Spruit, Martijn A.; Franssen, Frits M. E.; Rutten, Erica P. A.; Wagers, Scott S.; M. Wouters, Emiel F.
Age-graded reductions in quadriceps muscle strength and peak aerobic capacity in COPD
Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia
São Carlos, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=235023676011
Age-graded reductions in quadriceps muscle strength and peak aerobic capacity in COPD

Objectives: To compare quadriceps muscle strength and peak \(\dot{V}_O_2 \) in women and men while stratifying for age and gas transfer capacity. We then corrected for lower-limb lean muscle mass to see whether and to what extent the age-graded reduction remained evident. Methods: Retrospectively, data of 374 women and 593 men with COPD were analyzed: lung function, current drug therapy, quadriceps strength, peak \(\dot{V}_O_2 \), lower-limb lean muscle mass, and gas transfer capacity. Results: Quadriceps strength and peak \(\dot{V}_O_2 \) were lower in older women and men with a gas transfer capacity of \(\leq 50\% \) predicted, after adjustment for lower-limb lean muscle mass. Moreover, quadriceps strength and peak \(\dot{V}_O_2 \) were lower in older women and men with a gas transfer capacity of \(\leq 50\% \) predicted, also after adjustment for lower-limb lean muscle mass. Moreover, quadriceps strength and peak \(\dot{V}_O_2 \) were related to age in COPD, particularly in women and men with a gas transfer capacity of \(> 50\% \) predicted. Yet, counter to our hypothesis, lower-limb lean muscle mass did not show an age-graded reduction and, in turn, could not account for the relationship of age with quadriceps strength and peak \(\dot{V}_O_2 \). Conclusions: It is apparent that there is an age-graded reduction in skeletal muscle function in patients with COPD. Therefore, prevention of an age-graded decline in quadriceps muscle strength and peak \(\dot{V}_O_2 \) may need to become an outcome of pulmonary rehabilitation of patients with COPD.

Keywords: Chronic obstructive pulmonary disease; lower-limb lean muscle mass; peak aerobic capacity; quadriceps muscle strength; isokinetic quadriceps peak torque; aging.

Abstract

Background: Reductions in quadriceps strength and peak aerobic capacity (\(\dot{V}_O_2 \)) in patients with chronic obstructive pulmonary disease (COPD) have been studied in relatively small samples over a short period. Moreover, results were not corrected for confounding variables, such as lean muscle mass, gender, and gas transfer capacity of the lungs. Objectives: To compare quadriceps muscle strength and peak \(\dot{V}_O_2 \) in women and men while stratifying for age and gas transfer capacity. We then corrected for lower-limb lean muscle mass to see whether and to what extent the age-graded reduction remained evident. Methods: Retrospectively, data of 374 women and 593 men with COPD were analyzed: lung function, current drug therapy, quadriceps strength, peak \(\dot{V}_O_2 \), lower-limb lean muscle mass, and gas transfer capacity. Results: Quadriceps strength and peak \(\dot{V}_O_2 \) were lower in older women and men with a gas transfer capacity of \(\leq 50\% \) predicted, also after adjustment for lower-limb lean muscle mass. Moreover, quadriceps strength and peak \(\dot{V}_O_2 \) were related to age in COPD, particularly in women and men with a gas transfer capacity of \(> 50\% \) predicted. Yet, counter to our hypothesis, lower-limb lean muscle mass did not show an age-graded reduction and, in turn, could not account for the relationship of age with quadriceps strength and peak \(\dot{V}_O_2 \). Conclusions: It is apparent that there is an age-graded reduction in skeletal muscle function in patients with COPD. Therefore, prevention of an age-graded decline in quadriceps muscle strength and peak \(\dot{V}_O_2 \) may need to become an outcome of pulmonary rehabilitation of patients with COPD.

Keywords: Chronic obstructive pulmonary disease; lower-limb lean muscle mass; peak aerobic capacity; quadriceps muscle strength; isokinetic quadriceps peak torque; aging.

Resumo

Contextualização: As reduções da força do quadríceps e do pico de consumo de oxigênio (\(\dot{V}_O_2 \)) em pacientes com doença pulmonar obstrutiva crônica (DPOC) são estudadas em amostras relativamente pequenas e por curto período de tempo. Além disso, os resultados não são corrigidos por variáveis confundidoras, como conteúdo de massa magra, gênero e capacidade de difusão pulmonar. Objetivos: Comparar a força muscular do quadríceps e o pico de \(\dot{V}_O_2 \) em mulheres e homens estratificados por idade e capacidade de difusão pulmonar e, então, corrigir pela massa magra dos membros inferiores para verificar se e até que ponto a redução graduada por idade permaneceu evidente. Métodos: Retrospectivamente, foram analisados dados de 374 mulheres e 593 homens com DPOC, referentes a: função pulmonar, tratamento medicamentoso, força do quadríceps, pico de \(\dot{V}_O_2 \), massa magra dos membros inferiores e capacidade de difusão pulmonar. Resultados: A força muscular do quadríceps e o pico de \(\dot{V}_O_2 \) foram menores em idosos com capacidade de difusão pulmonar \(\leq 50\% \) do previsto, mesmo após correção pela massa magra dos membros inferiores. Além disso, a força do quadríceps e o pico de \(\dot{V}_O_2 \) correlacionaram-se com a idade, especialmente em homens e mulheres com capacidade de difusão \(> 50\% \) do previsto. No entanto, a massa magra dos membros inferiores não demonstrou redução graduada por idade e não justificou a relação da idade com a força do
Introduction

Chronic Obstructive Pulmonary Disease (COPD) is characterized by chronic airflow limitation, as assessed by a reduced post-bronchodilator FEV1/FVC ratio <0.7 (where FEV1 is forced expiratory volume in the first second and FVC is forced vital capacity)4. The prevalence of COPD is estimated at 70 per 1000 population5. Quadriceps muscle strength and peak aerobic capacity (\(\dot{V}O_2\)) are decreased in patients with COPD compared to healthy age-matched control subjects6,7. Significant reductions in quadriceps muscle strength and peak \(\dot{V}O_2\) not only reflect a loss in physical fitness, but are also associated with increased dyspnea, fatigue, morbidity, and mortality in patients with COPD8,9.

Aging has been associated with a progressive decline in quadriceps muscle strength and peak \(\dot{V}O_2\) in healthy subjects10. Quadriceps muscle strength and peak \(\dot{V}O_2\) have been demonstrated to decline over time in outpatients with COPD8,11. However, the reductions in quadriceps muscle strength and peak \(\dot{V}O_2\) in patients with COPD have only been studied in relatively small samples over a period of 1 to 5 years. Moreover, results were not corrected for concurrent decline in lean muscle mass. However, lean muscle mass is expected to decrease over time, in particular in the lower limbs12 and it is a well-known determinant of quadriceps muscle strength and peak \(\dot{V}O_2\) in patients with COPD13,14. In addition, gender and gas transfer capacity of the lungs have both been shown to be determinants of lean muscle mass, quadriceps muscle strength, and peak \(\dot{V}O_2\) in COPD and should therefore also be taken into consideration15,16,17,18.

We hypothesized that an age-graded reduction in quadriceps muscle strength and peak \(\dot{V}O_2\) in COPD patients could largely be attributed to concurrent diminishment in lower-limb lean muscle mass (LL-LMM). In order to address this hypothesis, we retrospectively analyzed a large clinical cohort of both women and men with COPD undergoing initial evaluation for pulmonary rehabilitation19. We compared quadriceps muscle strength and peak \(\dot{V}O_2\) in women and men while stratifying for age and gas transfer capacity. Indeed, gas transfer capacity is more closely related to peak \(\dot{V}O_2\) and quadriceps muscle strength than the degree of airflow limitation in patients with COPD18,20. We then corrected for LL-LMM to see whether and to what extent the age-graded reduction remained evident.

Methods

Study subjects and design

We extracted data from the records of 1963 clinically stable patients with the diagnosis of ‘COPD’ who were evaluated at the CIRO+, a centre of expertise for chronic organ failure in Horn (the Netherlands)21 between January 1, 2005 and January 1, 2010. Of these records, 967 met the following inclusion criteria: presence of all necessary data, a post-bronchodilator FEV1/FVC ratio <0.70, the transfer factor for carbon monoxide (Dj CO), peak \(\dot{V}O_2\), isokinetic quadriceps peak torque, LL-LMM, and no repeat admission for the same patient. All patients with long-term oxygen therapy were excluded from the analyses due to the lack of a determined peak \(\dot{V}O_2\). These retrospective analyses are institutional review board-exempt due to the use of de-identified, pre-existing data.

All patients were referred by chest physicians from multiple hospitals in 2 southeastern provinces in the Netherlands for a comprehensive pulmonary rehabilitation program22. Patients used short-acting \(\beta_2\) agonist (33%); short-acting anticholinergic (15%); combination of short-acting \(\beta_2\) agonist and short-acting anticholinergic in one device (20%); long-acting \(\beta_2\) agonist (21%); long-acting anticholinergic (69%); inhalation corticosteroids (14%); long-acting \(\beta_2\) agonist and inhalation steroids in one device (71%); theophylline (14%); 36% N-acetyl cystein (34%); maintenance oral steroids (13%); or a combination thereof.

Methods

As part of a 3-day routine baseline assessment22 patients underwent, amongst other tests, a symptom-limited cardiopulmonary incremental cycle test (+10 watts per minute) where peak \(\dot{V}O_2\) was determined in accordance with the guidelines of the American Thoracic Society and the American College of Chest Physicians23. Routine post-bronchodilator spirometry, Dj CO and arterial blood gas analysis were performed according...
to international recommendations24,25. In addition, patients underwent physical examination by a chest physician (including assessment of body weight and height) and medical history as described before26. Finally, single-leg isokinetic quadriceps peak torque and LL-LMM were determined using a BIODEX computerized dynamometer and a Lunar Prodigy dual-energy x-ray absorptiometry scan, respectively13,15.

Statistical analyses

All statistical analyses were carried out using GraphPad Prism 4.03 and SPSS 17.0. Data are presented as mean and standard deviation or proportion, as appropriate. Patients were stratified by gender and age (age group 1: ≤50 years; age group 2: 51 to 60 years; age group 3: 61 to 70 years; or age group 4: ≥71 years). Moreover, due to the strong correlation in COPD between peak $\dot{V}O_2$ and $DLCO$22 and $DLCO$ and quadriceps muscle strength18, patients were stratified based on the $DLCO$: ≤50% predicted and >50% predicted27. Please see Table E1 of the online depository for details on the number of patients per stratum (link to online depository: http://www.ciro-horn.nl/wordpress/wp-content/uploads/2011/11/ONLINE-SUPPLEMENT-Age-graded-reductions-in-quadriceps-muscle-strength-and-peak-aerobic-capacity-in-COPD.pdf).

A two-tailed unpaired t-test was used to determine differences between women and men and between the $DLCO$ strata. Age-graded differences were assessed using a one-way analysis of variances. Fisher’s least significant differences test was used as post-hoc test because of an unequal group size. Stepwise multiple regression analyses were done to assess independent contributors to the variance in isokinetic quadriceps peak torque and peak $\dot{V}O_2$. A priori, a two-sided level of significance was set at $p≤0.05$.

Results

Characteristics

COPD severity ranged from mild to very severe. The average resting blood gas values and body mass index were normal. About half of the patients were current smokers (Table 1). LL-LMM, isokinetic quadriceps peak torque, and peak $\dot{V}O_2$ were clearly reduced compared to published data from healthy elderly subjects15,17,28. At peak exercise, patients generally had little ventilatory reserve and rather high Borg symptom scores for dyspnea and fatigue (Table 2).

Gender differences

On average, the male COPD patients were older, had a worse pulmonary function and a higher score on the Charlson co-morbidity index compared to the female patients. Moreover, men had a significantly higher LL-LMM

Table 1. Characteristics.

<table>
<thead>
<tr>
<th></th>
<th>Whole group (n=967)</th>
<th>Women (n=374)</th>
<th>Men (n=593)</th>
<th>p-value (women vs. men)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>63.6 (9.8)</td>
<td>59.9 (9.7)</td>
<td>66.0 (9.2)</td>
<td>0.000</td>
</tr>
<tr>
<td>FEV\textsubscript{1}, liters</td>
<td>1.37 (0.55)</td>
<td>1.23 (0.48)</td>
<td>1.46 (0.57)</td>
<td>0.000</td>
</tr>
<tr>
<td>FEV\textsubscript{1},% predicted</td>
<td>50.7 (18.1)</td>
<td>54.1 (18.8)</td>
<td>48.6 (17.3)</td>
<td>0.000</td>
</tr>
<tr>
<td>FEV\textsubscript{1}/IVC, %</td>
<td>41.2 (12.8)</td>
<td>43.9 (12.9)</td>
<td>39.6 (12.5)</td>
<td>0.000</td>
</tr>
<tr>
<td>GOLD stage I/II, %</td>
<td>47.5</td>
<td>56.1</td>
<td>42.0</td>
<td>0.001</td>
</tr>
<tr>
<td>GOLD stage III, %</td>
<td>38.1</td>
<td>34.0</td>
<td>40.6</td>
<td></td>
</tr>
<tr>
<td>GOLD stage IV, %</td>
<td>14.5</td>
<td>9.9</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td>DL CO, % predicted</td>
<td>54.6 (18.6)</td>
<td>51.9 (17.4)</td>
<td>56.3 (19.1)</td>
<td>0.000</td>
</tr>
<tr>
<td>DL CO ≤50% predicted, %</td>
<td>45.6</td>
<td>50.0</td>
<td>42.8</td>
<td>0.000</td>
</tr>
<tr>
<td>PaO\textsubscript{2}, kPa</td>
<td>9.6 (1.2)</td>
<td>9.6 (1.2)</td>
<td>9.6 (1.3)</td>
<td>0.290</td>
</tr>
<tr>
<td>PaCO\textsubscript{2}, kPa</td>
<td>5.2 (0.6)</td>
<td>5.2 (0.6)</td>
<td>5.2 (0.6)</td>
<td>0.567</td>
</tr>
<tr>
<td>SaO\textsubscript{2}, %</td>
<td>94.8 (2.3)</td>
<td>95.0 (2.1)</td>
<td>94.6 (2.4)</td>
<td>0.022</td>
</tr>
<tr>
<td>HbCO ≥2%, %</td>
<td>45.7</td>
<td>54.3</td>
<td>40.3</td>
<td>0.001</td>
</tr>
<tr>
<td>Body weight, kg</td>
<td>71.5 (14.7)</td>
<td>65.2 (13.7)</td>
<td>75.5 (13.9)</td>
<td>0.000</td>
</tr>
<tr>
<td>BMI, kg/m2</td>
<td>25.2 (4.6)</td>
<td>24.9 (5.0)</td>
<td>25.3 (4.3)</td>
<td>0.248</td>
</tr>
<tr>
<td>Lower-limb LMM, kg</td>
<td>14.6 (3.1)</td>
<td>12.0 (1.8)</td>
<td>16.3 (2.5)</td>
<td>0.000</td>
</tr>
<tr>
<td>Charlson index, points</td>
<td>1.7 (1.1)</td>
<td>1.4 (0.9)</td>
<td>1.8 (1.2)</td>
<td>0.000</td>
</tr>
<tr>
<td>Charlson index >1 point, %</td>
<td>38.2</td>
<td>25.1</td>
<td>46.4</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Values presented as mean (standard deviation) or as proportion, as appropriate. FEV\textsubscript{1}: forced expiratory volume in the first second; FM: fat mass; IVC: inspiratory vital capacity; LMM: lean muscle mass; RV: residual volume; TLC: total lung capacity; DL CO: carbon monoxide transfer factor; %: percentage; PaO\textsubscript{2}: arterial oxygen tension; PaCO\textsubscript{2}: arterial carbon monoxide tension; SaO\textsubscript{2}: arterial oxygen saturation; kPa: kilo Pascal; BMI: body mass index; m: meters.
Table 2. Peak exercise performance and quadriceps muscle strength.

<table>
<thead>
<tr>
<th></th>
<th>Whole group (n=967)</th>
<th>Women (n=374)</th>
<th>Men (n=593)</th>
<th>p-value (women vs. men)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak $\dot{V}O_2$, ml/min</td>
<td>1138 (347)</td>
<td>1008 (258)</td>
<td>1220 (370)</td>
<td>0.000</td>
</tr>
<tr>
<td>Peak $\dot{V}O_2$, ml/min/kg BW</td>
<td>16.1 (4.3)</td>
<td>15.8 (4.1)</td>
<td>16.3 (4.4)</td>
<td>0.110</td>
</tr>
<tr>
<td>Metabolic equivalents</td>
<td>4.6 (1.2)</td>
<td>4.5 (1.2)</td>
<td>4.7 (1.3)</td>
<td>0.110</td>
</tr>
<tr>
<td>Peak $\dot{V}O_2$, ml/min/kg LL-LMM</td>
<td>78.6 (19.5)</td>
<td>84.5 (18.8)</td>
<td>74.8 (19.1)</td>
<td>0.000</td>
</tr>
<tr>
<td>Peak power output, watts</td>
<td>74.5 (30.6)</td>
<td>65.9 (25.3)</td>
<td>80.0 (32.3)</td>
<td>0.000</td>
</tr>
<tr>
<td>Peak VE, liters</td>
<td>45.4 (15.1)</td>
<td>39.9 (12.0)</td>
<td>48.9 (15.8)</td>
<td>0.000</td>
</tr>
<tr>
<td>Peak VE, % MVV</td>
<td>86.9 (24.2)</td>
<td>86.0 (24.9)</td>
<td>87.5 (23.8)</td>
<td>0.356</td>
</tr>
<tr>
<td>Peak HR, bpm</td>
<td>126.9 (21.4)</td>
<td>130.9 (21.7)</td>
<td>124.3 (21.0)</td>
<td>0.000</td>
</tr>
<tr>
<td>Peak HR, % HRmax</td>
<td>81.1 (12.6)</td>
<td>81.7 (12.7)</td>
<td>80.7 (12.5)</td>
<td>0.202</td>
</tr>
<tr>
<td>Oxygen pulse, ml/min/bpm</td>
<td>9.1 (2.5)</td>
<td>7.8 (1.9)</td>
<td>9.8 (2.6)</td>
<td>0.000</td>
</tr>
<tr>
<td>Peak SaO₂, %</td>
<td>91.3 (4.3)</td>
<td>91.8 (4.0)</td>
<td>91.0 (4.4)</td>
<td>0.009</td>
</tr>
<tr>
<td>Δ SaO₂, %</td>
<td>-3.6 (3.7)</td>
<td>-3.4 (3.6)</td>
<td>-3.7 (3.8)</td>
<td>0.195</td>
</tr>
<tr>
<td>Borg score DYS, points</td>
<td>7.0 (2.2)</td>
<td>7.1 (2.1)</td>
<td>6.9 (2.2)</td>
<td>0.085</td>
</tr>
<tr>
<td>Borg score FAT, points</td>
<td>5.6 (2.6)</td>
<td>5.7 (2.6)</td>
<td>5.6 (2.0)</td>
<td>0.351</td>
</tr>
<tr>
<td>IQPT, Nm</td>
<td>90.1 (32.6)</td>
<td>72.0 (21.6)</td>
<td>101.5 (33.2)</td>
<td>0.000</td>
</tr>
<tr>
<td>IQPT, Nm/kg LL-LMM</td>
<td>12.3 (3.2)</td>
<td>12.1 (3.1)</td>
<td>12.4 (3.3)</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Values presented as mean (standard error). $\dot{V}O_2$: milliliter per minute; kg: kilogram; BW: body weight; LMM: lean muscle mass; LL: lower-limbs; bpm: beats per minute; %: percentage; MVV: maximal voluntary ventilation; HRmax: calculated maximum heart rate (220-age in years); SaO₂: transcutaneous oxygen saturation; Δ: change; DYS: dyspnea; FAT: fatigue; IQPT: isokinetic quadriceps peak torque; Nm: Newton-meter; §: IQPT of the quadriceps muscle has been assessed single-legged, therefore lower-limb lean muscle mass has been divided by 2.

Age-related difference after stratification for gender

Generally, patients of age ≤50 years had a higher isokinetic quadriceps peak torque and peak $\dot{V}O_2$ (absolute values and after adjustment for LL-LMM) compared to older patients, irrespective of gender (Figure 1). Male patients with age ≥71 years had the lowest LL-LMM compared to younger male patients. No age-graded reductions were found in LL-LMM in female patients (Figure 1a). See Table E3 of the online depository for more details on mean differences between groups and p-values.

D₄CO-related differences after stratification for gender and age

After stratification for age, women with a D₄CO >50% predicted had a higher mean LL-LMM (in women 51 to 70 years of age; Figure 2a), isokinetic quadriceps peak torque (in women of age ≤50 years; Figure 2b) and absolute peak $\dot{V}O_2$ (Figure 2c) compared to women with a D₄CO ≤50% predicted. Moreover, peak $\dot{V}O_2$ remained different between both subsets after adjustment for LL-LMM (Figure 3b). Isokinetic quadriceps peak torque adjusted for LL-LMM was not different between D₄CO strata (Figure 3a). See Table E4 of the online depository for more details on mean differences between groups and p-values.

A similar pattern was observed in the male patients after stratification for age and D₄CO. Indeed, male patients with a...
D\textsubscript{L}CO >50% predicted had a higher mean LL-LMM (in men of age ≥51 years; Figure 2d), isokinetic peak torque (in men ≤70 years of age; Figure 2e) and absolute peak \(\dot{V}O\textsubscript{2} \) (Figure 2f) compared to male patients with a D\textsubscript{L}CO ≤50% predicted. These D\textsubscript{L}CO-related differences remained after adjustment for LL-LMM, in particular for peak \(\dot{V}O\textsubscript{2} \) (Figures 3c and 3d). See Table E5 of the online depository for more details.

Figure 1. Lower-limb lean muscle mass, isokinetic quadriceps peak torque, and peak aerobic capacity after stratification for age in 374 women and 593 men with COPD.

Age-related differences after stratification for gender and D\textsubscript{L}CO

Women with a D\textsubscript{L}CO ≤50% predicted showed an age-graded reduction in isokinetic quadriceps peak torque (Figure 2b) and peak \(\dot{V}O\textsubscript{2} \) (Figure 2c). These age-graded reductions remained after adjustment for LL-LMM (Figures 3a and 3b). The age-graded reductions in isokinetic quadriceps peak torque (Figure 2b) and peak \(\dot{V}O\textsubscript{2} \) (Figure 2c) were even more explicit in the women with a D\textsubscript{L}CO >50% predicted. LL-LMM did not show an age-graded reduction in either D\textsubscript{L}CO group (Figure 2a). A similar pattern was observed for the male patients after stratification for D\textsubscript{L}CO (Figures 2d, 2e, 2f, 3c, and 3d). See Table E6 of the online depository for more details on mean differences between groups and p-values.

Stepwise multiple regression model

A stepwise multiple regression analysis ascertained LL-LMM, age, peak \(\dot{V}O\textsubscript{2} \), and gender to be significant determinants of isokinetic quadriceps peak torque. This model explained 56.4% of the variance in isokinetic quadriceps peak torque (p=0.01). D\textsubscript{L}CO (p=0.73), FEV\textsubscript{1} (p=0.16), and BMI (p=0.07) did not contribute to the model.
Age-graded reductions in physical fitness in COPD patients

Lower-limb lean muscle mass (LL-LMM, kg; Figures 2a and 2d), isokinetic quadriceps peak torque (IQPT, Newton-meter, Nm; Figure 2b and 2e) and peak aerobic capacity ($\dot{V}O_2$, ml/min; Figures 2c and 2f) after stratification for age and D_L CO (\leq50% predicted, black; >50% predicted, grey) in female and male COPD patients (women: circles; men: squares), respectively. See Tables E3 and E4 of the online supplement for more details.

Figure 2. Lower-limb lean muscle mass, isokinetic quadriceps peak torque, and peak aerobic capacity after adjustment for age and D_L CO in women and men with COPD.

A stepwise multiple regression analysis ascertained isokinetic quadriceps peak torque, D_L CO, FEV$_1$, BMI, age and LL-LMM to be significant determinants of peak $\dot{V}O_2$. This model explained 59.3% of the variance in peak $\dot{V}O_2$ ($p=0.01$). Gender did not contribute to the model ($p=0.22$).

Discussion:

As we expected, quadriceps muscle strength and peak $\dot{V}O_2$ were related to age in patients with COPD, particularly in those with D_L CO >50% predicted. Yet, counter to our hypothesis LL-LMM did not account for the relationship of age with quadriceps muscle strength and peak $\dot{V}O_2$. Indeed, an age-graded reduction in LL-LMM was only present in the older men with a D_L CO >50% predicted. The results of this study suggest the presence of age-related qualitative abnormalities in lower-limb muscles in patients with COPD (i.e. a decrease in isokinetic peak torque per unit weight of lower-limb lean muscle mass and/or a decrease in peak $\dot{V}O_2$ per unit weight of lower-limb lean muscle mass).

An age-related decline in quadriceps muscle strength and peak $\dot{V}O_2$ is well established in healthy subjects and in cardiac patients8,9,29. Moreover, small but significant reductions in quadriceps muscle strength10 and peak $\dot{V}O_2^{11,12}$ were found in (mostly male) COPD patients over a 1 to 5 year period, respectively. To the best of our knowledge, this is the first study to show an age-graded reduction in quadriceps muscle strength and peak $\dot{V}O_2$ in patients with COPD after correction for possible confounding factors, such as gender, LL-LMM, and D_L CO. More importantly...
this study corroborates the previously identified decrease in lower-limb muscle function in patients with COPD. Moreover, our results also highlight age-graded differences between men and women, which also parallels previous findings.

Lower-limb muscle weakness can occur without an overt loss of LL-LMM in patients with COPD suggesting the presence of qualitative skeletal muscle abnormalities, particularly in women. The present findings are in line: skeletal muscle function can decrease without a decrease in LL-LMM in patients with COPD, in particular in women. In healthy elderly subjects, gender differences exist in the contractile properties of lower-limb muscles. Indeed, type I and IIA fibers from older healthy men were generally stronger than similar fibers from older women even after adjusting for size. Whether and to what extent gender differences in muscle contractile properties are also present in COPD remains currently unknown.

There are several factors that may explain the overt loss in peak $\dot{V}O_2$ (absolute and corrected for LL-LMM) in COPD. Patients with COPD have a significantly lower mitochondrial density and activity, as well as a lower oxidative enzyme activity and a lower mechanical efficiency. There are also fewer capillaries per muscle fiber in patients with COPD. Lastly, there are more type II muscle fibers in patients with COPD compared to healthy age-matched control subjects. A worsening of the above-mentioned intramuscular manifestations over time may explain the age-related differences in peak $\dot{V}O_2$. However, most of these intramuscular changes have been identified in small cross-sectional studies of mostly men, focusing mainly on the vastus lateralis muscle and GOLD stages 3 and 4. Coupled with our results, these mechanistic insights underline the importance of continued research on this phenomenon of loss of lower-limb muscle $\dot{V}O_2$. Indeed, there is great potential for identifying new therapeutic targets.

Significant differences in lower-limb muscle function were found in female (Figures 3a and 3b) and male COPD patients.
(Figures 3c and 3d) after stratification for $D_{2}CO$. This seems to be in line with previous findings of Arnann et al.18, who reported that the high susceptibility to lower-limb muscle fatigue in patients with COPD is in part attributable to insufficient oxygen transport as a consequence of exaggerated arterial hypoxemia and/or excessive respiratory muscle work. Moreover, quadriceps muscle strength was positively related to $D_{2}CO$ in patients with COPD18.

Age-related reductions in LL-LMM have been reported in healthy women and men17, Hopkinson at al.10 reported a non-significant decline of 0.2 kilogram in fat-free mass during a 1-year follow-up period in 64 COPD patients10. Also in the current cross-sectional analyses no age-gra ded reductions in LL-LMM were found, except for the older male COPD patients with a $D_{2}CO$ $>$50% predicted (Figure 3d and Table E6 of the online supplement). It remains difficult to understand the lack of age-gra ded reductions in LL-LMM in patients with COPD.

The external validity of the present findings is limited to COPD patients without long-term oxygen therapy. Thus the present data should not be uncritically applied to GOLD IV patients with long-term oxygen therapy. Obviously, a major limitation of the present analysis is the lack of a healthy control group and the lack of information about daily physical activity levels. However, quadriceps muscle strength and peak $\dot{V}_{O_{2}}$ have been found to decline over time in healthy subjects9,30. Moreover, the influence of daily physical inactivity on an age-related decline in peak $\dot{V}_{O_{2}}$ remains a matter of debate9,30. Patients with COPD have a reduced level of daily physical activity, which is present even in the earliest stages of the disease30. It is for this reason that it is not very surprising that quadriceps muscle strength and peak $\dot{V}_{O_{2}}$ in patients with COPD is very low compared to healthy subjects8,17,30 and not unlike that in patients entering cardiac rehabilitation29. Accordingly, the majority of subjects with COPD in our study (98.8%) had a metabolic equivalent below 8, which is an identified risk factor of death from any cause31. In addition, an age-related decline in peak $\dot{V}_{O_{2}}$ can explain, at least in part, the development of disability in patients with COPD31. Indeed, GOLD stage II patients use a higher proportion of their (reduced) peak $\dot{V}_{O_{2}}$ compared to healthy elderly subjects during the performance of simple, self-paced domestic activities of daily living31. Finally, large longitudinal studies are needed to corroborate the current findings.

In summary, we have found that lower-limb muscle quality is lower in older patients with COPD, also after stratification for gender and gas transfer. Therefore, prevention of an age-gra ded decline in quadriceps muscle strength and peak $\dot{V}_{O_{2}}$ may need to become an outcome of the management of patients with COPD.

References

Martijn A. Spruit, Frits M. E. Franssen, Erica P. A. Rutten, Scott S. Wagers, Emiel F. M. Wouters

