Bianco, M. I.; Lúquez, C.; Jong, L. I. T. de; Fernández, R. A.
Linden flower (Tilia spp.) as potential vehicle of Clostridium botulinum spores in the transmission of infant botulism
Revista Argentina de Microbiología, vol. 41, núm. 4, 2009, pp. 232-236
Asociación Argentina de Microbiología
Buenos Aires, Argentina

Available in: http://www.redalyc.org/articulo.oa?id=213016781007
Linden flower (Tilia spp.) as potential vehicle of Clostridium botulinum spores in the transmission of infant botulism

M. I. BIANCO, C. LÚQUEZ**, L. I. T. DE JONG, R. A. FERNÁNDEZ*

Área Microbiología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Parque General San Martín S/N, (5500) Mendoza, Argentina.
*Correspondence. E-mail: rfernand@fcm.uncu.edu.ar

ABSTRACT

Infant botulism is an intestinal toxemia caused principally by Clostridium botulinum. Since the infection occurs in the intestinal tract, numerous food products have been investigated for the presence of C. botulinum and its neurotoxins. In many countries, people use linden flower (Tilia spp) tea as a household remedy and give it to infants as a sedative. Therefore, to help provide a clear picture of this disease transmission, we investigated the presence of botulinum spores in linden flowers. In this study, we analyzed 100 samples of unwrapped linden flowers and 100 samples of linden flowers in tea bags to determine the prevalence and spore-load of C. botulinum. Results were analyzed by the Fisher test. We detected a prevalence of 3% of botulinum spores in the unwrapped linden flowers analyzed and a spore load of 30 spores per 100 grams. None of the industrialized linden flowers analyzed were contaminated with botulinum spores. C. botulinum type A was identified in two samples and type B in one sample. Linden flowers must be considered a potential vehicle of C. botulinum, and the ingestion of linden flower tea can represent a risk factor for infant botulism.

Key words: botulinum spores, linden flower tea, infant botulism

INTRODUCTION

Infant botulism is an intestinal toxemia caused by botulinum neurotoxins (BoNT) mainly produced by Clostridium botulinum. Some unusual strains of C. butyricum and C. baratii that produce BoNT type E and F, respectively, were isolated from a few patients with infant botulism (2, 5, 7, 17, 23, 32). Most cases result from C. botulinum types A and B (2, 4); however, some rare bivalent strains, Ba and Bf, were identified in a few cases (6, 16, 18).

Swallowed botulinum spores germinate, multiply, and vegetative cells produce BoNT in situ (2, 32). Since these spores are ubiquitous and widely distributed in soil, environmental exposure has been identified as an important risk factor for infant botulism (13, 22, 27). Soil is the principal source of these spore-forming bacteria, and botulinum spores may be present in dust; therefore, they can contaminate agricultural products. Due to the fact that the infection occurs in the intestinal tract, numerous food products have been investigated for the presence of C. botulinum spores and BoNTs. Botulinum

**Present address: Botulism Public Health Research and Preparedness Unit, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
Botulinum spores in linden flower (Tilia spp) tea

... and isocaproic acids were detected in peptone-yeast extract-glucose medium cultures by gas-liquid chromatography.

are frequently given to infants as a household remedy; therefore, ingestion of teas prepared with medicinal plants contaminated with botulinum spores could represent a risk for infant botulism. In Argentina, Tilia spp (linden flower) tea is commonly given to infants and some physicians recommend this tea as a natural sedative. The US Food and Drug Administration (FDA) places linden flower on the generally-recognized-as-safe (GRAS) list based on the chemical composition of this herb. However, linden flowers could be contaminated with botulinum spores. These spores can resist high temperatures; therefore, boiling water to prepare linden flower tea does not destroy the spores, but, rather, activates them. For these reasons, our aim was to determine the prevalence and spore-load of botulinum spores in linden flowers. This information is important to help elucidate the transmission of infant botulism and prevent this illness.

MATERIALS AND METHODS

We examined 200 samples of linden flowers that were obtained from markets and herbal stores in Mendoza, Argentina. Two groups of 100 samples were analyzed: 1) unwrapped linden flowers, which are delivered in large amounts to the herbal store and sold by weight to the customer in individual paper or plastic bags from open containers; and 2) linden flowers in tea bags (industrialized linden flowers), which are industrially processed, packaged in tea bags, and sold in closed boxes.

The samples were transferred to sterile recipients and stored at room temperature until examination. Then, 4 g of each sample of linden flower was suspended in 40 ml of saline solution (0.15 M NaCl) in a sterile recipient with hermetic closing. Suspensions were rigorously shaken and filtered through sterile gauze; the filtrates were centrifuged at 12,000 × g for 10 min to concentrate the spores. The pellets were suspended in 4 ml of saline solution, and these suspensions were subjected to 10 min of heat shock at 80 °C. The suspensions were inoculated in a chopped-meat medium (CMM) (14) and incubated at 31 °C for 5 days. After incubation, broths were centrifuged at 12,000 × g for 20 min at 4 °C. Cultures without signs of proteolysis were treated by mixing equal volumes of the supernatant culture and 1% trypsin (1:250, Difco) and incubated at 31 °C for 1 h. We inoculated 0.5 ml of each supernatant (each sample), in duplicate, intraperitoneally in mice and observed the mice for 96 h for characteristic botulinal signs and/or death (28).

We cultivated each of the toxic cultures in each of the following three solid media by streaking the surface: 1) 1.5% agar, 2) 4% agar (9), and 3) egg yolk agar (11). The cultures were incubated at 31 °C in BBL jars with an atmosphere of 80% N2, 10% CO2, and 10% H2. After incubation for 24 h in the 1.5% agar media, 48 h in the 4% agar media, and 72 h in the egg yolk media, suspected colonies were transferred to CMM and incubated at 31 °C for 4 days. The presence of BoNT in each of these cultures (from isolated colonies) was investigated by inoculating broths in mice as previously described. To assure a pure culture, toxic broths were cultivated in solid media, and these cultures were incubated in aerobic and anaerobic conditions. We identified the genera Clostridium based on the following characteristics: gram positive, strict anaerobe, and spore-forming rods. The cell morphology of each pure culture was observed by using an optical microscope.

RESULTS

Prevalence of botulinum spores in linden flower. We detected C. botulinum spores in 3% (3/100) of unwrapped linden flower samples analyzed, but none of the industrialized linden flower samples appeared to be contaminated with these spores (0/100). The difference in the occurrence of botulinum spores between both types of samples was analyzed by the Fisher test, and results were not significant (p = 0.2462).

Spore-load of C. botulinum in linden flower. We detected 30 spores per 100 grams of linden flower in each of the three positive samples (95% confidence limits: 9-103 spores per 100 grams).

Phenotypic characteristics of strains of C. botulinum isolated from linden flower. We isolated three toxigenic strains of C. botulinum from positive samples of linden flower. The results of serological and biochemical test were the following:

1) Serological test. Botulinum neurotoxin type A was identified in two of the three positive samples and type B in only one sample.

2) Biochemical tests. All isolated strains were gram-positive rods with oval and subterminal spores. The three strains isolated from linden flower produced acid from glucose. Mannitol, maltose, lactose, mannose, fructose, and sucrose were not fermented and nitrate was not reduced. Gelatine was liquefied. Indole and lecithinase were not produced. Esculin was hydrolyzed and lipase was produced. Milk and meat were digested. Acetic, propionic, butyric, isobutyric, valeric, isovaleric, and isocaproic acids were detected in peptone-yeast extract-glucose medium cultures by gas-liquid chromatography.
According to biochemical test results, the three strains corresponded to metabolic group I.

DISCUSSION

Prevalence of botulinum spores in linden flower. The prevalence of botulinum spores found in unwrapped linden flower (3%) was lower than that detected in the following medicinal plants: *Matricaria* spp. (chamomile) (9), *Lippia turbinata* (penny royal), *Alternanthera pungens* (khakiweed), *Pimpinella anisum* (anise), and *Senna acutifolia* (senna) (30) (Table 1). These medicinal plants can be contaminated with botulinum spores present in the environment (i.e., soil, dust). The soil is the principal source of botulinum spores and the height of the medicinal plants can be an important factor in the contamination with these spores. The linden tree is several feet high; therefore, linden flower is less easily contaminated with botulinum spores than other plants of minor height. On the contrary, chamomile, khakiweed, anise, penny royal, and senna are small shrubs growing close to the ground (Table 1); therefore, these plants are easily contaminated with botulinum spores. On the other hand, the high prevalence of *C. botulinum* found by Satorres et al. (1999) in penny royal, khakiweed, anise, and senna could not be real because of the few samples analyzed for each one of these species (Table 1).

The prevalence of botulinum spores in linden flower was also lower than the 6-10% detected in honey (3, 13, 19, 20, 24, 31), but higher than that found in corn syrup (0.5%) (4). These spores have been detected in honey from various countries (3, 12, 19, 20, 26, 34) and some studies have also considered honey consumption a risk factor for this illness. For these reasons, and because honey is not nutritionally essential, the United States public health agencies, all major pediatricians, and the honey industry have recommended not to feed infants younger than one year old with honey (4). Moreover, *C. botulinum* type B spores were found in approximately 0.5% (5 of 961) of light and dark corn syrup samples (20). However, in 1991 a FDA market survey of 738 corn syrup samples concluded that none contained *C. botulinum* spores (21). Therefore, although the possible role of corn syrup in infant botulism has been proposed, it is not a recognized source of botulinum spores or a risk factor for infant botulism (4).

Probably, the absence of these spores in industrialized linden flowers is due to the fact that the industrialization process reduces the contamination. Linden flowers in tea bags are usually dried in closed furnaces (25–30 °C), while unwrapped linden flowers are often dried in the open air or in sheds. Therefore, industrialized linden flowers are less exposed to contamination with spores present in environmental dust. In a previous study, we found similar results when comparing the prevalence of botulinum spores in unwrapped chamomile and chamomile in tea bags. Unwrapped chamomile showed a prevalence of 13% whereas chamomile in tea bags of only 2% (9). Because botulinum spores can be present in environmental dust, an important way to prevent contamination with *C. botulinum* of “unwrapped” herbs is to optimize the hygiene conditions in herbal stores and to keep these herbs in closed bags.

Spore-load of *C. botulinum* in linden flower. The minimum infective dose of *C. botulinum* spores for human

Table 1. Prevalence of *C. botulinum* in medicinal plants

<table>
<thead>
<tr>
<th>Medicinal plant</th>
<th>Approximate height (f)</th>
<th>Number of samples studied (f)</th>
<th>Number of positive samples</th>
<th>Prevalence of botulinum spores (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linden flower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Tilia spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Unwrapped</td>
<td>15-20</td>
<td>100</td>
<td>3</td>
<td>3</td>
<td>This study</td>
</tr>
<tr>
<td>- In tea bags</td>
<td>15-20</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>This study</td>
</tr>
<tr>
<td>Chamomile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Matricaria spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Unwrapped</td>
<td>0.50</td>
<td>100</td>
<td>13</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>- In tea bags</td>
<td>0.50</td>
<td>100</td>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Penny royal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Lippia turbinata)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Pimpinella anisum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khakiweed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Alternanthera pungens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Senna acutifolia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
infants is unknown; however, from estimates from exposure to spore-containing honey, this dose may be as low as 10 to 100 (3, 4). This value is higher than the spore-load detected in the three positive samples of linden flowers (30 spores per 100 grams); however, a cup of linden flower tea is prepared with several grams of this herb, and linden flower tea may be ingested by an infant several times a day, for many days. Therefore, repetitive doses of this tea could accumulate the minimum infective dose of *C. botulinum* necessary for infant botulism. This spore-load is similar to that detected in chamomile (30-40 spores/100g) (9) and smaller than that detected in honey (5-80 spores/g) (3). However, infants may be more frequently given herbal teas than honey. In Mendoza, in western Argentina, epidemiological data of patients with infant botulism showed that 9.6% (10/104) had ingested herbal teas, while 4.8% (5/104) of patients were honey-fed (8). Moreover, a study about the use of alternative medicine in Mendoza showed that children are commonly given herbal teas (Femenía, Guida, Azcurra et al., personal communication). An 18.9% of infants (younger than one year old) had ingested teas prepared with the following medicinal plants: *Matricaria* spp. (64.3%), *Tilia* spp. (14.3%), *Chenopodium ambrosioides* (14.3%), *Peumus boldus* (7.1%), *Eucalyptus* spp. (7.1%), *Pimpinella anisum* (7.1%), *Artemisia douglasiana* (7.1%), and a mixture of *Chamomilla recutita*, *A. pungens*, *Mentha viridis*, *L. turbinata*, and *Faeniculum vulgare* (7.1%) (Femenía, Guida, Azcurra et al., personal communication).

Phenotypic characteristics of strains of *C. botulinum* isolated from linden flower. Serotypes A and B are the most frequently identified in cases of infant botulism around the world. In Argentina, between the years 1982 and 2006, *C. botulinum* type A has been identified in 99.75% (409/410) of patients with infant botulism whereas *C. botulinum* type B was detected in one case (9). Moreover, we observed that strains of *C. botulinum* isolated from linden flower and from infant botulism cases showed similar biochemical characteristics. These results suggest that *C. botulinum* strains present in linden flower could collaborate to produce infant botulism.

An important way to prevent the occurrence of infant botulism results from not giving infants food products in which the presence of botulinum spores has been reported. Results presented in this study suggest that unwrapped linden flowers are a potential vehicle of *C. botulinum* spores. Therefore, to minimize the risk of acquisition of infant botulism, we recommend that linden flower tea prepared with unwrapped linden flowers should not be given to infants under one year of age.

Acknowledgements. We thank María Isabel Farace (Chief of Sanitary Bacteriology Service) and Edgardo Castelli (Laboratory Staff) from the Administración Nacional de Laboratorios e Institutos de Salud (A.N.L.I.S.) “Dr. Carlos G. Malbrán” (Buenos Aires, Argentina), and Daniel Abdala Pacheco from Hospital Materno Infantil “Dr. Humberto J. Notti” (Mendoza, Argentina). This work was supported by grants from Facultad de Ciencias Médicas and Secretaría de Ciencia y Técnica, Universidad Nacional de Cuyo, Mendoza, Argentina. M.I. Bianco and C. Lóquez had fellowship assistance from CONICET, Argentina.

References

17. Hall JD, McCroskey LM, Pincomb BJ, Hatheway CL. Isolation of an organism resembling *Clostridium baratii* which