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RESUMEN

La modelizacion no lineal ha experimentado un resurgimiento de la mano de la teoria del caos, que ha
puesto de manifiesto la posibilidad de conseguir comportamientos complejos producidos por la dinamica
endogena del modelo, sin la necesidad de incluir perturbaciones aleatorias ex6genas al mismo. Por otro
lado, es indiscutible la importancia de la capacidad de prediccion en economia. En el presente trabajo
se aplican diferentes técnicas desarrolladas dentro de lo que se denomina Econometria Compleja No
Lineal buscando mejorar la capacidad de prediccion en los mercados financieros.
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ABSTRACT

The nonlinear modelization has experimented a great resurgence of the hand of Chaos Theory, which
shown the possibility of obtaining complex behaviors produced endogenously by the dynamics of the
model, without the necessity to include exogenous random shocks. On the other hand, the importance
of the forecasting ability in Economics is principal. In the work, different techniques developed within
Complex Econometrics are applied to improve forecasting in stock markets.
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1. INTRODUCCION

Uno de los principales problemas de la Ciencia Econdmica es la prediccion del
comportamiento futuro de las variables econoémicas, es decir, a partir de su compor-
tamiento pasado recogido en series temporales, se trata de utilizar esta informacion
y los modelos de teoria economica disponible para predecir su evolucion futura.
En el enfoque tradicional de series temporales usualmente se trabaja usando la
modelizacion ARIMA o, de manera mas generalizada, un enfoque lineal basado en
los procesos estocasticos en los que la introduccion de perturbaciones aleatorias se
hace necesaria para emular el comportamiento complejo observado en la realidad
econdmica. Sin embargo, muchas de las propiedades intrinsecas del comportamien-
to de las variables econémicas parecen no adaptarse correctamente a los modelos
lineales. Como ejemplos pueden citarse los distintos comportamientos observados
en recesiones y expansiones, la presencia de dos o mas regimenes, la posibilidad de
comportamientos explosivos o la relevancia de ciertas variables s6lo bajo determi-
nadas condiciones. Todo ello conduce al uso de la modelizacién no lineal tanto en
macroeconomia como en finanzas.

Aunque tradicionalmente no se ha utilizado el enfoque no lineal debido a su difi-
cultad y aparentes limitaciones de comportamiento, ambas cuestiones estan superadas
hoy en dia de la mano, por un lado, de la disponibilidad de herramientas informaticas
para su tratamiento y, por otro lado, del impulso metodolégico proporcionado por
la Teoria del Caos. La Teoria del Caos establece que sistemas deterministas con la
propiedad de dependencia sensible a las condiciones iniciales son capaces de ge-
nerar dinamicas aparentemente tan complejas como las generadas por un proceso
estocastico. Por tanto, se pone de manifiesto que no es necesaria la presencia de
ruidos exdgenos aleatorios para generar comportamientos complejos. Dentro de este
nuevo enfoque se han desarrollado, por un lado, nuevos modelos no lineales y, por
otro lado, nuevas herramientas para trabajar con series temporales. En concreto, se
han desarrollado contrastes para determinar si la serie procede o no de un modelo
generador de datos no lineal, técnicas para la cuantificacion de la complejidad de la
serie, ajustes de diversos modelos paramétricos no lineales asi como nuevas técnicas
no paramétricas de prediccion.

La presencia de no linealidad en los indices bursatiles (Sarantis, 2001) ha sido
justificada desde un punto de vista tanto tedrico como empirico. De hecho, la teoria
econdmica apunta diversas fuentes para justificar la presencia de no linealidad en los
indices bursatiles, como son la diversidad en las creencias de los agentes, la hetero-
geneidad en los objetivos de los inversores que surgen a partir de la variabilidad de
los horizontes de inversion y aversion al riesgo, el comportamiento por bloques y los
cambios ocasionados por variaciones en el crecimiento economico. Empiricamente
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existe evidencia a favor de la existencia de una estructura no lineal en los mercados
financieros (Scheinkman y Le Baron, 1989, Hinich y Patterson, 1985; Hsieh, 1989 y
1991; Bajo-Rubio et al., 1992; Brock et al., 1996; Guarda y Salmon, 1996; Brooks,
1996; Cecen y Erkal, 1996, Abhyankar et al., 1997 y Pérez-Rodriguez et al., 2005,
Bonilla et al., 2006). Ademas, existen trabajos en los que se proporciona una base
teodrica para estos resultados empiricos, principalmente mediante la descripcion de la
dindmica de precios en los mercados financieros como el resultado de la interaccion
entre grupos de agentes con informacion heterogénea (Cutler et al., 1990; De Long
et al., 1990; Day and Huang, 1990; Chiarella, 1992; Lux, 1997 y 1998; Lux y Mar-
chesi, 1999a 'y 1999b; LeBaron, 2000; Chen, Lux y Marchesi, 2001). Por otro lado,
también se ha justificado la existencia de caos (dependencia sensible) en el mundo
financiero, tanto desde un punto de vista teérico (Baptista y Caldas, 2002, Farmer
y Joshi, 2002 o Chen y Song, 2003) como empirico (Nakajima, 2002, Bask, 2002,
Wang et al., 2004 o Shintani y Linton, 2004).

El paso siguiente, si existen indicios fundamentados para pensar que el modelo
generador de datos es no lineal, es el aprovechamiento de esta no linealidad para
mejorar la capacidad predictiva. Sin embargo, es frecuente (Clements et al., 2004)
que la bondad de prediccion fuera de la muestra de estos modelos no lineales no
compense la mayor dificultad de su ajuste frente al del enfoque lineal tradicional. E1
problema reside en que, aunque los modelos no lineales capturan mejor la naturaleza
de la dinamica de la serie temporal, esto no tiene que traducirse en que estos modelos
funcionen mejor para la prediccion, ya que muchas veces los sistemas econdmicos
son demasiado complejos como para ajustar una simple generalizacion de un modelo
lineal. Es necesario, por tanto, la busqueda de alternativas mejores para la prediccion
utilizando modelos no lineales.

Por estos motivos, y centrandonos en la prediccion de series temporales financie-
ras, en los ultimos afios se ha pasado del ajuste de modelos no lineales paramétricos
relativamente sencillos (como ejemplos pueden citarse trabajos que utilizan modelos
de varianza condicional (Hsieh, 1997, Baillie y Bollerslev, 1991, Baillie et al., 2000,
Balaban y Bayar, 2005), el modelo de Markov (Turner et al., 1989 y Kanas, 2003),
el modelo no lineal por piezas (Oh y Kim, 2002) o el modelo umbral autorregresivo
(Sarantis, 2001 y Bradley y Janse, 2004), a generalizaciones mas complejas de estos
modelos. Entre ellas pueden citarse diversas generalizaciones del modelo umbral,
como la exponencial (McMillan, 2003 y Brooks, 2001) o la generalizacién a mo-
delos GARCH (Marcucci, 2005), generalizaciones de modelos GARCH, como los
modelos GARCH no lineales (Gokcan, 2000 y Wei, 2002) y los fraccionales (Beine
et al., 2002 y Jin y Frechet, 2004).
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Dentro de esta misma tendencia, en los ultimos afios se han considerado distintos
modelos no paramétricos, dentro de los cuales destacan por su potencia los modelos de
redes neuronales. Con la utilizacion de estas técnicas no paramétricas se entra dentro de
lo que se denomina “econometria cadtica o no lineal”. Estas técnicas presentan ademas
la ventaja, como sefalan Satchell y Timmermann (1996), de funcionar tanto para series
cadticas como para series estocasticas.

En este trabajo comparamos dos enfoques distintos aplicandolos a la prediccion de
los rendimientos del Ibex 35 (del 1 de abril de 1998 hasta el 10 de agosto de 2002),
y verificamos si existe o no diferente comportamiento dependiendo del horizonte de
prediccion que interesa. Por un lado, si el sistema es determinista de dimension baja,
el espacio reconstruido nos permite hacer predicciones posiblemente mejores que las
conseguidas con las metodologias tradicionales, ya que recobramos la topologia y la
dinamica del sistema original desconocido. En este caso se habla de enfoque de com-
prension por reconstruccion. Por otro lado, si el sistema es complejo (de dimension
elevada, o con un nivel alto de ruido), parece incuestionable la potencia mostrada para
la prediccion de las redes neuronales (Zhang et al., 1998).

Asi, en la siguiente seccion se comprueba la presencia de no linealidad en la serie
de rendimientos del Ibex 35. Posteriormente, en la seccion tercera se introducen las
técnicas de prediccion por comprension y las referidas a la prediccion por aprendizaje
utilizando redes neuronales. En la seccion cuarta se realiza una aproximacion a la serie de
rendimientos mediante un modelo ARIMA, comprobando su incapacidad para predecir
de manera util el futuro de la serie. Por tltimo, en la seccion quinta se muestran los
resultados obtenidos por los métodos no lineales aplicados a la serie de rendimientos del
Ibex 35, trabajando con diferentes horizontes de prediccion. Los resultados obtenidos
son claros a favor de estas nuevas técnicas no paramétricas, confirmandose los resultados
del trabajo de Pérez-Rodriguez et al., 2005, obtenidos unicamente para predicciones
de un paso hacia delante. Nosotros proponemos la utilizacion de redes neuronales para
horizontes cortos de prediccion (de cinco o menos pasos hacia delante) y la de modelos
locales por media simple o ponderada de vecinos para horizontes mas largos.

2. CONTRASTES DE NO LINEALIDAD: CONTRASTE DE KAPLAN

Dado que se pretende medir la bondad de técnicas de prediccion no paramétricas,
es necesario determinar si existe no linealidad sin especificar el tipo concreto de no
linealidad. Por este motivo, se utiliza el contraste de Kaplan (1994 y 1995), que a
pesar de su simplicidad ha demostrado empiricamente (Barnett et al., 1997) detectar
un amplio espectro de clases de no linealidad. Este contraste ha comenzado ya a ser
utilizado en series financieras (Chen et al., 2001 y Belaire-Franch et al., 2002).
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El contraste de Kaplan se basa en la idea de continuidad y originalmente fue
formulado para la deteccion de determinismo en la dindmica de una serie temporal.
Kaplan trata de encontrar la presencia de una estructura determinista en la orbita
descrita con la reconstruccion por el método de los retardos, basandose en la conti-
nuidad de dicha orbita. Para ello utiliza una propiedad que diferencia a un sistema
determinista de otro que no lo es: si el modelo subyacente es determinista, dos puntos
inicialmente proximos se mantendran préximos tras una iteracion mientras que, si
el modelo subyacente es estocastico dos puntos inicialmente proximos pueden tener
imagenes muy alejadas entre si. Kaplan trabaja con un estadistico K que calcula para
la serie original (Ktest) y para un modelo generador lineal estocastico con la mismas
propiedades (con el mismo histograma y funcion de autocorrelacion) que el sistema
original (KS). Si el valor del estadistico de la serie original excede el de las series
bajo la hipotesis alternativa de linealidad estocastica, se acepta la hipotesis nula de
linealidad.

La distribucion del estadistico no esta tabulada, pero Kaplan propone dos cotas
maximas para el contraste de la hipotesis nula de linealidad. La primera es el minimo
KS estimado a partir de las series subrogadas, y la segunda es la media menos dos
o tres veces la desviacion tipica de todos los KS estimados. Se rechaza la hipotesis
nula de linealidad cuando el valor de K calculado para la serie original reconstruida
(que llamamos Ktest) es mayor que, al menos, una de las dos cotas (que llamamos,
para simplificar KS'y KSmin).

3. PREDICCION EN EL MARCO DE LA ECONOMETRIA COMPLEJA

3.1. Técnicas de Prediccion en el Enfoque de Comprension mediante la Recons-
truccion del Espacio De Estados

Casdagli (1989) trata el problema de la prediccion no lineal como un “problema
inverso” en la teoria de sistemas dinamicos. El problema usual en este campo es,
conociendo el modelo, describir su evolucion conforme pasa el tiempo; el proble-
ma inverso es el contrario, es decir, dada la evolucion del sistema (que es lo que se
manifiesta en la serie de datos recogida a lo largo del tiempo) construir un modelo
que pueda haberla originado (modelo generador de datos). Si se localiza la funcion
(necesariamente no lineal si estamos ante un sistema cadtico) que puede dar origen
a esta evolucion, dispondremos de un posible modelo predictivo.

Para conocer esta funcion se separan los datos en dos grupos; el primero se uti-
liza para llevar a cabo una interpolacion o aproximacion de la funcién desconocida
(conjunto de entrenamiento) y el segundo (conjunto de verificacion) para evaluar la
bondad del ajuste mediante los errores de prediccion.
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Para comprobar si nuestra prediccion es buena, calculamos el error del predictor
comenzando con una dimension de absorcion baja y repitiendo el calculo hasta que
alcanzamos un valor del error suficientemente bajo. Por ultimo, debemos tener en
cuenta que existen diversas técnicas de interpolacion, por lo que elegiremos aquella
que proporcione el menor valor para el error, sin aumentar demasiado los calculos
necesarios.

Cuando la dinamica observada es compleja, se suelen utilizar, por el buen ajuste
conseguido, los métodos locales, que se basan en ajustar una funcion predictora para
cada intervalo local. Estos modelos se pueden considerar como linealizaciones de
modelos globales considerando puntos del entorno. Estos modelos globales funcionan
mejor si las funciones a ajustar son suaves, cuestion que es dificil en la practica. Para
el ajuste de estos modelos locales es necesario localizar puntos vecinos al cual se
quiere predecir y ajustar la funcion elegida minimizando el error cuadratico medio
y estudiando su evolucién (Farmer y Sidorowich, 1987). En finanzas estos métodos
han sido relativamente poco utilizados, aunque como ejemplos pueden citarse los
trabajos de Diebold y Nason (1990), Sosvilla-Rivero y Bajo-Rubio (1992 y 1998), Lisi
y Medio (1997), Cao y Soofi (1999), Soofi y Cao (1999) y Agnon et al. (1999).

El método mas sencillo es el método del vecino mas proéximo, propuesto por el
meteorologo E.N. Lorenz (1963). Lorenz propuso en este trabajo el concepto de
analogo, aunque no lo consider6 para la prediccion. Segun él, cualquier sistema
acotado de dimension finita debe pasar por algin estado que pase arbitrariamente
proximo a otro estado previo. Si el sistema es estable, el desarrollo futuro de ambos
estados permanecera proximo, mientras que si el sistema es inestable las sucesiones
de estados sucesivos a partir de los dos considerados diferiran a partir de un deter-
minado momento. Suponemos que la ley de nuestro sistema dindmico responde a la
dinamica de una cierta funcion continua F' que relaciona el estado presente y el futuro

de dicho sistema, es decir, tal que x, = F (x,H ) Para predecir el valor x,,,, dadoel
valor x,, simplemente se localiza aquel valor més proximo a x,, (en la terminologia
de Lorenz, el analogo, cuya existencia estd garantizada por la propia naturaleza del
atractor), que denotamos por x, . Entonces, debido a la continuidad de la funcién
F tenemos garantizado que si en el tiempo 7, el estado del sistema es similar al del

tiempo N, X, €Sta asimismo proximo a X, . De esta manera, X, = X i1

El problema es que los datos reales no se corresponden a los diferentes estados
del sistema, sino a sus mediciones utilizando una funcién desconocida de medida
h. Esta es la razon por la cual es fundamental para estos métodos el Teorema de
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Reconstruccion del Espacio de Estados de Takens (1985), que garantiza la misma
topologia y las mismas propiedades dinamicas en el sistema dinamico original y en
la reconstruccion m-dimensional del mismo, obtenida utilizando los datos de la serie
temporal generada. Esta reconstruccion se obtiene mediante la denominada funcion
de retardos, mediante la cual los datos unidimensionales de la serie temporal se
transforman en datos m-dimensionales que, en cada instante del tiempo se obtienen
mediante los retardos sucesivos. Es decir, la m-historia en el instante ¢ es:

a, (t)z (x(t)x(t - r)...,x(t - (m - 1)1:))

siendo T el tiempo de retardo y m la dimension del sistema reconstruido, denominada
dimension de absorcion. La evolucion dinamica de estas m-historias esta marcada
por una funcién que combina la dindmica del sistema original, la funciéon de medida

y la funcion de retardos de Takens, de manera que am(t +7T)= v, (am (t)) Como

sefiala Wan (1994), esto implica que existe una autorregresion no lineal del tipo
x(n+m)r = f(‘x(n+m—l)t EARAS xn‘t

y lo que se pretende en la prediccion practica es encontrar una funcion f v:R"—>R

que aproxime la ecuacion anterior para 1< n < N = N — (m - 1)1: .

Aplicando el método de los vecinos, para predecir x(t +T ) primero se impone

una métrica en el espacio de estados, que denotamos por ” . ” y se localizan las k m-

historias mas proximas a la m-historia a,, (t), es decir, las k a,, (t') con t'<t cuya
distancia "am (t)— a, (t'1| es mas pequeiia. A partir de aqui se construye un predictor
local, considerando cada una de las m-historias vecinas como un punto en el conjunto

origen y el correspondiente punto x(t'+T ) como un punto en el conjunto imagen.

Es decir, se busca una funcion que ajuste los & pares de puntos (am (t') x(t'+T )) El
enfoque mas sencillo es considerar unicamente el vecino mas proximo. En este caso,

simplemente tenemos %(t + 7 )= x(t'+T).

Como sefialan Kantz y Schreiber (1994), la funcién de medida de una cantidad
continua es solo valida hasta un cierto nivel de resolucion. Hay que tener en cuenta el
problema de la discretizacion, asi como los posibles errores de la medicion. Esto nos
lleva a que simplemente localizar el estado mas proximo puede conducir a errores, ya
que las distancias pueden estar contaminadas por los errores de la funcién de medida.
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Por este motivo en la practica no se suele trabajar con un tnico punto analogo, sino
los analogos en un determinado radio. Asi, se localizan los k& puntos mas cercanos a

a, (t) , que se denominan vecinos proximos y que son los & puntos 4, (l‘ ') con 1'<t
con la distancia ” a, (t)- a, (t')” ' mas pequefia. Después se construye un predictor
local haciéndole corresponder a cada punto &, () el correspondiente a, (#'+7). El

predictor una funcion lineal que se ajusta a estos pares de puntos. En este trabajo
utilizamos la media aritmética, la media ponderada por las distancias y la regresion
lineal.

3.2. Redes neuronales: un Enfoque Global

Cuando el sistema no es suficientemente simple es mas apropiado el enfoque del
aprendizaje por medio de redes neuronales ya que, debido a su generalidad, es capaz
de ajustar el comportamiento de cualquier funcion. Las redes neuronales (Nychka
et al., 1992, Jungeilges, 1996 y White, 1989) son una clase de modelos no lineales
inspirados en la arquitectura neuronal del cerebro. Fueron desarrollados en un primer
momento en el campo de la Inteligencia Artificial para intentar modelizar la capacidad
de aprendizaje de los sistemas biologicos neuronales mediante la modelizacion de la
estructura del cerebro. Las redes neuronales son modelos tipo input-output que asignan

al vector input x un vector output y =g (x), donde la funcién g ha sido determinada
por un proceso de aprendizaje recursivo. En definitivo, al igual que las técnicas de
comprension, las redes neuronales intentan resolver el problema inverso de ajustar
una funcién no lineal utilizando los valores sucesivos de una serie temporal.

Su principal ventaja es su capacidad de ajuste, demostrada empiricamente, y el
crecimiento lineal de los parametros con el orden de aproximacion. Se trata de una
estructura de interconexiones, compuesta por una serie de capas, cada una de ellas
formada por neuronas, de manera que cada una de ellas alimenta a todas las neuronas
de la capa siguiente. Cada una de las neuronas proporciona una salida u output que es
el resultado que proporciona una funcion, llamada funcién de activacion, a la suma
de sus inputs multiplicados por unas ponderaciones o pesos. Estas ponderaciones se
ajustan conforme a un algoritmo de aprendizaje especificado con el que se pretende
minimizar la funcion de coste calculada a partir del error cometido si se compara la
salida de la red con el valor real.

1 Generalmente se trabaja con la norma del méximo.
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Existe una amplia aplicacion de las redes neuronales en el campo de la prediccion
de series temporales economicas. En concreto, se pueden citar ejemplos en merca-
dos financieros (Trippi y Turban, 1993, Azoft, 1994, Refenes, 1995 y Gately, 1996),
prediccion en mercados bursatiles (White, 1988, Kimono et al., 1990, Schoneburg,
1990, Yoon y Swales, 1991, Grudnitsky y Osburn, 1993, Chen et al., 2003 y Jasic
y Wood, 2004), prediccion de bancarrotas y fallos de mercados ( Coleman et al.,
1991, Salchenkerger et al., 1992, Tam y Kian, 1992, Fletcher y Goss, 1993, Wilson 'y
Sharda, 1994 y O’Leary, 1998), prediccion de tipos de cambio (Weigend et al, 1992,
Refenes, 1993, Kuan y Liu, 1995, Hann y Steurer, 1996, Zhang y Hu, 1998, Fran-
ses y Griensven, 1998 y Giles et al., 2001. Ademas también se estan desarrollando
aplicaciones macroecondémicas, como la prediccion de recesiones (Qi, 2001) o del
comportamiento de magnitudes macroeconémicas (GDP en Tkacz, 2001), e incluso
existe alguna aplicacion en el mercado de la vivienda (Caridad y Ceular, 2001).

La red neuronal que se va a utilizar en este trabajo es del tipo Multi Layer Fee-
dForward Network (MLFFN), un tipo de red muy popular, ampliamente utilizado con
buenos resultados en el campo de la prediccion por su habilidad para ajustar cualquier
tipo de relacion input-output. En la estructura de la red es fundamental la eleccion
del numero de capas ocultas, del nimero de nodos o neuronas de dichas capas y del
numero de unidades de entrada. En cuanto al nlimero de capas ocultas, en general es
suficiente trabajar con una (Zhang et al., 1998) y, en cuanto a la determinacion del
nimero de nodos de la capa oculta se utilizan argumentos heuristicos que lo relacionan
con el numero de inputs, nunca superando el doble de ellos. De todos modos, como
muestran algunos estudios (Lachtermacher y Fuller, 1995 y Tang y Fishwith, 1993),
el numero de nodos de la capa oculta tiene un efecto sobre la prediccion, aunque
no verdaderamente significativo, siendo ésta mucho mas sensible a la eleccion del
numero de nodos de entrada, ya que dicho niimero contiene informacién importante
acerca de la complejidad de la estructura de la red. Este numero suele ser escogido
en funcion de los resultados de disefios experimentales, escogiéndose normalmente el
mejor disefio en funcion del Criterio de Informacion de Akaike o de Schwartz. En el
presente trabajo se utiliza una red con una capa oculta y se elige el nlimero de unidades
de la capa oculta buscando minimizar el error cometido. En la Figura 1 se muestra el

esquema de la red para una capa oculta y dos valores de entrada, x, y x, .
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Figura 1. Esquema de una red SLFF con una capa oculta
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Generalizando para una red neuronal con # inputs x, = (xl PR S ) y q unidades
en la capa oculta, para un determinado instante ¢, la salida de la red es:

0 =<1>[Bo+Zq:Bi‘P(%o+iYﬂj,rDE/{ (-0)

donde 0 = (ﬁo,...,Bq Y15 Y g ) Yy, = (yjo,...,yﬂ J son los pardmetros a estimar,
W' es una funcion de activacion en forma de S; o, se puede considerar como un esti-

mador para la variable target o deseada », y x, es el vector de inputs. Las unidades
ocultas de las redes feedforward no son dinamicas pues no dependen de los valores
pasados generados por la red.
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Para predecir con una red neuronal, se utiliza el conjunto de entrenamiento para
ajustar los pesos o ponderaciones utilizando los errores cometidos entre la salida de
lared y el valor real de la serie. Estos pesos se utilizan para predecir en el conjunto
de verificacion retroalimentando la red con los valores predichos, en lugar de con
los reales.

4. CARACTERIZACION DE LA SERIE RENDIMIENTOS DEL IBEX
MEDIANTE UN MODELO LINEAL

En primer lugar realizamos un primer analisis de la series de rendimiento del IBEX
mediante un modelo ARIMA siguiendo la metodologia Box-Jenkins. Consideramos
que la serie original de rendimientos del IBEX entre el uno de abril de 1990 hasta el
10 de agosto de 2002 es estacionaria, ya que al tomar primeras diferencias salen claros
signos de una raiz unitaria que nos hacen considerar que no debemos diferenciar. El
correlograma de la serie original parece indicar que la serie es un ruido blanco, pero
el estadistico de Ljung-Box nos indica que el primer retardo es significativamente
distinto de cero. Nos inclinamos por tanto, por un modelo MA(1) tras una validacion
del mismo mediante el analisis de sus residuos. El modelo estimado para los 3100
primeros datos de la serie es igual

x, =0.080897x, , +¢,
[t=4.517]

El hecho de que el modelo sea un MA(1) hace que solo tengamos una prediccion
distinta a la media un periodo adelante, pues los rendimientos estan incorrelados
linealmente para retardos superiores a 2. Para predicciones a horizonte mayor que 1
debemos tomar como predictor 6ptimo la esperanza incondicional de la serie que en
nuestro caso es nula. Por tanto para predicciones con horizonte mayor a 1 las pre-
dicciones de nuestro MA(1) son una constante por lo que la varianza de los residuos
coincide con la varianza total del modelo con lo que la capacidad predictiva del modelo
lineal es nula. Utilizando los primeros 3100 datos como conjunto de entrenamiento
y estimando el modelo de forma iterativa entre el dato 3100 y hasta el dato final del
periodo muestral considerado para obtener las predicciones un periodo por delante
obtenemos que la capacidad predictiva del modelo no es muy buena, como muestra
el hecho de que la suma de los cuadrados de los residuos es superior a la suma de
los cuadrados de los valores de la variable.
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5. RESULTADOS OBTENIDOS MEDIANTE METODOS NO LINEALES

Enla Tabla 1 se muestran los resultados del contraste de Kaplan, que proporciona
evidencia, sin ningin género de duda, a favor de la presencia de no linealidad.

Tabla 1. Resultados del contraste de Kaplan

Dimension de KSmean KSstd KS KSmin Ktest

absorcion (m)
1 0.0147 0.0001 0.0144 0.0146 0.0142
2 0.0146 0.0002 0.0140 0.0142 0.0117
3 0.0147 0.0003 0.0138 0.0142 0.0096
4 0.0147 0.0006 0.0129 0.0136 0.0080
5 0.0147 0.0007 0.0126 0.0131 0.0072
6 0.0144 0.0008 0.0120 0.0128 0.0066
7 0.0145 0.0009 0.0118 0.0126 0.0065
8 0.0144 0.0011 0.0111 0.0128 0.0058
9 0.0146 0.0019 0.0089 0.0104 0.0062
10 0.0147 0.0021 0.0084 0.0108 0.0061

En este contraste, es necesario calcular el estadistico K (Kfest) para la serie original.
La hipotesis nula de determinismo implica que este valor K es proximo a cero. Como
el estadistico no esta tabulado, y ademas se quiere trabajar con la hipotesis nula de
no linealidad, se calcula este estadistico K para una serie de series que verifican que
el modelo generador de datos es estocastico y no lineal, y que son susceptibles de
haber generado la serie temporal (por tanto, deben tener el mismo histograma y la
misma funcion de autocorrelacion). Se considera que se verifica la hipotesis nula de
no linealidad si el valor del estadistico K calculado para la serie original (Kfes?) es
menor que los valores obtenidos para los modelos lineales de los cuales, como medida
resumen, se toma el minimo (Kmin) y la media menos tres desviaciones tipicas (KS).
Para un amplio rango de valores de la dimension de absorcion, en todos los casos
Ktest es menor que ambos valores Kmin y KS.

A continuacion se muestran los resultados para la prediccion hacia dos, cinco, diez
y veinte periodos hacia delante. Primero (de la Tabla 2 a la Tabla 13) se consideran los
métodos de aproximacion local, en concreto, la media de vecinos, la media ponderada
de vecinos y la regresion lineal de vecinos, para un Unico vecino, para dos, cinco,
diez, veinticinco, cincuenta y cien vecinos. Lo que se proporciona en las tablas es el
cociente entre la suma de los cuadrados de los residuos y la suma de cuadrados total
de la serie que se esta prediciendo. Existiran, por tanto, evidencias a favor del método
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utilizado cuando este cociente sea menor que la unidad (valores que se resaltan en
negrita). Por ltimo, en la Tabla 14 se muestran los resultados (también como cociente
entre suma de cuadrados de residuos y suma total de cuadrados) de la aplicacion de
una red neuronal SLFFN, siendo ¥ la funcion logisticay @ la funcion identidad. El
algoritmo de aprendizaje utilizado para el ajuste de los pesos es el de retropropagacion.
Este algoritmo fue ideado a principios de los 70 por Werbos (1974), y completado con
las contribuciones de Parker (1985) y Le Cun (1985), siendo popularizado a partir
del trabajo de Rumelhart y McClelland (1986). Este método basicamente consiste

en actualizar las ponderaciones del modelo en la direccion en la que el gradiente
desciende mas rapidamente, es decir, é,+1 = ét +nVf (x[,é,)[ yv—f (x[,é, )} ,

donde Vf (x, 9) es el vector gradiente de la funcién f conrespectoa 0 y 1 esla
tasa de aprendizaje (en nuestro caso, 0.01).

En los dos casos se realizan predicciones para un amplio rango de valores de
la dimension de absorcion, desde dos hasta diez. En el caso de las aproximaciones
locales, simplificamos el paso previo de la reconstruccion aplicando el teorema de
Takens, considerando que la dimension 6ptima de reconstruccion es la que proporciona
una mejor prediccion. En el caso de las redes neuronales, por simplificar notacion,
hablamos de dimension de absorcion cuando en realidad nos estamos refiriendo al
numero de unidades de la capa oculta.

Enla Tabla 2 se ha aplicado un ajuste local por media aritmética de vecinos proxi-
mos. Las filas de la tabla indican las dimensiones de absorcion consideradas, que
van desde 2 hasta 10 (mas de 10 indica la existencia de un sistema excesivamente
complejo para intentar su ajuste mediante la reconstruccion del espacio de estados).
Si los mejores ajustes se consiguen para dimensiones bajas se indicaria que el espacio
de estados que recobra la dindmica original es de baja dimension. Las columnas de
la tabla indican el nimero de vecinos considerados para el ajuste. Se ha considerado
el caso de un unico vecino (en definitiva, el método original propuesto por Lorenz),
y posteriormente 2, 5, 10, 25, 50 y 100 vecinos. Si el ajuste mejora conforme dismi-
nuye el nimero de vecinos se tendrian indicios a favor de una dindmica compleja a
pequeiia escala y, por tanto, a favor de los ajustes locales.
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Tabla 2. Prediccion por media de vecinos. Horizonte de prediccion 2

Prediccion por media de vecinos. Horizonte de prediccion 2
Niumero de vecinos utilizado
1 2 5 10 25 50 100
4861,377000 | 2402,5965 | 2316,0465 | 2155,6583 | 1872,5234 | 21209173 | 2135,7082
73,887114 | 29,699716 | 19338249 | 23,142967 | 25,122942 | 24,160113 | 20,955284
0,360812 | 0,68624448 | 0,60815506 | 0,91060011 | 0,86539983 | 0,98525434 | 1,0679671
0,039171 | 0,53125025 | 1,1894442 | 1,1800209 | 1,6561842 | 1,4844268 | 13647658
4733492 | 4,0459409 | 3,1647425 | 3,2393435 | 2,5387511 | 2,237478 2,071987
1,762123 | 0,25571725 | 0,67733305 | 12057553 | 1,7549747 | 1,6682619 | 1,7760011
21,626915 | 3,2967731 | 43887144 | 4790599 | 4,9667914 | 54865793 | 5,5214688
0,844019 | 1,0272019 | 0,9662819 | 0,8220721 | 0,97672201 | 1,1890866 | 12238415
10,049772 | 14,507426 | 13,68425 13,164745 | 13,091444 | 12,628214 | 12,184612

Sloleo|xfa|u|s]|w(v]B

Tanto en esta tabla como en las siguientes se proporciona, para cada dimension
y numero de vecinos considerados, el cociente entre la suma de cuadrados de los
residuos y la suma total de cuadrados con respecto a la media de los valores reales
que presenta la variable que se pretende predecir para los horizontes considerados (en
este caso, horizonte 2). Por tanto, siempre que este cociente sea menor que la unidad
la prediccion obtenida serd mejor que trabajar con la media aritmética de la serie.
Estos resultados se marcan en negrita. El mejor método sera aquel que proporcione
un menor cociente.

Tabla 3. Prediccion por media de vecinos. Horizonte de prediccion 5

Prediccién por media de vecinos. Horizonte de prediccion 5
Numero de vecinos utilizado
1 2 5 10 25 50 100
2,954863 | 1,7500455 | 2239362 | 1,9885716 | 2,1368807 | 2,1219317 | 2,1666577
3,702098 2,656832 | 1,7080742 | 19379616 | 19221709 | 1,8290327 | 1,7528378
0,390663 | 1,1724267 | 09347626 | 1,030132 | 0,99354249 | 1,0001732 | 1,0019379
0,738669 | 0,79915058 | 1,0415091 | 0,96581005 | 1,1896559 | 1,0666142 | 0,99823471
1,577892 | 1,2287852 | 1,179586 1,235331 1,2024409 | 1,1131596 | 1,1115472
2,062638 | 0,68697177 | 0,79996806 | 0,8992903 | 0,94945426 | 0,97074921 | 0,96049229
1,874481 | 0,80824998 | 0,76935725 | 1,1136349 | 1,0187101 | 1,0047522 | 1,0171414
2,058703 | 2,1430933 | 1906635 | 1,7731901 | 1,7582426 | 1,9239846 | 1,9220692
1,719074 | 1,2303796 | 1,1891305 | 1,2612042 | 1,2649776 | 12130856 | 1,1929691

b= N2 (=Sl NN ) [OL0 ) VY [ 9] =

Los mejores resultados se obtienen (ver negrita), en general, para una dimension
de absorcion igual a 4. Ademas, el ajuste conseguido empeora conforme aumenta el
numero de vecinos, de manera que el modelo local es mas apropiado que el global. El

Estudios de Economia Aplicada, 2007: 815-842 « Vol. 25-3



CARACTERIZACION NO LINEAL Y PREDICCION NO PARAMETRICA EN EL IBEX35 829

mejor resultado puntual se obtiene para un unico vecino y un espacio de dimension
5, seguido de dos vecinos y un espacio de dimension siete.

Siguiendo la misma manera de trabajar pero aumentando la longitud de la ventana
de prediccion se observa, en primer lugar, un empeoramiento generalizado del ajuste
conseguido. Los dos mejores resultados se obtienen para dimensiones y niimero de
vecinos similares a los obtenidos en el caso anterior. Sin embargo, en general, la
dimension 6ptima de reconstruccion ha aumentado a siete.

Aumentando el horizonte de prediccion se ve acentuada la tendencia que acabamos
de mencionar (Tablas 4 y 5). Para longitudes de ventana de diez y veinte los valores
optimos de prediccion corresponden a cinco vecinos y una dimension de reconstruc-
cion igual a ocho y la tendencia general es que se necesite una mayor dimension de
absorcion para conseguir predicciones aceptables aunque, en cualquier caso, éstas
empeoran conforme aumenta el horizonte considerado.

Tabla 4. Prediccion por media de vecinos. Horizonte de prediccion 10

Prediccién por media de vecinos. Horizonte de prediccion 10
Numero de vecinos utilizado
1 2 5 10 25 50 100
1,408486 1,569514 1,294840 1,281017 1,237891 1,228355 1,246996
1,834795 1,524594 1,418587 1,454925 1,364760 1,341661 1,277461
0,859893 1,424268 1,374619 1,208967 1,280575 1,277214 1,272569
0,933871 1,063910 1,111611 1,019414 1,068798 1,055405 1,030246
2,211685 1,097602 1,113870 1,105276 1,097771 1,053650 1,059768
1,418126 1,022583 0,857795 1,006641 1,026332 1,004416 0,984651
1,343327 0,919501 0,732788 0,997553 0,980407 0,992204 0,990217
0,886320 1,073303 1,016384 1,018558 0,980083 1,025287 1,034966
1,292191 1,244271 1,189551 1,127389 1,156633 1,113187 1,105013

=) =2 [=C3 ST o (1) [N [R) [ O] =]
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Tabla 5. Prediccion por media de vecinos. Horizonte de prediccion 20

Prediccion por media de vecinos. Horizonte de prediccion 20
Numero de vecinos utilizado

m 1 2 5 10 25 50 100

2 1,170636 1,330165 1,164399 1,180346 1,044638 1,084771 1,086594
3 1,434289 1,175310 1,075470 1,167170 1,092520 1,072269 1,058587
4 0,888330 1,081899 1,133278 1,112050 1,044740 1,046682 1,041974
5 0,929501 1,080466 1,051832 0,974741 1,010978 1,007684 0,999981
6 1,549406 1,074064 1,068981 1,031930 1,020051 1,005360 1,014252
7 1,377798 1,024201 1,006968 0,983841 1,025283 0,998378 0,990515
8 1,178065 0,861774 0,862260 1,025849 1,007804 1,000316 0,994479
9 1,035410 1,037228 1,009417 1,003125 0,985247 1,024270 1,026921
10 1,450772 1,159263 1,057219 1,031795 1,044518 1,010879 1,015271

Exactamente los mismos comentarios son validos si se trabaja utilizando la predic-
cion por vecinos ponderados en lugar de la media simple de vecinos (Tablas 6 a 9): las
predicciones empeoran conforme aumenta el horizonte de prediccion considerado, a
la vez que se necesita una mayor dimension en el espacio de reconstruccion. A partir
del horizonte igual a diez el 6ptimo de prediccion se obtiene para cinco vecinos y un
espacio reconstruido en dimension ocho.

Tabla 6. Prediccion por media ponderada de vecinos. Horizonte de
prediccion 2

Prediccion por vecinos ponderados. Horizonte de prediccion 2
Numero de vecinos utilizados

m 2 5 10 25 50 100

2 1915,4445 605,78301 3811,372 3092,2013 1012,8762 2206,6737
3 25235654 7,747302 10,819454 82,250565 282,95161 16,054877
4 | 0,08986219 0,32926327 0,53181869 0,68036682 0,60662505 0,79481554
5 | 0,71754488 1,1799548 1,1908592 1,3303489 1,3777037 1,3395448
6 | 4,1410658 3,3018611 3,3815246 2,6702955 2,281146 2,0388049
7 | 0,60398198 0,8568158 1,2892736 1,729269 1,5760744 1,7614641
8 3,7948657 42718824 4,2740666 4,7586903 5,3389994 5,4855863
9 1,0340557 0,9686591 0,7446262 0,98637258 1,1807322 1,2220073
10| 15316658 14,226045 13,368227 13,187236 12,686639 12,229447
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Tabla 7. Prediccion por media ponderada de vecinos. Horizonte de

prediccion 5

Prediccion por vecinos ponderados. Horizonte de prediccion 5
Nimero de vecinos utilizados

m 2 5 10 25 50 100

2 2,850224 1,8037373 2,6943432 2,339598 1,8692542 2,1264197
3 1,9707289 1,3976372 1,5890842 4,021185 11,073979 1,5750085
4 | 089819172 0,786105 1,2067906 1,0597447 0,9509386 0,98601459
5 | 083290935 0,98156913 0,95015468 1,0089008 1,0075282 0,97806259
6 1,2204887 1,2027591 1,2117109 1,2490485 1,1303935 1,1001009
7 1,087494 0,77750654 0,97991496 0,98215712 0,97114911 0,96157798
8 | 083719313 0,75257802 1,0551966 0,95923708 0,99969359 1,0040755
9 2,1505372 1,9045303 1,6785401 1,7518934 1,8951669 1,9111334
10| 12891152 1,2550623 1,2898206 1,2827325 1,2218646 1,2015084

no se observa para horizontes de prediccion superiores.

Existe, sin embargo, una diferencia interesante: si comparamos la Tabla 6 con la
Tabla 2 se observa la general mejora que se obtiene, para un horizonte igual a dos,
si se trabaja con vecinos ponderados en lugar de con la simple media aritmética, que

Tabla 8. Prediccion por media ponderada de vecinos. Horizonte de
prediccion 10

Prediccion por vecinos ponderados. Horizonte de prediccion 10
Numero de vecinos utilizados

m 2 5 10 25 50 100

2 0,989756 1,170193 1,408359 1,362501 1,146378 1,228860
3 1,179274 1,024328 1,284926 1,834805 4,304137 1,396068
4 1,491860 1,130150 1,466617 1,299509 1,228799 1,256047
5 0,996844 1,112781 0,971029 1,030105 1,044384 1,013502
6 1,086404 1,112699 1,104997 1,129725 1,067981 1,049760
7 1,265689 1,041210 0,976731 1,055136 1,002522 0,992906
8 0,868254 0,756976 0,887287 0,979404 0,961793 0,988567
9 1,079246 1,057758 1,013580 0,966009 1,013617 1,033322
10 1,266969 1,198104 1,127224 1,142795 1,113968 1,111128
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Tabla 9. Prediccion por media ponderada de vecinos. Horizonte de
prediccion 20

Prediccion por vecinos ponderados. Horizonte de prediccion 20
Numero de vecinos utilizados

m 2 5 10 25 50 100

2 0,949662 0,971817 1,159299 1,115260 1,697983 0,980781
3 0,951401 1,113162 1,170163 1,702558 2,187151 1,276763
4 1,272200 1,023056 1,113479 1,055670 1,030810 1,043649
5 0,964355 1,061379 1,005634 1,006310 1,016600 0,990200
6 1,055056 1,122492 1,075852 1,063854 0,997889 1,009809
7 1,019162 0,982598 0,946635 1,033238 0,997314 0,996759
8 0,919703 0,832727 0,920587 1,007141 0,980534 0,995166
9 1,015642 1,036927 1,014100 0,980725 1,018123 1,024685
10|  0,999936 1,055074 1,026273 1,032668 1,010498 1,019561

Si aplicamos la metodologia de la regresion lineal de los vecinos proximos (Tablas
10 a 13) observamos la necesidad de incrementar el numero de vecinos utilizados,
es decir, que se necesitan modelos menos locales. Por el contrario, es interesante
comprobar que, utilizando un numero suficientemente elevado de vecinos, los re-
sultados obtenidos son substancialmente mejores que los obtenidos para los casos
equivalentes en los métodos anteriores. Comparemos, por ejemplo, las Tablas 4 y
8 con la Tabla 12 (las tres para un horizonte de prediccion igual a diez). En el caso
de la media simple de vecinos el mejor resultado se obtiene para una dimension de
8 y 5 vecinos (0.7327) seguido de una dimension de 7 el mismo numero de vecinos
(0.8577). En el caso de la media ponderada de vecinos el mejor resultado se obtiene
de nuevo para una dimension de 8 y 5 vecinos (0.7569) y posteriormente para la
misma dimension y 2 vecinos (0.8682). Por tltimo, en el caso de la regresion simple
el mejor resultado se obtiene para 25 vecinos y una dimension de 7 (0.6437) seguido
por el obtenido para la misma dimension y 50 vecinos (0.7019).
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Tabla 10. Prediccion por regresion lineal de vecinos. Horizonte de
prediccion 2
*s0lo se producen resultados fiables a partir de 25 vecinos

Prediccion por regresion lineal. Horizonte de prediccion 2*
Numero de vecinos utilizados

m 2 5 10 25 50 100

2 73152,826 2772,3149 1559,5169 1697,6352 1684,1822 1571,2123
3 45,044293 21,69296 25,924258 22,809692 23,408161 20,920315
4 7,2120047 2,3992686 0,56801166 0,39269678 0,65409474 0,73036549
5 | 0,25745308 0,94707248 1,5479199 1,9070512 1,5180742 1,2696538
6 746,21504 11,267934 6,5617973 4,4857995 3,0761346 2,1035626
7 61,891831 1,617677 0,05924043 1,0605847 1,5235622 1,2771518
8 19,023101 17,091714 12,553665 1,7607262 3,399953 3,5518376
9 34,700027 6,4308301 4,4124617 0,52013298 1,066788 1,136757

10 | 192,46353 374,05923 35,101283 27,446229 17,499885 14,543563

Tabla 11. Prediccion por regresion lineal de vecinos. Horizonte de
prediccion 5
*sélo se producen resultados fiables a partir de 25 vecinos

Prediccién por regresion lineal. Horizonte de prediccion 5*
Niumero de vecinos utilizados

m 2 5 10 25 50 100
2 21,05631 2,6577045 2,1685721 1,7744063 2,0398388 2,0439055
3 130,24798 1,9499628 1,6475446 1,6082504 1,761414 1,856597
4 13,517146 3,5684806 0,91309072 0,95798084 1,127042 1,060194
5 | 45247012 8,8952538 1,1405991 1,2803565 1,1341091 0,9499
6 147,0883 6,5609917 1,5777291 1,1416289 0,97813037 0,89870765
7 127,2801 1,9316136 0,7484455 0,36976359 0,6209879 0,68981323
8 62,06919 6,0526438 2,5704901 0,3911036 0,62437246 0,69385889
9 1690,0264 85,386863 625,01618 1,4634748 1,6752579 1,4371965
10| 60,581569 79,570637 10,93199 2,8286899 1,4413257 1,290336
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Tabla 12. Prediccion por regresion lineal de vecinos. Horizonte de
prediccion 10

*sdlo se producen resultados fiables a partir de 25 vecinos

Prediccion por regresion lineal. Horizonte de prediccion 10*
Numero de vecinos utilizados

m 2 5 10 25 50 100

2 39,927632 1,706885 1,346876 1,291023 1,258348 1,232592
3 46,331447 2,058138 1,688223 1,333874 1,281253 1,302965
4 36,148280 4,669215 1,023205 1,005044 1,147587 1,140171
5 | 260,079990 12,368107 0,996240 1,049028 1,044923 0,940182
6 Inf 20,669122 1,499241 1,045523 0,946370 0,915213
7 55,781188 8,819547 1,452950 0,643745 0,701921 0,814672
8 26,161622 10,360659 2,420771 1,002752 0,977754 0,863180
9 335,481910 20,748187 111,825850 1,285024 1,152218 0,929264
10 878,588710 40,489010 8,367323 2,167016 1,384698 1,063328

Tabla 13. Predicciéon por regresion lineal de vecinos. Horizonte de
prediccion 20

*sdlo se producen resultados fiables a partir de 25 vecinos

Prediccion por regresion lineal. Horizonte de prediccion 20*
Numero de vecinos utilizados

m 2 5 10 25 50 100

2 19,025141 1,680618 1,274879 1,253552 1,183840 1,143251
3 70,087589 1,729643 1,233565 1,055606 1,037418 1,036616
4 19,021543 3,529759 1,168369 0,964929 0,995292 0,936777
5 | 386619580 9,296794 0,839540 1,040375 1,055065 0,934816
6 Inf 26,657163 1,247283 1,165249 1,037409 0,950577
7 | 796,642390 173,157180 1,876039 0,936870 1,005234 1,035469
8 | 70681665 10,329088 3,848928 1,098098 1,019909 0,989133
9 | 90377,546000 | 28,702737 74,751687 1,352896 1,185956 1,053392
10| 726,740240 32,036714 5,616995 1,880550 1,365035 1,077304

Por ultimo, la metodologia de redes neuronales, cuyos resultados se muestran en
la Tabla 14, muestra dos ventajas sobre la de vecinos proximos. En primer lugar, los
resultados son mas estables, obteniéndose resultados mas que aceptables para un
amplio rango de posibles dimensiones consideradas. En segundo lugar, los resultados
son claramente mejores para horizontes cortos de prediccidn, especialmente para
cinco pasos hacia delante, y ademas para este caso y dos pasos hacia delante los
resultados mejores se obtienen para una dimension muy baja, concretamente igual a
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tres. Sin embargo, los resultados obtenidos empeoran rapidamente para horizontes
mayores de prediccion, perdiéndose toda capacidad de predecir para veinte pasos
hacia delante.

Tabla 14. Predicciéon por red SLFFN

Prediccion por red neuronal SLFFN
Horizonte de prediccion

m 2 5 10 20

2 0,3588552 0,44360971 0,91954897 1,1002246
3 0,05816525 0,26885222 2,8929046 5,7085676
4 0,2685982 0,88940063 1,2243348 2,6895771
5 0,77538077 0,78369351 1,6795167 2,0061941
6 0,59195401 2,756293 2,4040838 2,1893963
7 0,38563461 0,46712192 0,92551115 1,2218446
8 1,353494 1,7328756 2,5329785 2,4507502
9 7,7573383 4,6954728 7,5405156 6,2600321
10 1,2902691 5,0498519 6,5476984 6,5807438

6. CONCLUSIONES

En cuanto a la presencia de no linealidad en el modelo generador de la serie
temporal de rendimientos del Ibex 35 para el periodo considerado, el contraste de
Kaplan muestra claras evidencias a su favor. En cuanto a la prediccion, aplicando la
metodologia ARIMA se obtiene que la serie se corresponde con un modelo media
movil de orden 1, de manera que s6lo se consiguen predicciones para un periodo
hacia delante.

Las predicciones basadas en ajustes locales muestran un ligero empeoramiento
en los resultados conforme se aumenta el horizonte de prediccion, lo cual se co-
rresponde con la posible presencia de sensibilidad a las condiciones iniciales. Los
mejores resultados, dentro de estos ajustes locales, se obtienen, en general, para un
numero de vecinos que oscila entre 5 y 25, aunque conviene resaltar que el niimero
de vecinos que conduce a las mejores predicciones es de 5 vecinos en el caso de un
horizonte de prediccion 20. Esto puede considerarse como un indicio a favor del ajuste
global por redes neuronales para pequefios horizontes de prediccion. En cuanto a los
distintos comportamientos de cada uno de los métodos propuestos, para un niimero
de vecinos suficientemente grande como para que funcione la regresion lineal, este
método proporciona resultados ligeramente mejores.

En cuanto a los resultados proporcionados por la red neuronal, resalta en primer
lugar que presenta menos variaciones que en el caso de los ajustes locales. Se obtiene
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el mejor resultado de prediccion para un horizonte de prediccion de 5. En segundo
lugar, en promedio se obtienen resultados mejores que en el enfoque local para
horizontes de prediccion cortos, perdiéndose esta propiedad para los largos, lo cual
estaria en concordancia con lo mencionado en el parrafo anterior.

En definitiva, existen claras evidencias a favor de la utilizacion de estos nuevos
métodos de prediccion no paramétrica para la prediccion del comportamiento del
Ibex 35 (se pueden establecer relaciones comparativas con los resultados obtenidos
por Sarantis (2001) para los indices del G7 utilizando modelos paramétricos no
lineales, a favor de los resultados obtenidos en este trabajo). Dentro de los métodos
propuestos, es mejor la utilizacion del ajuste global mediante una red neuronal SL-
FFN para horizontes de prediccion cortos, y el de los ajustes locales para mayores
horizontes de prediccion.
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