Cejas, Daniela; Vignoli, Rafael; Quinteros, Mirta; Marino, Ricardo; Callejo, Raquel; Betancor, Laura; Gutkind, Gabriel O.; Radice, Marcela A.

First detection of CMY-2 plasmid mediated -lactamase in Salmonella Heidelberg in South America
Revista Argentina de Microbiología, vol. 46, núm. 1, 2014, pp. 30-33
Asociación Argentina de Microbiología
Buenos Aires, Argentina

Available in: http://www.redalyc.org/articulo.oa?id=213030865006
BRIEF REPORT

First detection of CMY-2 plasmid mediated β-lactamase in *Salmonella* Heidelberg in South America

Daniela Cejas\(^a\), Rafael Vignoli\(^b\), Mirta Quinteros\(^c\), Ricardo Marino\(^c\), Raquel Callejo\(^c\), Laura Betancor\(^b\), Gabriel O. Gutkind\(^a\), and Marcela A. Radice\(^a,\)*

\(^a\) Catedra de Microbiologia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina

\(^b\) Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.

\(^c\) Hospital de Infecciosas “F. Muñiz”, Ciudad Autónoma de Buenos Aires, Argentina

Received 4 December 2013; accepted 11 February 2014

KEYWORDS

Salmonella Heidelberg; CMY-2 β-lactamase; ST15

Abstract

Salmonella enterica serovar Heidelberg ranks among the most prevalent causes of human salmonellosis in the United States and Canada, although it has been infrequently reported in South American and European countries. Most *Salmonella* infections are self-limiting; however, some invasive infections require antimicrobial therapy. In this work we characterized an oximino-cephalosporin resistant *S*. Heidelberg isolate recovered from an inpatient in a Buenos Aires hospital. CMY-2 was responsible for the β-lactam resistance profile. *S*. Heidelberg contained a 97 kb plasmid belonging to the Inc N group harboring *bla*\(_{CMY-2}\). IS\(_{Ecp1}\) was located upstream *bla*\(_{CMY-2}\) driving its expression and mobilization. The isolate belonged to sequence type 15 and virotyping revealed the presence of sopE gene. In this study we identified the first CMY-2 producing isolate of *S*. Heidelberg in Argentina and even in South America.

© 2013 Asociación Argentina de Microbiología. Published by Elsevier España, S.L. All rights reserved.

PALABRAS CLAVE

Salmonella Heidelberg; CMY-2 β-lactamasa; ST15

Resumen

Salmonella enterica serovar Heidelberg es uno de los principales agentes causantes de salmonelosis en humanos en Estados Unidos y Canadá, sin embargo, resulta infrecuente en los países de Sudamérica y Europa. En este trabajo se caracterizó un aislamiento de *S*. Heidelberg resistente a oximino-cefalosporinas recuperado de un paciente internado...
Salmonella enterica serovar Heidelberg is the causative agent of salmonellosis, a self-limiting gastroenteritis that does not usually require antibiotic therapy. However, severe infections may occur, particularly in children and immunocompromised hosts, leading to invasive diseases that require antimicrobial treatment. Fluoroquinolones and extended-spectrum cephalosporins are frequently used in severe Salmonella infections.

Since the late ‘80s Salmonella isolates displaying resistance to extended spectrum cephalosporins have emerged worldwide. Coding genes for TEM-, SHV-, PSE-, OXA-, PER-, CTX-M-, CMY-, ACC-, DHA- extended spectrum β-lactamases (ESBL) and also KPC carbapenemases have been reported in S. enterica isolates.

S. enterica serovar Heidelberg ranks among the most prevalent causes of human salmonellosis in the United States and Canada, although it is infrequently reported in South American and European countries. During the last decade, extended-spectrum cephalosporin resistance has increased among human and agri-food isolates of this serotype in North American countries. This resistance profile is mainly associated with the spread of blaCMY2 plasmid encoded AmpC β-lactamase. S. Heidelberg is also one of the most common Salmonella serovars isolated from poultry and eggs, whose consumption has led to many foodborne infection outbreaks. Infections caused by person-to-person transmission or direct contact with infected animals have been rarely reported.

In Argentina, S. Heidelberg isolates are very infrequent among those submitted to the Centro Nacional de Referencia (Mariana Pichel- Instituto Nacional de Enfermedades Infecciosas ANLIS “Carlos G. Malbrán”- personal communication).

In this study, we characterized oxyimino-cephalosporin resistance in an S. Heidelberg isolate recovered from a diarrheal stool sample of an HIV adult inpatient, in February 2012, in Buenos Aires. Identification was carried out using conventional culture methods. Serotyping was conducted at the Centro Nacional de Salmonella (CNS) in Montevideo, Uruguay. The CNS, housed in the Departamento de Bacteriología y Virología, Instituto de Higiene, Universidad de la República, has characterized Salmonella isolates of human, animal, food, feed and environmental origin, voluntarily submitted by several private and public laboratories for the last 60 years in Uruguay.

Minimal Inhibitory Concentrations (MICs) of different antimicrobial agents were determined using broth microdilution testing and interpreted according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. S. Heidelberg was resistant to ampicillin, cephalothin, cefoxitin, ceftiraxone, ceftazidime, intermediate to tetracycline and susceptible to cefepime, imipenem, aztreonam, kanamycin, gentamicin, ciprofloxacin, levofloxacin and cloramphenicol. Phenotypic screening for β-lactamases was performed by synergy tests using amoxicillin/clavulanic acid (10 μg/10 μg) and phenyl-boronic acid (300 μg)-containing disks. Synergy was observed between phenyl-boronic acid and both ceftazidime and cefotaxime disks, suggesting the presence of an AmpC type β-lactamase. Plasmid DNA was purified according to the Kado and Liu method. A multiplex-PCR assay was conducted to reveal the presence of plasmid-encoded ampC alleles, rendering a 462 bp amplicon, which suggested the presence of a coding gene for a CIT cluster β-lactamase. The following specific primers (5’-3’) were used to achieve the complete blaCMY2 gene: CMY-F: ATGATGAAAAATCGTTATGCT and CMY-R: TTATTGCAGCTTTTCAAGAT. The nucleotide sequence of the 1140 bp amplicon obtained corresponded to blaCMY2. The genetic context of blaCMY2 was determined by PCR mapping and sequencing, as shown in Figure 1, using the following primers (5’-3’): TN-F: ACCCTATGTTCTACGTCACTACT, AmpC-R: CCCTGTTGATACGGCA, Blc-F: CATTCCTGTGTGTGGCGGT, SugE-F: AGCATGGCGATACTGACGAT, SugE-R: GCCTGATATGTCCTGACGGCA, Blc-F: CATTCCTGGTTGTCGCGTGT, SugE-F: AGCATGGCGATACTGACGAT. The analyzed blaCMY2 context agrees completely with the conserved regions reported for Type I, II and III environments described in S. enterica, in which blaCMY2 gene is associated with the insertion sequence IS607, which could enhance blaCMY2 expression and mobilization.

Replicon type of blaCMY2 harboring plasmid was determined according to Carattoli et al., corresponding to the IncN plasmid. Plasmid size was estimated in 97 kb by PFGE analysis of S1 nuclease digested DNA. Conjugation assays were carried out using E. coli J53 (sodic azid resistant) as recipient strain and Luria Bertani agar plates supplemented with sodium azide (150 μg/ml) and ceftazidime (10 μg/ml) as selection system. blaCMY2 plasmid could not be transferred by conjugation in the assayed conditions.

Multilocus sequence typing (MLST) with seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, thrA) was conducted according to http://www.mlst.ucc.ie/mlst/dbs/Senterica. The isolate displayed the following allelic profile: 2, 7, 9, 9, 5, 9, 12, which corresponds to ST 15, as well as the majority of the S. Heidelberg isolates deposited in the MLST database. According to the S. enterica MLST database, ST 15 was more often reported in Europe, North America and Asia, however there is only one description in Africa and two in South America http://www.mlst.ucc.ie/mlst/dbs/Senterica/.
Extended-spectrum cephalosporin resistance among human sporadically reported. There are no reported data about the most prevalent serotypes, being salmonellosis infections are registered. According to an even in South America.

CMY-2-producing S. enterica isolates were not detected3,4,6. IncN group was not detected3,4,6. IncI1, IncFIA/FI, IncK, IncF, IncY and IncBO plasmids, the where we reported the association of Salmonella. Heidelberg human isolate in our country, an even in South America.

CMY-2 gene, constitutes the most common marker among extended-spectrum cephalosporin-resistant Salmonella in the United States, mainly mediated by the spread of IncI1 blaCMY-2 plasmid1. This replicon type plasmid has also been described in blaCMY-2 producing S. Typhimurium isolated from children with diarrhea in Uruguay6. More recently IncA/C plasmids have been associated with blaCMY-2 bovine isolates of S. Typhimurium10. However, in the studied isolate blaCMY-2 was located in an IncN plasmid, this replicon type has not been previously associated to blaCMY-2 in Salmonella spp. Even in previous studies performed in E. coli in Argentina, where we reported the association of blaCMY-2 with IncA/C, IncI1, IncFIA/FI, IncK, IncF, IncY and IncBO plasmids, the IncN group was not detected3,4,4.

Considering the wide diversity of Inc/blaCMY-2 associations, the spread of blaCMY-2 may be related to the presence of a transposable element responsible for its mobilization. Additionally, the co-mobilization of blaCMY-2 and sugE increases the possibility of co-selection processes. SugE is a member of the small multidrug resistance (SMR) transporter family, responsible for conferring resistance to antiseptics such as quaternary ammonium compounds and SDS12.

The spread of resistance markers among S. Heidelberg isolates constitutes a risk for the management of severe salmonellosis in clinical practice. Therefore, a better understanding of the pathogen distribution and its antimicrobial resistance is important for the development of strategies to limit salmonellosis due to multidrug-resistant strains.

Ethical responsibilities

Protection of human and animal subjects. The authors declare that no experiments were performed on humans or animals for this investigation.

Confidentiality of data. The authors declare that no patient data appears in this article.

Right to privacy and informed consent. The authors declare that no patient data appears in this article.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Acknowledgements

This work was partially supported by Grants from UBACyT and ANPCyT to M. Radice and G. Gutkind. G. Gutkind and M. Radice are members of Carrera del Investigador Científico (CONICET). D. Cejas was recipient of a doctoral fellowship from CONICET and is now recipient of a postdoctoral fellowship from Fundación Bunge y Born.

References

5. Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing; 22nd informational supplement, 2012; M100-S22. Wayne, PA, USA.

