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ABSTRACT

Following the recent work of Gémez—Déniz and Pérez—Rodriguez (2014),
this paper extends the results obtained there to the normal-exponential
distribution with dependence. Accordingly, the main aim of the present pa-
per is to enhance stochastic production frontier and stochastic cost frontier
modelling by proposing a bivariate distribution for dependent errors which
allows us to nest the classical models. Closed—form expressions for the error
term and technical efficiency are provided. An illustration using real data
from the econometric literature is provided to show the applicability of the
model proposed.
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Modelos de frontera estocastica con errores
dependientes basados en margenes normal y
exponencial

RESUMEN

Continuando el reciente trabajo de Gémez—Déniz y Pérez—Rodriguez (2014),

el presente articulo extiende los resultados obtenidos a la distribucién normal—
exponencial con dependencia. En consecuencia, el principal proposito de

este articulo es mejorar el modelado de la frontera estocédstica tanto de pro-

duccién como de coste proponiendo para ello una distribuciéon bivariante

para errores dependientes que nos permitan encajar los modelos cldsicos.

Se obtienen las expresiones en forma cerrada para el término de error y la

eficiencia técnica. Se ilustra la aplicabilidad del modelo propouesto usando

datos reales existentes en la literatura econométrica.

Palabras claves: eficiencias técnica y de coste; frontera estocastica; dis-
tribucién marginal; dependencia; modelo de Sarmanov.

Clasificacion JEL: C01; C13; C21; C51.

MSC2010: 91B70; 62P20; 91G70.
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1 Introduction

In general, the methods used for estimating technical and cost efficiency can be considered either
parametric or non—parametric. The former involves the estimation of a stochastic production
frontier (SPF) or a stochastic cost frontier (SCF) by imposing an explicit functional form and
distribution assumption on the data (Aigner et al., 1977; Meeusen and van den Broeck, 1977;
Battese and Corra, 1977; Stevenson, 1980; Greene, 1980a, 1980b; Jondron et al., 1982; Lee,
1983; Greene, 1990, 2003; Smith, 2008), where the output of a firm is a function of a set of
inputs, plus inefficiency and random error. The second approach is the linear programming
technique of data envelopment analysis (DEA), a non—parametric approach which does not
impose any assumptions regarding functional form and which does not take into account random
error (see Lovell and Schmidt, 1988, for an early survey). Both techniques have advantages
and disadvantages; for example, SPF and SCF require the analyst to assume an underlying
distribution about the error term, and independence between the inefficiency term and random
error. On the other hand, DEA cannot take into account such statistical noise, and efficiency
estimates may be biased if the production process is largely characterised by stochastic elements.

Between these two alternatives of modelling, our main interest is based on the the stochastic
frontier model in a cross—section framework. The model in this scenario can be written as
yi = f(zi;8) + v £u;, @ =1,2,...,n, u; > 0, where the sign of the last term depends on
whether the frontier describes costs (positive) or production (negative). For example, if we
assume that f (z;;3) takes the log-linear Cobb-Douglas form, then the stochastic production
frontier (SPF) model can be written as: logy; = fo + Z§:1 Bilogzi; +vi —uw;, 1=1,2,...,n,
where log y; is the natural logarithm of the production of the i-th firm; log z; is a kx1 vector of
(natural log transformations of the) input quantities of the i-th firm; 3 is a vector of unknown
parameters, and the disturbance term ¢; = v; + u; (which is asymmetric) is assumed to have
two components: one with a strictly non—negative distribution, u; (which is a non—negative
component often referred to as the inefficiency term), and another with a symmetric distribution,
v; (which is termed the idiosyncratic error). Although it is not an assumption of the model,
independence of v and u makes it easy to obtain the density of €. The density of ¢ is then used
to conduct maximum likelihood estimation of the model parameters. In addition, it is possible

to obtain the conditional density of ule and E(u|e). These serve as a basis to obtain estimates



for firm—specific inefficiency.

The maximum likelihood method can be used to estimate S and w;, the variances of the
errors and the technical efficiency of each firm. Therefore, distributional assumptions are re-
quired for v; and wu;. In terms of v;, and in general, these random variables are assumed to be
independently and identically distributed (iid) N (0,02). On the other hand, in terms of u;,
various assumptions may be made; for example, Meeusen and van den Broeck (1977) assigned
the exponential distribution to u;, Battese and Corra (1977) assumed a half-normal distribu-
tion, while Aigner et al. (1977) considered both distributions. However, since the half-normal
and exponential distributions are both single—parameter specifications with modes at zero, some
scepticism has been expressed regarding their generality. Thus, Stevenson (1980) suggested the
truncated normal and gamma distribution for u;. Greene (1980a, 1980b) proposed the gamma
distribution, Lee (1983) proposed a four—parameter Pearson family of distributions and Greene
(1990, 2003) proposed the two—parameter gamma density as a more general alternative.

More recently, another way to model SPF and SCF are based on dependence of error terms
such as Smith (2008) and Wiboonpongse et al. (2015) with copulas and El Mehdia and Hafner
(2014) and Gémez-Déniz and Pérez—Rodriguez (2014) with closed—form solutions by using biva-
riate distributions. On the other hand, Tran and Tsionas (2015) and Amsler et al. (2016) study
the correlation between the inputs and statistical noise or inefficiency. The former one propo-
ses an approach which is based on copula function to directly model the correlation between
the endogenous regressors and the composed errors assumed to be independent and identically
distributed.

Accordingly, the main aim of the present paper is to enhance SPF and SCF modelling by
proposing a closed form of a bivariate distribution for dependent errors which allows us to nest
the classical models. In particular, we follow Gémez—Déniz and Pérez—Rodriguez (2014) and
extend their results by using Sarmanov’s family of distributions (Sarmanov, 1966; Lee, 1996;
Goémez-Déniz and Pérez—Rodriguez, 2014; among others) to obtain closed—form expressions for
the error term and technical efficiency. More specifically, we built a bivariate dependent SPF
and SCF models by using normal and exponential distributions (NE), and thus we construct a
general extension of the classical stochastic frontier model with these distributions.

The remainder of this paper is structured as follows. Section [2|introduces a brief note on the

Sarmanov family of distributions which is used to estimate the technical (cost) efficiency in a



cross—section framework. We analysed one parametric form, deriving in closed—form expression
the log likelihood functions and technical (cost) efficiencies, based on the classical pdf distribu-
tions, by including the dependence structure. An application of the new model is discussed in

Section |3] Finally, the main conclusions drawn are presented in Section

2 Modelling the dependence

In addition to the distributional assumptions on the error terms, v; and w;, in stochastic pa-
rametric frontier models, another important characteristic of the above cited models is the
independence between them to construct the density and marginal distributions.

The classical stochastic frontier model with normal and exponential assumptions is described
by the following stochastic representation: (i) v; ~ iid N(0,02); (i4) u; ~ iid exponential with
parameter o,, > 0; and (ii7) u; and v; are distributed independently of each other and of the

regressors. The probability density functions of v; and u; are as follows
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where —oco < v < 00, 0, > 0, u > 0 and o, > 0.

In this case, we have
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where i = —¢ — 02 /0.
The marginal f(e) is asymmetrically distributed with given by E(e) = —o, and the variance

by var(e) = o2 +02. On the other hand, ule follows a half-normal distribution, N*(z, 02), with

mean

E(ule) = ﬁJrU,,m =0, <

H(4)
s )

and where A = —p/0,.
Following Gémez-Déniz and Pérez—Rodriguez (2014), we obtain closed—form expression for

the likelihood function and technical efficiency for SPF and SCF likelihoods based on the classical



mixture of normal and exponential distributions. We propose a broader, more general and
flexible range of dependence, which is also easy to handle, for testing the independence between
the inefficiency term and random error (the idiosyncratic component).

This family of distributions is implemented by assuming that fi(z1) and fo(z2) are univariate
probability density functions, with supports defined on A; C R and Ay C R, respectively. Let

vs(t), s = 1,2, be bounded nonconstant functions (the mixing functions) such that

/o:o c)Os(t)fs(t) dt = 0,

then the function defined by

f(z1,22) = fi(z1) fa(z2) [1 4+ w1 (1) p2(22)] (3)

is a bivariate joint density with margins fi(z1) and fa(z2), provided w is a real number which
satisfies the condition 1 + w p1(z1) p2(z2) > 0, for all 21 and z2. Some methods to obtain
the mixing function ¢ when fs(zs), s = 1,2, are members of the natural exponential family
of distributions are described in Lee (1996). The Farlie-Gumbel-Morgernstern (FGM) family
of copulas can be viewed as a special case of the above—mentioned construction, by setting
o(xs) =1—2F(xs), s = 1,2 and therefore one of the models proposed in Smith (2008). Here
F(-) represents the cumulative distribution function of the random variables with pdf f(-).

As we will see this family provide analytical expressions for the marginal pdf of the random
variable €, the conditional pdf of ule, cov(u,v) and technical efficiency are provided in the SPF
model, for the NE model. The classical independent models are derived as a particular case
when w = 0 while w # 0 measures the dependence structure.

As in the classical SPF model, let v = u + €. Using we get

fowonw(t,€) = fo,(u) fo,(u+€) [1 +w g, (u) g5, (u+e)], (4)

2
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defines a bivariate distribution of (u,r) with marginal distributions f,, () and fs, (u) as in the

classical model and where w; < w < wa, being



-1 —1
wi = max { 0u(0u)d,(0,)" (1 —6u(0n))(e — d,(a,)) } ’ (7)
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To see this, observe that because %gpgu (u) < 0 we have that ¢, (u) is a decreasing function
on u and the range of variation of ¢, (1) is (—d0y(0y),1 — 4 (0y)). In the same way, it is simple
to see that ¢, (v) has a maximum in ¥ = —1 and therefore the range of variation of ¢, (v)
results (—d,(0y),e — d,(0,)). Now, we have that f,, 5, (u, V) represents a probability density

function if 1 + w g, (1) ¥s, () > 0, and this occurs if

—1
w > ——————, for ¢q, () po, (v) >0,
P 0) 20, ) e )
-1
w< ———, for ¢4, (u) ps, (V) <0,
7 (0) 20, ) e V)

from which it is a simple exercise to see that range of w is given by (wi, ws).

Although any other mixing functions satisfying that [;° fs, (u)¢s, (u)du = 0 and that
I22 fo, )¢o, (¥) dv = 0 can be considered we have chosen the mixing functions above since:
(i) The presence of the exponential term which is also present in the probability density function
of the normal and exponential distributions facilitates the computations in order to obtain
closed—form expressions for the marginal of € as we will see in the next section; (ii) The square
term in the exponential part of ¢,, () is important to ensure appropriate bounds for the w pa-
rameter. Dependence assumption is now depending on w and the Sarmanov family with normal
and half normal marginals studied here can also be considered as an extension of the classical
Sarmanov family of distributions dealt in Lee (1996) for the normal case.

Some algebra provides the correlation coefficient, which is given by

2woy, oy 202
= ex
P 01 0n)2(1 + 20232 P\ 14202 [
This correlation coefficient is bounded by (see Lee, 1996)

1/2

ol < lwl [B (92, w) B (¢2,0))]

Now, we have the following result which can be used to build the likelihood function for SPF
(see Appendix 4 for the SCF model).



Theorem 1 In the SPF model for NE distributions and assuming dependence, the marginal pdf

of € is given by

207,
oo | (i w Tt
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w 3 oy 1420, €
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where

T;u,au(‘g) = €xp

3

Ou,0v

Y50, (6) = exp

T2 — ‘v v
Uuﬁu(g) eXp {€+ Ou . 2 * 1 —i—20,%}7

Proof: See Appendix 1. i
Observe that when w = 0, i.e. the independence case, pdf @D reduces to . Simple
computations provide that the mean for the marginal pdf given in @D is equal to E(g) = —oy,

while the variance results

2 203
dwo Trao?

(1+02)(1+202)32°

var(e) = o2 + o2 |1 —

Figure [1|shows examples of the marginal pdf @D for different values of the model parameters.

Having obtained the main result of the likelihood function, we now show the conditional

distribution of u given e.

10



o,=1, 0,=052 0.8
o5l # g,202,0,=05 |
- a,=1 0,=1 0.6F
T 04 € o4
0.2+ 0.2+
0.0 0.0 == ‘ ) ‘
-4 -2 0 2 4 -4 =2 0 2 4
€ 3
0.7F
0.6F
0.5F
04F
M
= 0.3F
0.2F
0.1F
0.0F

R 0 2 1
Figure 1: Marginal distribution in the SPE-NE model for selected parameter values.

Proposition 1 In the SPF model under NE distributions, assuming dependence, the conditional

pdf of u given € is given by

Fowa, (ulg) + w3 5, (ule)

O, Op W 5 10
fU,7 28} (U| ) 1“"(4‘.}\1](17“0-1’(6) ( )
for u >0, where fs, o, (ule) is given in (3) and

\I}gu o (ule) = ¢o,(u) s, (u+e) fo,0,(ule), (11)

203

1 1 /*L €1+2cr,/ ﬁ
vl () = - @() — 1?2 5(1)(— >
ou,al,( ) \/m & (L) o, 1 + oy Uu,cru( ) o, Oy
Oy
1 @ _ﬁ11+2mt AthIE;
140, 7 V14202
14 o oy 1+ 30y,
+ auoy( ) \/m 1—|—2U (12)

Proof: See Appendix 2. I
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The point estimation for technical efficiency used in this study is the expression given by
Battese and Coelli (1988), which is related to the conditional expectation of e™"i  that is,

E(e™"i|e =€) which is given in the next resultH

Proposition 2 The point estimation for the technical efficiency of the i—th producer in the SPF

model under NE distributions, assuming dependence, is given by

o \I’Ol (EZ) + w \Ij(c)ri,ou (51)

TEZ Tu,Tv 2 ) = 17 27 . » 'Y
1+wWl () ! "
where
O(—A—o0,)
01 N — V) oov(Ato.,/2)
\I’au,ay,w(gz) 1+ wdu(ow) b6u(0w)] B(—A) € )
and
1 1 A+2(2+4¢;)0
\1102 i = Tll 1 @ - ! Y
wwo &) = GA) | JTv a0y Lower () Ve
— 6y(oy) T?,i’(,u (e) ®(—A —20,)
1 A+o0,(342¢)
— = 0y(0,) TP W)@ = " ;
1 + 20_3 (U ) 0_1“0_1/(8) < 1 + 20_3 >‘|
with

T = en{- Cr
T?fi,oy (51) = €xp {QUV(A + UV)} s

ox 7612 — Ao, (3 — Ac,) —9/202 +26,(1 — 0, (A+ 7))
P 1+ 202 ’

€2 — Ao, (4 — Aoy) — 802 + 2¢;(1 — 0, (A +20,)) }

T33 (52) _

while 8,(04), 6,(0y) and O}, (&;) are given in @), (@) and , respectively.

Proof: See Appendix 3. i

IThis estimator is particularly useful when u; is not close to zero. However, the estimate of technical efficiency
is inconsistent because the variation associated with the distribution of u;|e is independent of ¢ (Kumbhakar and

Lovell, 2000, p.78)
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3 Numerical application

In this section, we use the theoretical results obtained in Section [3|to estimate and test indepen-
dence between the inefficiency term and the idiosyncratic error, using one empirical framework.

In the example we estimate the proposed model normal-exponential by using data obtained
from several bank branches of a large Spanish commercial bank during from January 2011 to
December 2014 (monthly data). Specifically, data corresponds to gross operating annual cost as
output and the inputs we use are labour and capital prices but also the annual revenues (total
income) for each bank branch.

We estimate a log-linear Cobb-Douglas cost function for the 5009 pooled data and without

imposing linear homogeneity in the input prices. The estimated model is written as follows

logc; = Bo + P1logl; + Bologk; + Bslogy; +v; +uy, i=1,2,...,5009,

where the variable log ¢; is the natural log—transformed annual operating cost, log(; is the natural
log-transformed labour price, log k; is the natural log-transformed price of capital and logy; is
the natural log-transformed annual revenue.

The maximum likelihood estimates for the cost frontier NE model and for a sample of n bank
branches can be obtained by maximizing the log—likelihood function derived from restricted
by and , respectively. After some algebra, it is given by

log L n o 21 log(1+a2)| + ! fje
o) = = —2logo, —lo o — ;
& 2 | 202 & Tu & v Ou = !

w 202
1+ 202 Y
Vet U”+1+aueXp<1+2ag>]
1+ 202 Egum (€5) 0y (o) ® (: - o*,,)
14

—3
+ = g;) Oyloy) © +
O'u70'u( z) U( u) (Uu T+ 952 203 o,

}7 (13)

where B}, (ei), B2, 5,(c0), B2, (ei) and 22, (g5),i=1,...,n, are given in , ,
and , respectively.
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Table [I| shows three estimation methods applied to the data: ordinary least squares (OLS),
unrestricted maximum likelihood (UML) (by taking w = 0 in (13)) and restricted maximum
likelihood (RML) (by using directly ([13))).

Table 1: Stochastic cost frontier estimates

Variable Coeff t—-Stat Coeff t—Stat Coeff t—Stat
OLS UML-NE RML-NED
Bo 0.1013 0.28 0.2744 21.43 0.2220 1.75
51 0.3238 9.16 0.2847 29.79 0.2835 21.33
Ba 0.2278 13.29 0.2549 14.14 0.2515 13.90
B3 0.5072 36.07 0.4666 35.36 0.4709 33.76
Ou 0.4336 31.95 0.4757 30.52
O 0.2441 10.91 0.2573 11.42
w -1.3970 -119.36
p —0.14648
(0.0141)
ps —-0.01246
(0.0093)
Liax -5508.38 -3221.14 -3092.30

Note: Between parenthesis standard error is indicated.

The OLS estimates are compared with those obtained from stochastic frontier models, using
the exponential distribution (UML-NE) and normal-exponential with dependence (RML-NED).
Also shown is the maximum value of the log-likelihood function (Lyax), together with some cor-
relation coefficients. It is known that if X and Y are two random variables with cdf F(z) and
G(y), respectively, Spearman’s coefficient, denoted by pg , is given by ps = Corr(F(X),G(Y)),
i.e. the ordinary (Pearson) correlation coefficient of the random variables F'(x) and G(y) (see Fre-
dricks and Nelsen, 2007). This coefficient was computed numerically for the analyzed data, and
is also shown in the tables, together with p, the classical coefficient of correlation. The standard
errors of both, Spearman’s coefficient and correlation coefficient, appear between parenthesis.

The first was calculated by using the expression o,, = 1/0.437/(n —4) (see Bonnet, 2000).

14



The second was computed by using the expression o, = 1/ v/n — 3, provided also in Bonnet
(2000) which produces a similar result than the one obtained by using o, = (1 — p?)/vn2 — 1
(see Dingman and Perry, 1956 for details). As pointed out by Shubina and Lee (2004), the
Spearman correlation coefficient for a Sarmanov family of distribution is situated in the interval
[—3/4,3/4].

The model was estimated by using restricted maximum likelihood in two—stages. The first
stage is based on the simplex method, a search procedure that requires only function evaluations,
not derivatives. To apply simplex, OLS initial values are used for 5y, 81 and S2 and then values
for o,, 0, and w are determined (these values are equal to 2.0, 2.0 and 2.0, respectively). The
most important use of simplex is to refine initial estimates before applying one of the derivative—
based methods, which are more sensitive to the choice of initial estimates. For all models, we
used 5 iterations in this stage. In the second stage, the BFGS (Broyden, Fletcher, Goldfarb
and Shanno) algorithm was applied to obtain the final estimates of the parameters and the
asymptotic variance—covariance matrix estimated by the final iteration of the approximation of
the inverse Hessian. Finally, we computed regression standard errors and the covariance matrix
allowing for heteroscedasticity[]

It is noteworthy that the estimated parameters are very similar between the UML-NE and
RML-NED estimates and, in general, they are statistically significant at any significant level
and positive, indicating a positive relationship between the total cost and all input prices and
total revenue. On the other hand, the estimated value of the dependence parameter, that
is, w, it is statistically significant at any significant level and negative (f—statistic is equal to
—-119.36, p-value = 0.0). Moreover, the correlation coefficient (p) and Spearman’s pg measure
(the probabilistic concordance among errors) indicate that correlation is low and negative among
errors but it is not zero. Finally, the maximum value of likelihood function is higher for RML—
NED than UML-NE and OLS estimates.

In terms of models fitting, we compare both the RML-NED and UML-NE models by using

a likelihood ratio test. Therefore, we can also show evidence of the dependence assumption

2All the computations were performed using RATS software.
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being tested. Specifically, the likelihood ratio test for the null hypothesis where w = 0 is 257.68
(p-value = 0.0) which also indicates that independence between errors is rejected by our data.
As a final point, to illustrate the behavior of estimated cost efficiencies for RML-NED
and UML-NE models by using results in Table |1, we show in Figure |2| their kernel densities
(Epanechnikov kernel). As we can observe, there are clear differences among the estimated
cost efficiencies. In general, we can see as UML-NE overestimates cost efficiencies regarding

RML-NED estimates.

Density

Figure 2: Kernel densities for estimated cost efficiencies.

Therefore, we can conclude that our data confirm a value added of our parametric specifi-

cation and its practical relevance, that is, RML-NED is better fitted than UML-NE when the

assumption of dependence is rejected.

4 Concluding remarks

In this paper, we have propose a new stochastic frontier model which introduces a flexible corre-
lation structure between the probability of the normal error term, v, and the inefficiency term,
u. The formulae derived are closed form expressions for the marginal density of the estimated
error, which allow us to introduce the classical assumptions applicable to the idiosyncratic error

and the inefficiency term.
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Our approach presents the following advantages: (i) Probabilistic interpretation, in the
context of stochastic frontier models, is straightforward. (ii) It adds flexibility to the model
by taking into account both the effects of the independent case and the correlation among
variables. Furthermore, it allows a wider range of dependence. Any correlation sign is allowed,
including the possibility of negative correlation among variables, thus reducing the possibility
of misspecification. (ii7) It is easily modelled in a maximum likelihood framework to test the
dependence assumption, and it is computationally simpler than other models like, for example,
Frank and Plackett copulas. (iv) It focuses on the classical case normal-exponential, but can also
be extended to other distributions, including the normal-truncated normal and normal-gamma,

among others.
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Appendix 1. Proof of Theorem

From we have

f(€)

o0
/ fau70U7w(u7€) du
0

/OO fou (W) fo,(u+¢)du+w /Oo fou () fo,(u+€) @, (W) @5, (u+€)du.  (14)
0 0

The first integral in ((14) coincides with . Then, we have

0_2

Ou

—w (h+Te+ ),

where 0,,(0y,), 0,(0,) are given in , @, respectively, while

jl _ /oo 6_u—(u—i-a)2_2(u—i-a) fau(u) fgy(u+6) du,
0
B = b(00) /0 € o (1) f (u + €) du,

To = bulw) [ eI b ) fo (u+ ) du

Again, simple but tedious computations lead to the following:

T
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T3

1 o, 1+ 30 €
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o, 1+ 20 €
— Y¥ oL ——= - — /14202,
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from which @ is obtained.l

Appendix 2. Proof of Proposition

We start with the wellknown relation

o fo'uao'uvw(u7 6)

fow,onwlule) =
Ou,0v w( | ) f0u70V7w(€)

and replace in this expression the numerator and the denominator by and @D,

respectively. Now by taking the common factor for w in both, numerator and denominator,

we get the result after some computations.
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Appendix 3. Proof of Proposition

From (9] it is easy to see

o0 o0
E(e™"e) oc/ e " fou.on (ule)du —|—w/ e WY (ule)du, (15)
O 0 T
where the proportionality factor is given by {1 + w\If},wo_u (5)} -
The first integral in is simple to solve by using the pdf of the half.normal provided in
. For the second integral we use the expression given in and with simple but tedious

computations we get the result.

Appendix 4. The stochastic cost frontier model

The corresponding expressions for the stochastic cost frontier (SCF) are derived easily from the
fact that now we assume v = —u + €.

In this case and under the classical model we have that,
1 € v € 2
o) = Ln(E-2)enf-e 2
Oy o, Oy oy 20

= L ex —iu—~2
frnltle) = e e { g7 (16)

where i = £ — 02 /0,.

Again, the marginal f(e) is asymmetrically distributed with mean E(¢) = o0, and variance
var(e) = 02 + o2.

The corresponding expressions under the dependence assumption are given bellow.

The marginal pdf of € is given by

=1 =~

fo- - w(e) — '_‘0'1“0'1,( ) (I) ,LL
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u

—Ww

where
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2 2
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The conditional pdf of u given ¢ is given by

fouo, (ule) +wSY o, (ule)
1 +wS (\lc (6)

Jouovw(ule) ; (22)

for u > 0, where f,, », (ule) is the pdf given in and
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The point estimation for the efficiency in the SCF model under NE distributions, assuming

3l (e) = dulow)du(oy) —

dependence, is given by
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with
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while 8,(cy) and 6,(0,) are given in (), (6], respectively.
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