Reyes-Montes, M. R.; Rodríguez-Arellanes, G.; Pérez-Torres, A.; Rosas-Rosas, A. G.; Parás-García, A.; Juan-Sallés, C.; Taylor, M. L.

Identification of the source of histoplasmosis infection in two captive maras (Dolichotis patagonum) from the same colony by using molecular and immunologic assays

Revista Argentina de Microbiología, vol. 41, núm. 2, 2009, pp. 102-104

Asociación Argentina de Microbiología
Buenos Aires, Argentina

Available in: http://www.redalyc.org/articulo.oa?id=213016783008
Identification of the source of histoplasmosis infection in two captive maras (*Dolichotis patagonum*) from the same colony by using molecular and immunologic assays

M. R. REYES-MONTES¹, G. RODRÍGUEZ-ARELLANES¹, A. PÉREZ-TORRES², A. G. ROSAS-ROSAS³, A. PARÁS-GARCÍA³, C. JUAN-SALLÉS⁴, M. L. TAYLOR⁵*

Departamentos de ¹Microbiología-Parasitología y ²Biología Celular, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF, (04510) Mexico; ³Departamento de Veterinaria, Africam Safari, 11 Oriente 2407 (Col. Azcárate), Puebla, Puebla, (72007) Mexico; ⁴ConZOOlting Wildlife Management, La Canvella 1, Nau 1, (08445) Samalús, Spain

*Correspondence. E-mail: emello@servidor.unam.mx

ABSTRACT

Histoplasma capsulatum was isolated from the spleen of a first infected mara (*Dolichotis patagonum*) and from a second mara’s liver and adrenal gland, both in the same colony at the Africam Safari, Puebla, Mexico. Studies of *H. capsulatum* isolates, using nested-PCR of a 100-kDa protein coding gene (*Hcp100*) fragment and a two-primer RAPD-PCR method, suggest that these isolates were spreading in the environment of the maras’ enclosure. By using a Dot-ELISA method, sera from mice inoculated with three homogenates of soil samples from the maras’ enclosed space developed positive brown spot reactions to a purified *H. capsulatum* antigen, which identified the probable source of the maras’ infection.

Key words: *Histoplasma capsulatum*, maras, PCR, RAPD-PCR, Dot-ELISA, infection source

RESUMEN

Identificación de la fuente de infección de histoplasmosis de dos maras (*Dolichotis patagonum*) cautivas procedentes de la misma colonia, utilizando ensayos moleculares e inmunológicos. *Histoplasma capsulatum* fue aislado del bazo de una primera mara (*Dolichotis patagonum*) infectada y del hígado y la glándula suprarrenal de un segundo ejemplar, ambos de la misma colonia en el Africam Safari, Puebla, México. Los estudios de los aislamientos de *H. capsulatum* mediante PCR anidada para un fragmento del gen *Hcp100* que codifica una proteína de 100 kDa y RAPD-PCR empleando doble iniciador sugieren que estos aislamientos estaban dispersos en el ambiente del refugio de las maras. Los sueros de ratones inoculados con tres homogenizados de muestras de suelo del refugio desarrollaron reacciones positivas a un antígeno purificado de *H. capsulatum* (manchas color castaño oscuro) por el método de Dot-ELISA; con lo cual se identificó la probable fuente de infección de las maras.

Palabras clave: *Histoplasma capsulatum*, maras, PCR, RAPD-PCR, Dot-ELISA, fuente de infección

The pathogenic fungus *Histoplasma capsulatum* var. *capsulatum*, the etiologic agent of the systemic mycosis histoplasmosis, usually occurs in geographic areas where tropical climates prevail. It is present either in confined spaces where bat guano is abundant or in open spaces where bird droppings are frequently found. Infection is acquired from the environment by inhalation of infective mycelial-phase propagules that are aerosolized (11).

Bats are probably the major fungal reservoir that contributes to maintain this parasite in natural foci. Histoplasmosis has been described in domestic and free-ranging wildlife animals. Occasionally, it has been documented in captive animals, including a sea otter (*Enhydra lutris*) (3) and an owl monkey (*Aotus nancymai*) (12). Disseminated histoplasmosis in captive maras (*Dolichotis patagonum*), also called Patagonian hares, at the Africam Safari, in the state of Puebla, Mexico, has been described elsewhere (8, 9). We herein report molecular and immunologic findings that support the identification of the source of infection in the maras’ enclosure, which were probably associated with two histoplasmosis cases in captive maras from the same colony at the Africam Safari, Mexico.

Three isolates from maras were used: the EH-558B from the spleen belonging to case 1 and EH-574A and EH-574H from the adrenal gland and liver of case 2, respectively. Isolates were identified by morphologic and antigenic procedures as described by Taylor et al. (10). One isolate (EH-406) from a naturally infected bat and another one from an Argentinean patient (01558) were processed as controls in different molecular assays. The mycelial phase of each *H. capsulatum* isolate was maintained at 26 °C in brain-heart-infusion agar (BHI-agar) (Bioxón, México, DF).
DNA samples were extracted from the three maras’ *H. capsulatum* isolates and from the two control isolates. Whole-cell DNA isolation was performed as described elsewhere by Reyes-Montes et al. (6).

Nested-PCR was performed as described by Bialek et al. (1) with minor modifications by Taylor et al. (10). DNA samples from the studied *H. capsulatum* isolates were processed together with a DNA sample of *Sporothrix schenckii*, used as negative control of heterologous fungal strain. Two sets of primers (Operon Technologies Inc., Alameda, CA) were used, corresponding to a fragment of the gene encoding for a 100-kDa protein (*Hcp100*) unique to *H. capsulatum* (10). The outer primer set, Hc I and Hc II, delimits a 391-nucleotide sequence of the gene (1). The inner primers, Hc III and Hc IV, delimit a specific 210-nucleotide sequence (1). DNA amplification and the electrophoresis of the PCR products were performed according to Taylor et al. (10).

The two-primer RAPD-PCR assay was performed as described by Hu et al. (2) with modifications by Taylor et al. (10). The amplification patterns of different isolates were analyzed to obtain an estimation of similarity for each pair of isolates. The similarity was calculated by using the Jaccard coefficient (5). A dendrogram was constructed based on the similarity matrix and through the unweighted pair-group method with arithmetic averages (UPGMA). Multivariate statistical methods were performed with the NTSYS-PC program (version 2.0; Exeter Software) (7). To detect the maras’ sources of infection, sera from mice inoculated with homogenates from some environmental samples were harvested and tested at 10 and 17 days after inoculation with samples S-190, S-191, and S-197. The presence of anti-*H. capsulatum* antibodies in sera of most mice at 10 and 17 days after inoculation with samples S-190, S-191, and S-197 suggested that the source of the maras’ infection was associated with bat and bird guano collected from places related to the maras’ enclosure, where both types of guano had accumulated near the maras’ food container (Table 1).

Although *H. capsulatum* isolates from the mara samples were undoubtedly identified by morphological and antigenic findings, the molecular studies of these isolates were an important support to relate *H. capsulatum* isolates sampled from other sources and geographic origins. At the same time, the infection source at the maras’ enclosure was immunologically monitored by detecting positive reaction to *H. capsulatum* antigen in sera of mice inoculated with different environmental samples, including from their burrows.

The nested-PCR assay established that the mara isolates shared the same bands in all *H. capsulatum* iso-

<table>
<thead>
<tr>
<th>Soil samples</th>
<th>Type of samples</th>
<th>Place of collection</th>
<th>Dot-ELISA (10-days)</th>
<th>Dot-ELISA (17-days)(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-190</td>
<td>Bat and bird guano</td>
<td>Mara shelter</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>S-191</td>
<td>Bat and bird guano</td>
<td>Mara shelter</td>
<td>3/3</td>
<td>3/3</td>
</tr>
<tr>
<td>S-195</td>
<td>Mara feces</td>
<td>Mara burrow</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>S-196</td>
<td>Mara feces</td>
<td>Mara burrow</td>
<td>1/3</td>
<td>0/3</td>
</tr>
<tr>
<td>S-197</td>
<td>Bat and bird guano</td>
<td>Mara shelter</td>
<td>2/3</td>
<td>3/3</td>
</tr>
</tbody>
</table>

(1) Sera from mice inoculated with homogenates of the environmental samples were harvested and tested at 10 and 17 days after inoculation. Dot-ELISA was performed by using a purified DPPC-Histo molecule as specific *H. capsulatum* antigen (10). Samples S-190, S-191, and S-197 were collected in distinct places of the maras’ open shelter. Samples S-195 and S-196 were collected from different burrows in the middle of the maras’ enclosure.
lates studied, which supports their molecular recognition. Besides, the RAPD-PCR findings revealed, through the dendrogram based on the UPGMA analysis, that the mara isolates have high similarity in their polymorphic DNA bands, which differed from the DNA patterns of the two

H. capsulatum control isolates processed. Thus, RAPD-PCR results suggest that the mara isolates shared the same source of infection.

The presence of **H. capsulatum** in the maras’ enclosure was well-demonstrated by antibody production in mice inoculated with the environmental samples.

This work details infection data from two captive maras with disseminated histoplasmosis, regarding molecular findings of their **H. capsulatum** isolates and the immunological identification of their respective infection sources.

Acknowledgements: The authors thank Ingrid Mascher for editorial assistance.

REFERENCES

