suggestive of an anxiolytic-like action. These results further corroborate our previous findings showing that VH 5-HT\textsubscript{2C} receptor activation elicits anxiogenic-like and locomotor-suppressant effects, and suggest that the selective blockade of this receptor is accompanied by an anxiolytic-like action as detected by ethologically derived measures in the EPM. Keywords: anxiety, 5-HT\textsubscript{2C} receptors, RO-60-0175, RS 102221, ventral hippocampus, elevated plus-maze, risk assessment.

Received 2 February 2008; received in revised form 2 June 2008; accepted 2 June 2008; Available online 10 June 2008.

Introduction
Serotonin\textsubscript{2C} (5-hydroxytryptamine, 5-HT\textsubscript{2C}) receptor activation, either by nonselective 5-HT\textsubscript{2C} agonists such as m-chlorophenylpiperazine (m-CPP) and trifluoromethylphenylpiperazine (TFMPP) or the preferential 5-HT\textsubscript{2C} agonist 6-chloro-2-[1-piperazinyl]pyrazine (MK-212), has long been associated with anxiogenic-like profiles in a variety of animal models of anxiety, including the elevated plus-maze (EPM; Benjamin, Lal, & Meyerson, 1990; Kshama, Hrishikeshavan, Shanbhogue, & Munonyedi, 1990; Rodgers et al., 1992; Gibson et al., 1994; Griebel et al., 1997; Kennett et al., 1999; Kennett, Lightowler, S., Trail, Bright, & Bromidge, 2000; Martin, Ballard, & Higgins, 2002; Millan, Brocco, Gobbo, & Dekeyne, 2005), although null and even anxiolytic-like effects have also been reported (Nic Dhonnchadha, Bouscary, & Hascoet, 2003; Rippol, Hascoet, & Bourin, 2006).

Despite growing insights into the neural mechanisms through which 5-HT systems might influence defense behavior, the circuits responsible for the above findings as well as the exact role of the 5-HT\textsubscript{2C} receptor in specific types of anxiety remain unclear. For example, 5-HT\textsubscript{2C} agonists increase anxiety-related behaviors in the basolateral nucleus of the amygdala (Campbell & Merchant, 2003) but decrease panic-related behaviors in the dorsal periaqueductal gray (Jenck, Bos, Wichmann, Stadler, Martin, & Moreau, 2002; Graeff, 2002; Jacob et al., 2002; Zanoveli, Nogueira, & Zangrossi, 2003). Therefore, different brain structures to receive direct 5-HT projections from the dorsal raphe nucleus might have a distinct contribution to anxiety mediation.

Besides the amygdala and the periaqueductal gray, the ventral hippocampus (VH) is another important postsynaptic 5-HT site whose cell bodies are located in the dorsal raphe nucleus (Azmitia & Segal, 1978; Vertes, 1991). It appears that 5-HT receptors present in the VH might have a distinct contribution to anxiety mediation.
in the VH are involved in defensive behavior. For example, it has been found that electric stimulation of the dorsal raphe nucleus (McQuade & Sharp, 1997) or potentially dangerous situations such as a context previously associated to a footshock (Hajós-Korcsok, 2003) and acute EPM exposure (Wright, Upton, & Marsden, 1992; Voigt, Rex, Sohr, & Fink, 1999; Rex, Voigt, & Fink, 2005) enhance postsynaptic 5-HT levels in the VH, which may suggest an anxiogenic-like role for 5-HT within this forebrain site. In agreement with this view, selective VH lesions are associated with anxiolytic-like effects in contextual fear conditioning (Bannerman, Grubb, Deacon, Yee, Feldon, & Rawlins, 2003, Bannerman et al., 2004), light-dark transition (Kjelstrup, Tuves, Steffenach, Murison, Moser, & Moser, 2002; McHugh, Deacon, Rawlins, & Bannermen, 2004), social interaction test in rats (McHugh et al, 2004) and in the EPM (Bannerman et al., 2002; Kjelstrup et al., 2002; Degroot & Treit, 2004).

Interestingly, the fibers originating from the dorsal raphe nucleus establish preferential contact with postsynaptic 5-HT_{2C} receptors (Mammounas Mullen, O'Hearn, & Fink, 1991). Based upon results showing the presence of the 5-HT\textsubscript{2C} receptor subtype at a very high density in the VH (Pompeiano, Palacios, & Mengod, 1994; Fone, Shalders, Fox, Arthur, & Marsden 1996, Clemett, Punhani, Duxon, Blackburn, & Fone, 2000; Garcia-Alcover, Segura, Garcia Pena, Martinez-Torres, & Miledi, 2006), however being more abundant in the choroid plexus (Leysen, Van Gompel, Gommeren, Weestenbohrs, & Jansen, 1986; Backstrom, Westphal, Canton, & Sanders-Bush, 1995; Leysen, 2004), it is possible that the anxiogenic-like role of 5-HT in the VH might be, at least in part, mediated via 5-HT\textsubscript{2C} receptor activation. Accordingly, in another study, we found the preferential 5-HT\textsubscript{2C} agonist MK-212 to elicit anxiogenic-like effects when infused directly into the ventral but not dorsal hippocampus of rats exposed to the EPM (Alves, Pinheiro, Motta, Landeira-Fernandez, & Cruz 2004).

It is of note that although MK-212 does not act selectively at 5-HT\textsubscript{2C} receptors, its effects have been usually attributed to a 5-HT\textsubscript{2C}-receptor activation on the basis of receptor binding (nM affinity for 5-HT\textsubscript{2C} receptor and > 16-fold lower for 5-HT\textsubscript{1A} receptor subtypes; Porter et al., 1999) and behavioral findings showing a clear dependence of discriminative action on selective stimulation of 5-HT\textsubscript{2C} receptors (Cleineschmidt, 1979; Blackburn, Kemp, Martin, & Cox, 1984; Cunningham, Callahan, & Appel, 1986). Therefore, such an MK-212-induced anxiogenic-like effect in the VH is likely to be due to a 5-HT\textsubscript{2C}-receptor activation, although the participation of other 5-HT\textsubscript{2} receptors cannot be totally discounted.

The present study employed two newly selective 5-HT\textsubscript{2C}-acting compounds in order to further investigate the role of VH 5-HT\textsubscript{2C}-receptors in mediating anxiety-like behaviors triggered by the EPM. In Experiment 1, rats were exposed to the EPM under the effects of intra-VH infusion of the 5-HT\textsubscript{2C}-receptor (nM affinity for 5-HT\textsubscript{2C} and > 250-fold lower for other receptors; Boes et al., 1997; Porter et al., 1999). Although RO-60-0175 presents considerable selectivity for 5-HT\textsubscript{2A} and 5-HT\textsubscript{2B} receptors (Vickers et al., 2001; Knight et al., 2004), this compound seems to produce a predominantly 5-HT\textsubscript{2C}-receptor mediated behavior (Martin et al., 1998). This conclusion is supported by results with which highly selective 5-HT\textsubscript{2C} antagonists, such as S242084 (Martin, Ballard, & Higgins, 2002), but not 5-HT\textsubscript{1A} or 5-HT\textsubscript{2B} antagonists (Dekeyne, Girardon, & Milan, 1999) prevent changes in behavior induced by RO-60-0175. These patterns of results support the use of RO-60-0175 in several laboratories as a reliable pharmacological tool for activating 5-HT\textsubscript{2C} receptors.

Considering that VH 5-HT\textsubscript{2C}-receptor activation may elicit an anxiogenic-like effect, it is reasonable to assume that the selective blockade of this receptor subtype might be accompanied by an anxiolytic-like action. Experiment 2 tested this hypothesis by infusing the selective 5-HT\textsubscript{2C} receptor agonist RS 102221 directly into the VH. RS 102221 is a centrally acting antagonist that binds with high affinity to 5-HT\textsubscript{2C} receptors (nM affinity for 5-HT\textsubscript{2C} and > 35-fold lower for other 5-HT\textsubscript{2} receptor subfamilies; Bonhaus et al., 1997). To the best of our knowledge, the effects of RS 102221 on anxiety-like behaviors in the EPM have not yet been described.

Methods

Subjects

Experimentally naive male Wistar rats weighing 190-250 g were employed as subjects. The animals were bought and raised in the vivarium at the University of Brasília. One week before the study they were brought to the holding room of the laboratory facilities and housed in groups of two in polycarbonate cages measuring 30 × 30 × 50 cm. All the rats had free access to food and water. Room temperature was controlled (25 ± 1°C) and light-dark cycle was maintained on a 12-h on-off cycle (07:00-19:00h lights on). The experimental sessions were carried out during the light phase of the cycle. The experimental protocols were conducted in conformity with the recommendations of the Brazilian Society of Neuroscience and Behavior (SBNeC), which are based on the US National Institutes of Health Guide for the Care and Use of Laboratory Animals (revised in 1996).

Surgery

Animals were anesthetized with sodium thiopental (10 mg/kg IP) and placed in a stereotaxic frame with the head level between bregma and lambda. A subcutaneous injection of 2% lidocaine with vasoconstrictor was administered to the surgical area until a small bubble was formed. Each rat was bilaterally implanted with a stainless steel guide cannula (t.7 mm)-screwed at 5 mm above the target area. Take care to ensure the guide cannula fits the stereotaxic device so that the guide cannula is perpendicular to the skull. The guide cannula was then fixed to the skull to avoid dislocation during the experiments. The guide cannula was then fixed to the skull to avoid dislocation during the experiments.
Effects of two selective 5-HT\textsubscript{2C} receptor-acting compounds into the ventral hippocampus of rats exposed to the elevated plus-maze

for each hemisphere, and 5.5 mm ventral to skull. Guide cannulae were anchored to the skull by means of dental acrylic and four stainless screws. After implantation, the guide cannulae were sealed with a stainless steel wire to prevent eventual congestion. Four days after surgery the animals were wrapped in a cloth and handled for 3 min for three consecutive days. Behavioral testing was performed on the 8th day post-surgery.

Apparatus

The EPM, elevated 50 cm above the ground, consisted of two open arms (50 × 10 cm) perpendicular to two other arms of the same size enclosed by 40 cm-high walls. These four arms delimited a central area of 10 × 10 cm. A rim of Plexiglas (1 cm high) surrounded the perimeter of the open arms to minimize rats falling off the maze. Illumination was provided by a dim light bulb (60 W) in the ceiling of the experimental room and the light intensity in the center of the maze was adjusted to 55 lux. A video camera linked to a monitor and VCR in an adjacent room videotaped the experimental sessions.

Drugs

RS 102221 [8-5[5-(2,4-dimethoxy-5-(4-trifluoromethyl-phenyl-sulphoamido)phenyl-5-oxopentyl]-1,3,8-triazaspiro-[4.5]decane-2,4-dione HCl] and RO-60-0175 [(S)-2-(6-chloro-5-floro-indol-1-yl)-1-methyl-amine fumarate] (Tocris, Ballwin, MO, USA) were dissolved in sterile saline (0.9% NaCl) and infused 10 min before testing.

Procedure

Experiment 1. The animals were randomly assigned to five groups and infused into the VH either with vehicle or RO-60-0175 at the doses of 0.3, 1.0, 3.0 and 10 µg. Infusion was achieved by an internal cannula (o.d. 0.3 mm) that extended 0.5 mm beyond the guide cannula tip, attached to a 10 µl Hamilton syringe via PE-10 tubing. Confirmation of successful infusion was obtained by monitoring the movement of a small air bubble inside the PE-10 tubing. A volume of 0.2 µl/side was delivered over approximately 30 s with the needle left in place for a further 2 min to minimize reflux up to the cannula shaft.

Ten minutes after infusion, the animals from each group were exposed for 5 min to the maze in a counterbalanced manner. A highly trained observer who remained blind to treatment conditions later analyzed the videotapes. The number of entries and the time spent in the open and closed arms were recorded. From these measures, the percentage of open arm entries (100 x open arm entries/total arm entries) and the percentage of time spent in the open arms (100 x time open/time open + time closed) were calculated for each animal as anxiety-like indexes. In addition to these conventional measures, the time displaying risk assessment-related behaviors from a closed arm (exiting a closed arm with the forepaws and head only, and investigating the forepaws with the head) was recorded as ethologically derived measures of anxiety as well.

Behavioral testing

Histology

As illustrated by a diagrammatic representation of coronal sections showing the injection sites from Experiments 1 and 2 (Figure 1), most of the injections were distributed throughout the entire rostral-caudal extent of the target area within the VH. Behavioral results from animals with injection sites outside the rostral-caudal extent of the target area were removed, stored in 5% formol-saline for two weeks, transcardially perfused with physiological saline followed by 10% formol-saline solution as fixative. The brains were removed, stored in 5% formol-saline for two weeks, sectioned horizontally by cryostatic method at 50-60, and stained with Cresyl violet. Drawings from the infusion sites and histological sections were superimposed on the appropriate pages of the stereotaxic atlas of Paxinos and Watson (1986).

Statistical analysis

Results from the two experiments were statistically analyzed by a one-way analysis of variance (ANOVA) to detect overall differences. Fisher’s least significant difference (LSD) post hoc test was employed to determine specific differences between groups. Because the absolute number of closed arm entries in Experiment 1 was significantly decreased by RO-60-0175, an analysis of covariance (ANCOVA) using this parameter as covariant (File, 1992) was additionally performed in order to examine whether locomotor activity could account for the event-related differences in the anxiety-like indexes. The level of statistical significance was p < .05.

Results

Histology

As illustrated by a diagrammatic representation of coronal sections showing the injection sites from Experiments 1 and 2 (Figure 1), most of the injections were distributed throughout the entire rostral-caudal extent of the target area within the VH.

Behavioral results from animals with injection sites outside the rostral-caudal extent of the target area in Experiment 1 (n = 12, Experiment 1; n = 7, Experiment 2) were removed from their respective groups and assigned to additional control groups in each experiment for statistical analysis.

Behavioral testing
As suggested from the upper panel of this figure, the ANOVA confirmed a main effect of treatment in both the percentage of open arm entries, \(F(5, 43) = 4.54, p < .05 \), and the percentage of time spent in the open arms, \(F(5, 43) = 6.42, p < .05 \). Post hoc comparisons showed that the doses of 1.0, 3.0 and 10 µg significantly decreased these two parameters of open arm exploration as compared to vehicle-infused animals (\(p < .05 \)). The ANOVA also indicated a significant effect of treatment, \(F(5, 43) = 9.71, p < .05 \), on closed arm entries. Post hoc comparisons revealed that the doses of 3.0 and 10.0 µg significantly decreased this locomotor activity index as compared to vehicle-infused animals (\(p < .05 \)).

To dissociate anxiogenic-like effects from nonspecific locomotor impairments induced by the two highest RO-60-0175 doses, an additional ANCOVA using the closed arm entries as covariant factor was conducted in both the percentages of open arm entries and of time spent in these arms. In these two cases, the ANCOVA revealed no significant effects of treatment when the closed arm entries were statistically controlled for (\(p > .05 \)). Therefore, the decrease in open arm exploration observed at the doses of 3.0 and 10.0 µg was probably due to a locomotor impairment.

Figure 2 (lower panel) illustrates the effects of RO-60-0175 microinjections on risk assessment. The ANOVA indicated a main effect of treatment, \(F(5, 43) = 7.23, p < .05 \), and post hoc comparisons revealed a significant reduction of risk assessment at the doses of 3.0 µg (\(n = 8 \)) and 10 µg (\(n = 7 \)) (\(p < .05 \) and \(.01 \), respectively). No other significant differences were found, despite a trend to increased risk-assessment at the dose of 1.0 µg. Again, the ANCOVA failed to detect significant differences on risk assessment parameters when the closed arm entries were used as covariate factor (\(p > .05 \)).

Figure 1. Composite of infusion sites aimed at the VH from Experiment 1 (white circles) and Experiment 2 (black circles). With the reference to the Paxinos and Watson (1986) atlas, the numbers on the right side of each plate indicate the distance in mm from bregma.

Figure 2. Mean (+SEM) percentage of open arm entries and time (upper panel), closed arm entries (middle panel) and risk assessment (lower panel) among groups microinjected either with vehicle (\(n = 7 \)) or RO-60-0175 at the doses of 0.3 µg (\(n = 8 \)), 1 µg (\(n = 7 \)), 3 µg (\(n = 9 \)) and 10 µg (\(n = 7 \)) into the VH. OUT (\(n = 12 \)) illustrates a representative group of rats infused with vehicle at sites localized outside the VH. *indicates \(p < .05 \) as compared to vehicle control.
Effects of two selective 5-HT\textsubscript{2C} receptor-acting compounds into the ventral hippocampus of rats exposed to the elevated plus-maze

Pharmacological activation at 5-HT\textsubscript{2C} receptors is associated with anxiety states and locomotor suppressant behaviors from the closed arms as compared to vehicle-infused animals (p < .05).

Because the VH is a postsynaptic 5-HT\textsubscript{2C} site notably implicated in anxiety (Gray & McNaughton, 2000; Degroot & Treit, 2004; Rex et al., 2005), it is possible that the present RO-60-0175 effects in the VH might involve 5-HT projections from the dorsal raphe nucleus (Azmitia & Segal, 1978; Vertes, 1991). In this respect, it has been found that potentially dangerous situations such as a context previously associated to an aversive stimulus (Hajos-Korcok, 2003) or acute EPM exposure (Wright et al., 2002; Jones & Blackburn, 2002; Wood, 2003; Gordon, 2004; Millan, 2005). However, intriguing results ranging from anxiolytic-like effects of 5-HT\textsubscript{2C} receptor agonists (Nic Dhonnchadha et al., 2003) to little or null effects of 5-HT\textsubscript{2C} receptor antagonists (Griebel, Perrault, & Sanger, 1997; Griebel, Rodgers, Ghislaine, & Sanger, 1997; Nic Dhonnchadha et al., 2003) have also been reported in some animal models of anxiety. Moreover, many of these effects vary considerably in different postsynaptic 5-HT sites in the brain (Jenck, Bos, Wichmann, Stadler, Martin, & Moreau, 1998; Graeff, Guimaraes, De Andraede, & Deakin, 1996, 2002; Graeff, 2002; Zanoveli et al., 2003).

In the present study we investigated the effects of two selective 5-HT\textsubscript{2C}-acting compounds microinjected into the VH of rats exposed to the EPM. In Experiment 1, a single selective 5-HT\textsubscript{2C} agonist RO-60-0175 dose-dependently decreased both the percentage of open arm entries and the percentage of time spent in the open arms. At the dose of 1.0 µg, the RO-60-0175-induced decrease in open arm exploration was devoid of a significant locomotor interference, despite a clear trend to reduce the absolute number of closed arm entries. This anxiogenic-like effect is in accordance with the behavioral profile of the preferential 5-HT\textsubscript{2C} receptor agonist MK-212 into this same brain site (Alves et al., 2004). Taking into account the high selectivity of RO-60-0175 for 5-HT\textsubscript{2C} receptors, this result further corroborates the suggestion that enhanced VH 5-HT\textsubscript{2C}-receptor responsiveness is associated with anxiety-like states.

Figure 3. Mean (+SEM) percentage of open arm entries and time (upper panel), closed arm entries (middle panel) and risk assessment (lower panel) among groups microinjected either with vehicle (n = 7) or RS-102221 at the doses of 0.75 (n = 8), 1.25 (n = 7) and 2.5 µg (n = 10) into the VH. OUT (n = 7) illustrates a representative group of rats infused with vehicle or different doses of RS-102221 at sites localized outside the VH. *indicates p < .05 as compared to vehicle control.

Discussion

Pharmacological activation at 5-HT\textsubscript{2C} receptors is associated with anxiety states and locomotor suppressant behaviors from the closed arms as compared to vehicle-infused animals (p < .05).
(LeDoux, Iwata, & Cichetti, 1988; Davis, Raiunnie, & Cassell, 1994; Davis & Shi, 1999) innervated by 5-HT fibers from the dorsal raphe nucleus (Vertes, 1991; Rainnie, 1999). For example, infusions of the nonselective 5-HT2C agonist mCPP and the selective 5-HT2C agonist IL-639 into the basolateral nucleus of the amygdala produced ultrasonic vocalization and increased the latency to investigate new objects in rats exposed to an open-field, an anxiogenic-like effect prevented by intraperitoneal (IP) pretreatment with the selective 5-HT2C antagonist SB-24084 (Campbell & Merchant, 2003). In the same line of evidence, our recent plus-maze results (Cruz et al., 2005) with basolateral amygdala infusion of ritanserin, a mixed 5-HT2 blocker that exhibits higher affinity at 5-HT2C than 5-HT2A receptors (Leysen et al., 1986; Leysen, 2004), show that this compound was able to prevent decreased open arm exploration induced by IP injection of MK-212. Interestingly, in this same study, ritanserin microinflation into the basolateral amygdala was ineffective to change basal anxiety-like levels in saline-pretreated animals. It seems, therefore, that 5-HT2C receptors within both the VH and basolateral nucleus of the amygdala play a similar role in mediating fear or anxiety-related behaviors. This view is supported by the existence of a bilateral neural projection between the VH and several nuclei of the amygdaloid complex (for a review, see Pitkanen, Pikkarainen, Numminen, & Ylinen, 2000).

Deakin and Graeff (1991) have proposed a dual role of 5-HT action on anxiety mediation. According to this hypothesis, ascending fibers from the dorsal raphe nucleus might facilitate anxiety through actions on the amygdala, while inhibiting inborn flight/flight reactions in the periaqueductal gray. Although this model recognizes the participation of an anatomical projection from the MRN to the dorsal hippocampus in the resistance to chronic and inescapable aversive stimuli, no mention is made regarding the 5-HT projections from the DRN to the VH. Our results suggest that 5-HT2C receptors located within the VH might modulate anxiety behavior in a similar way to that attributed to the amygdala by Deakin and Graeff in their model.

It is important to acknowledge that direct comparisons between the effects of selective lesions of either the VH or the amygdala have suggested these structures to be functionally distinct in the control of defensive behaviors. For example, VH but not amygdala lesions produced anxiolytic-like effects in widely used animal models of anxiety such as the EPM (Sommer et al., 2001; Kjelstrup et al., 2002; McHugh et al., 2004), the successive alley test (McHugh et al., 2004) and the social interaction in rats (Decker, Curzon, & Brion, 1995; McHugh et al., 2004). It is still unclear whether these differences are task-dependent or related to specific nuclei of the amygdala.

Results from Experiment 1 also showed the doses of 3.0 and 10.0 µg of RO-60-0175 to markedly reduce closed arm entries, a behavioral profile indicative of decreased locomotor activity in the EPM. This is in agreement with the well-documented locomotor-suppressant effects of systemically administered 5-HT2C agonists, including RO-60-0175 (Martin et al., 1998; Pikkarainen, Nurminen, & Ylinen, 2000).

As confirmed by the ANCOVA, the RO-60-0175-induced locomotor interference was observed exclusively at the two highest doses. This decrease in general activity practically abolished the occurrence of risk assessment processes or more cognitively oriented aspects of anxiety. For example, infusions of the nonselective 5-HT2C agonist RS 102221 microinfused into the VH. The locomotor activity effect observed in the present study was also reported by Fletcher and colleagues (2004), who found that microinjections of the same dose range of RO-60-0175 into the ventral tegmental area also impaired locomotor activity. Therefore, it appears that 5-HT2C in different brain areas might be involved in the mediation of locomotor activity. At least in part, this view is corroborated by our results, which found the group microinjected with RO-60-0175 outside the VH to show a trend toward reducing closed arm entries, although this effect was not statistically significant.

In Experiment 2, VH infusion of the selective 5-HT2C agonist RS 102221 did not affect conventional parameters of EPM exploration. At the two highest doses, however, RS 102221 significantly reduced risk assessment. Considering that a reduction in risk assessment in the absence of locomotor effects is consistent with a selective anxiolytic-like action in the EPM (Cruz et al., 1994; Griebel et al., 1997a, 1997b), our results suggest that the VH 5-HT2C receptor blockade might be associated with a reduction of anxiety-like states.

Frequency and/or duration of risk assessment-related behaviors from the closed arms have been widely used in the EPM scoring as a reliable and sensitive measure to detect anxiolytic-like effects of 5-HT compounds (Griebel et al., 1997a, 1997b; Setem et al., 1999; Griebel, Rodgers, Perrault, & Sanger, 2000), which does not necessarily change the conventional parameter of anxiety in this test. Factor analyses of spatiotemporal and ethologically derived measures of rats in the EPM indicated that although risk assessment and conventional anxiety measures loaded on the same factor, the former but not the latter also loaded in another factor seemingly related to decision-making processes or more cognitively oriented aspects of anxiety (Cruz et al., 1994). Therefore, it can be concluded from the present results that RS 102221 microinjection into the VH induced an anxiolytic-like action as measured by the risk assessment in the EPM.

The possibility that the conventional anxiety measure might be less sensitive in detecting anxiolytic-like actions of 5-HT2 antagonists upon low basal levels of anxiety in the EPM cannot be discounted (Rodgers & Dalvi, 1999).
an anxiogenic-like action that is prevented by selective and non-selective 5-HT2C receptor antagonists, the blockade of 5-HT2C receptors by itself had little or no effect on conventional anxiety parameters in the EPM (Griebel, 1996; Griebel et al., 1997a, 1997b; Setem et al., 1999, Jones et al., 2002; Martin et al., 2002). In line with this view, we reported that the non-selective blockade of 5-HT2C receptors in the basolateral nucleus of the amygdala prevented MK-212-induced decrease in open arm exploration, whereas the blockade of this receptor by itself was ineffective in saline pretreated animals (Cruz et al., 2005).

Finally, the use of inadequate doses cannot be totally excluded from the lack of clear effects of RS 102221 on open arm exploration. Although the effects of similar RS 102221 dose ranges have been investigated in different brain areas (e.g. McMahon et al., 2001; Filip & Cunningham, 2002), this is first study in which the effects of intra-VH RS 102221 infusion was investigated in anxiety-like behaviors of rats exposed to the EPM. Therefore, further experiments comparing the effects of other dose ranges and other selective 5-HT2C agonists and antagonists in both conventional and ethologically derived measures in the EPM could improve our knowledge about the involvement of 5-HT2C receptors on anxiety mediation.

Acknowledgment

Research supported by grants from the Brazilian National Research Council (CNPq, Brazil) to A.P.M. Cruz (350214/1998-0) and J. Landeira-Fernandez (522720/95-1).

References

Bagdy, G., Graf, M., Anheuer, Z.E., Modos, E.A., & Kantor, S. (2001). Anxiety-like effects by acute fluoxetine, sertraline or m-CPP treatment are reversed by pretreatment with 5-HT2C receptor antagonist SB-242084 but not the 5-HT1A antagonist WAY-100635. International Journal of Neuropsychopharmacology, 4, 399-408.

Dufort, I., Moukidis, R., & Lecour, S.E. (2000). We are...

Effects of two selective 5-HT$_{2C}$ receptor-acting compounds into the ventral hippocampus of rats exposed to the elevated plus-maze

