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Palabras clave >

Abreviaturas > ADN Acido desoxirribonucleico
ADP Difosfato de adenosina
ATP Trifosfato de adenosina

ECV  Enfermedades cardiovasculares NOS

EO Estrés oxidativo

ERO Especies reactivas del oxigeno

GC Guanilato ciclasa

GMPc Monofosfato ciclico de guanosina

I/R Isquemia/reperfusion

IAM Infarto agudo de miocardio

Las enfermedades de las arterias coronarias constituyen una de las principales causas de
muerte en los paises occidentales. Una de las manifestaciones patolégicas en este tipo de
enfermedades es el dano al miocardio, el cual puede ser una consecuencia de los episodios de
isquemia/reperfusion que tienen lugar. A pesar de la complejidad de los mecanismos respon-
sables de la afectacion al miocardio inducida por isquemia/reperfusion, se han podido iden-
tificar algunos factores que inciden notablemente en este proceso. Una serie de evidencias
implican a las especies reactivas del oxigeno y al estrés oxidativo en el dafo celular que se
produce durante un episodio de isquemia/reperfusién. En este trabajo se realiz6 una revi-
si6n del tema a través de una busqueda bibliografica en la base de datos Medline con el
objetivo de abordar el papel que desempenan las especies reactivas del oxigeno durante la
isquemia/reperfusion en el miocardio.

REV ARGENT CaRDIOL 2010;78:54-60.

Isquemia - Reperfusion - Especies reactivas del oxigeno - Estrés oxidativo

NADPH Fosfato de dinucleétido de nicotinamida
y adenina reducido

NO Oxido nitrico

Oxido nitrico sintetasa

Pl Precondicionamiento isquémico

PMT  Permeabilidad mitocondrial transciente

POL Peroxidacion lipidica

PTPm  Poros transcientes de permeabilidad

mitocondrial

RL Radical libre

iNOS Oxido nitrico sintetasa inducible SOD  Superdxido dismutasa
NAD Dinucléotido de nicotinamida y adenina TNF-o.  Factor de necrosis tumoral alfa
NAD* Forma oxidada del dinucléotido de X0 Xantina oxidasa

nicotinamida y adenina

GENERALIDADES

Las enfermedades de las arterias coronarias constitu-
yen una de las principales causas de muerte en los
paises occidentales. Una de las manifestaciones pato-
logicas en este tipo de enfermedades lo constituye el
dano al miocardio, el cual puede ser una consecuencia
de los episodios de isquemia/reperfusion (I/R) que tie-
nen lugar. (1) Las consecuencias del dano al miocardio
inducido por I/R pueden diferir segiin la magnitud de
este fenomeno. En este sentido, pueden originarse
danos puntuales que derivan en una reversion de la
afectacion o bien danan zonas extensas y conducen a
la muerte celular, a la inestabilidad permanente del
miocardio y al fallecimiento del paciente. (2)

Con dependencia del tiempo de duraciéon de la
isquemia, se han comunicado tres tipos de dano car-
diaco. El primer tipo de dano detectable es la apari-
cién de arritmias cardiacas provocadas por la reper-
fusion del tejido. Generalmente, la reperfusion que
se produce luego de 1-5 min de isquemia puede dar
por resultado episodios de taquicardia ventricular o
fibrilacién sin muerte celular ni déficit en los cam-
bios de contractilidad ventricular. (3) La reperfusion
producida después de transcurridos 5-20 min de
isquemia lleva al segundo tipo de dano, conocido como
atontamiento del miocardio. (3, 4) Este se caracteriza
por un déficit de la contractilidad miocardica, lo que
ocurre sin que se produzca muerte celular. Esta falla
de la contractilidad ventricular puede persistir por un
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periodo de hasta 72 horas después del evento de I/R.
El tercer tipo de dano y mas lesivo es el que se produ-
ce cuando la isquemia supera los 20 min. En estas
circunstancias, el dano al cardiomiocito es irreversi-
ble y el resultado es la muerte celular, lo que puede
originar un infarto agudo de miocardio (IAM). (3)

Es conocido que la muerte del cardiomiocito indu-
cida por I/R puede ocurrir por mecanismos apoptéticos
y necroticos, donde el dano mitocondrial tiene un pa-
pel central en ambas formas de muerte celular. (5-7)
A través de la fosforilacién oxidativa que se lleva a
cabo en la mitocondria, las células del musculo car-
diaco obtienen la energia necesaria para realizar sus
funciones. (8) La mitocondria desempena un papel
fundamental en el mantenimiento de la homeostasis
celular. Esta organela es responsable de suplir los re-
querimientos energéticos, regular las concentraciones
de Ca?* intracelular, asi como de otros eventos fisiol6-
gicos necesarios para el funcionamiento adecuado del
cardiomiocito. (9) Al mismo tiempo puede estar aso-
ciada con eventos que tienen lugar en condiciones
patolégicas, como el aumento de Ca?* intracelular, la
activacion de proteasas, de proteinas proapoptoticas
y antiapoptéticas, entre otras. (10)

Alrededor del 90% del metabolismo del corazén es
aerodbico, con un consumo de oxigeno que oscila entre
60 y 150 mmol/min en seres humanos. (11) Este nivel
alto de capacidad oxidativa es posible, ya que se esti-
ma que el 25-35% del volumen total del cardiomiocito
esta ocupado por mitocondrias. (12) Dado que el mus-
culo cardiaco es un tejido fundamentalmente aerébico,
una reduccién del flujo sanguineo traeria aparejada
una disminucién del transporte de oxigeno a las célu-
las. Al mismo tiempo se afectaria la oxidacion de Aaci-
dos grasos y el ciclo de los acidos tricarboxilicos, lo
cual comprometeria el ATP generado durante la
fosforilacion oxidativa y se produciria asi la muerte
celular. (8, 13)

ESPECIES REACTIVAS DEL OXIGENO: CONTRIBUYENTES
DEL DANO Y MUERTE CELULAR EN ISQUEMIA/
REPERFUSION DEL MIOCARDIO

A pesar de la complejidad de los mecanismos respon-
sables de la afectacién al miocardio inducido por I/R,
se han podido identificar algunos factores que inci-
den notablemente en este proceso de dano celular. (2)
Muchas evidencias apuntan a la existencia de una se-
rie de eventos relacionados entre si, en los que se in-
cluyen la disminucién del ATP celular, la produccién
de especies reactivas del oxigeno (ERO), la acumula-
cién de iones H*, la activaciéon de leucocitos, las
metaloproteinasas y las caspasas, asi como el aumen-
to de la concentracién de Ca?* intracelular. (4, 8, 9,
14-18)

A continuacién se centra la atencién en el papel
que desempenan las ERO en el fenémeno de I/R del
miocardio, asi como su relacién con otros procesos
involucrados en él.

Existe una serie de evidencias que implican a las
ERO y al estrés oxidativo (EO) en el dano celular que
se produce durante un episodio de I/R (Figura 1). (19,
20) Dada la gran variedad y complejidad de procesos
mediados por estos agentes oxidantes, se hace dificil
definir un mecanismo principal que explique su aso-
ciacién con este tipo de dano celular. Se sabe, en cam-
bio, que pueden afectar biomoléculas esenciales, como
son los lipidos, las proteinas y el ADN. (21)

Estudios realizados con antioxidantes han refor-
zado el criterio anterior al mostrar efectos protecto-
res contra el dano celular en modelos de I/R, efectos
que pueden ser dependientes de la dosis, ya que la
administracién de dosis bajas de antioxidantes se ha
relacionado con niveles bajos de dano. (22, 23)

Segin se planteé anteriormente, la cadena respi-
ratoria mitocondrial constituye la fuente primaria de
obtencion de energia para las células del corazén; sin
embargo, paralelamente a esto, constituye la fuente
generadora principal de ERO, (24) como puede verse
en la Figura 2. Durante la I/R, los complejos I y III de
la cadena de transporte de electrones son los respon-
sables de la mayor produccién de ERO. (8) En esta via
se genera el radical anién superéxido (O,"), el cual es
dismutado por accién de la superédxido dismutasa
(SOD) para formar peréxido de hidrégeno (H,0,); este
altimo puede provocar danos en forma directa o indi-
recta, a través de la formacién del radical hidroxilo
(OH) catalizada por metales de transicién (reaccién
de Fenton y Habber-Weis). (25) Otras vias generadoras
de ERO en el miocardio isquémico son el NADPH
oxidasa y la xantina oxidasa (XO), asi como la infil-
tracion de neutroéfilos durante la reperfusion. (26, 27)

La generacion de ERO en el corazén durante la
I/R se ha demostrado a través de técnicas de alta sen-
sibilidad como la resonancia paramagnética de elec-
trones. (26) La cantidad de ERO que se generan en
las células afectadas depende tanto del tiempo de anoxia
como de la reoxigenacion. (28) Las evidencias experi-
mentales sobre la relacion de éstas con la I/R incluyen
la deteccion de perdxidos lipidicos, la oxidacién de pro-
teinas y los productos de nitracién de éstas luego de la
reperfusion miocardica. (15, 29) Otros mecanismos
involucrados en el dano oxidativo son los procesos de
oxidacion del ADN celular y mitocondrial. (30)

En respuesta a la generacion de concentraciones
bajas de ERO pueden activarse mecanismos cardio-
protectores. En condiciones de normoxia, los meca-
nismos antioxidantes endégenos (SOD, catalasa y
glutatién peroxidasa) son capaces de amortiguar los
danos oxidativos; sin embargo, al elevarse dichas con-
centraciones ocurre todo lo contrario. (8) Experimen-
tos realizados en animales han mostrado baja capaci-
dad antioxidante en el corazén, tanto sano como tra-
tado con adriamicina. Esto hace de este 6rgano un
blanco susceptible a los procesos de dafno causados por
el EO. (31)

Otras comunicaciones relacionan a las ERO y la
homeostasis céalcica como contribuyentes del dano ce-
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Fig. 1. Papel de las especies
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lular inducido por I/R. (2) Existe un efecto dual entre
estos factores. En primera instancia, el incremento
del Ca?* citosélico puede provocar alteraciones a tra-
vés de la activacion de proteasas (calpainay catepsina),
lo cual promueve el dano mitocondrial y la subsecuente
generacion de ERO. Por otra parte, el EO puede lle-
var al aumento del Ca?* intracelular por diferentes
vias, (32, 33) por ejemplo, a través de la formacién de
aldehidos reactivos (4-hidroxil-2,3-trans-nonenal), los
que reducen la actividad del ATPasa Ca?* dependien-
te de la membrana citoplasmatica. (32) Este dano
oxidativo provoca un retardo en el flujo de Ca?* a tra-
vés de la membrana y facilita la acumulacién de este
cation en el interior celular. (2)

Varios autores afirman que esto contribuye al dano
celular en I/R, ya que se ha observado que una inhibi-
cién de la entrada excesiva de Ca’** a la mitocondria
disminuye las areas de infarto en preparaciones in
vitro de corazon. (8) También se conoce que la exposi-
cién a concentraciones elevadas de Ca?* en condicio-
nes patoldgicas provoca la permeabilizacién de la mem-
brana mitocondrial en un namero determinado de
moléculas (< 1.500 Da). Este fendmeno se conoce como
permeabilidad mitocondrial transciente (PMT). La
apertura de poros en la membrana facilita la salida de
moléculas como el citocromo ¢ y la pérdida de nu-

cledtidos, especialmente de NAD* y ADP. Este proce-
so afecta el potencial de membrana mitocondrial (AY),
la generacion de ATP y por consiguiente se produce
la muerte celular por necrosis. (34)

La liberacién de citocromo ¢ a través de los poros
transcientes de permeabilidad mitocondrial (PTPm)
también puede activar rutas de muerte celular de tipo
apoptatico. (36) Este proceso es regulado por la fami-
lia de proteinas Bcl-2, cuyo sitio de accién son los
PTPm. Estudios recientes han revelado que concen-
traciones bajas de 6xido nitrico (NO) generadas en la
mitocondria pueden prevenir la apertura de estos po-
ros a través de un mecanismo que involucra la inhibi-
cion de la acumulacién de Ca?* en la mitocondria. (37)
Otros efectos antiapoptéticos del NO en concentra-
ciones moderadas pueden estar relacionados con la
inhibicién de los procesos de peroxidacion lipidica
(POL), el cual desempena un papel fundamental en
la apertura de estos poros. (35)

OXIDO NITRICO E ISQUEMIA/REPERFUSION
DEL MIOCARDIO

E1 NO es un vasodilatador end6geno, involucrado en
varios procesos fisiolégicos en el organismo. Este agen-
te es sintetizado por una familia de enzimas denomi-
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nadas 6xido nitrico sintetasas (NOS) a través de la
oxidacién enzimatica del grupo guanidino de la L-
arginina para formar L-citrulina y NO. Esto ocurre
en dos reacciones secuenciales en las que se utili-
zan como cofactores NADPH y tetrahidroxibiopte-
rina (BH,) e involucra ademés al oxigeno. Los efec-
tos fisiolégicos del NO (vasorrelajacion, senalizacion
neuronal) estdn mediados por la activaciéon de una
isoforma soluble de la guanilato ciclasa (GC); sin
embargo, la explicacién de sus modos de accién du-
rante procesos fisiopatolégicos es mucho méas com-
pleja. (38)

El NO se ha asociado con la proteccién contra la
muerte celular provocada por isquemia en un gran
nimero de estudios, (36) aunque su mecanismo y
modo de accién no se ha esclarecido del todo. (21) Este
agente vasodilatador endégeno se requiere para que
se produzca el efecto citoprotector inducido por el
precondicionamiento isquémico (PI) en el corazén. (37,
39) Este efecto podria producirse durante la isquemia
o la reperfusién; sin embargo, atn no es posible cir-
cunscribirlo a uno de estos momentos. Ademas, algu-
nos estudios sugieren que el NO puede potenciar los

mecanismos apoptéticos en respuesta al proceso de
I/R en forma dependiente de la dosis. (40, 41) Aun
cuando la mayoria de los estudios apuntan hacia un
papel citoprotector del NO durante la I/R miocardica
y el PI, resulta de gran importancia identificar los me-
canismos responsables de este tipo de efecto protec-
tor. (42) Estos podrian estar relacionados con el in-
cremento de monofosfato ciclico de guanosina (GMPc)
mediado por el NO, (42, 43) la modulacién de la acu-
mulacion de Ca** intracelular, (44) la apertura de ca-
nales del K* dependientes del ATP mitocondriales (45,
46) o a través de la inhibicién de la PMT durante el
fenémeno de I/R. (47-49)

Otros estudios atribuyen la capacidad protectora
del NO durante la reperfusion a la recuperacion del
AWY, lo cual no estuvo relacionado con la activacién de
la guanilato ciclasa (GC) ni con la inhibicién de los
canales del K* dependientes del ATP, sino que mas
bien pudo deberse a la modulacién del EO originado
durante la isquemia. (21) Todas estas evidencias re-
fuerzan el criterio de que el NO es capaz de conferir
citoproteccién y modular los procesos de muerte celu-
lar asociados con la I/R en el corazon.
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RADICAL ANION SUPEROXIDO E ISQUEMIA/
REPERFUSION DEL MIOCARDIO

Una de las ERO generadas en la mitocondria es el O,".
(50) En condiciones fisiolégicas, el O, participa en va-
rios mecanismos de sefalizacion y control celular; sin
embargo, una pérdida en la regulacion de su produc-
cion se asocia con estados patoldgicos de gran interés
en la practica médica. (49)

La generacién de O, a partir de los complejos I y
III de la cadena transportadora de electrones ocurre
tanto en la matriz mitocondrial como en el espacio
intermembrana. (50) Dada la incapacidad del O, para
difundirse a través de la membrana interna de la
mitocondria, pueden verse afectadas diferentes estruc-
turas y funciones de esta organela. Con dependencia
de la localizacion de este radical libre (RL), se produ-
cen danos en lipidos, proteinas y ADN. (51) El dano
en el ADN mitocondrial (ADNm) originado por el O,
durante la I/R del miocardio afecta la sintesis de
péptidos codificados por éste y que participan en la
cadena de transporte electrénico. Esto trae como con-
secuencia la generacién de una cantidad mayor de
EROy finalmente la muerte celular. (49) Ademaés, una
generacién persistente de O, provoca una disrupciéon
del balance redox celular, lo que favorece la activa-
cion del factor de transcripcion nuclear NF-xB con la
consecuente expresion del factor de necrosis tumoral
alfa (TNF-a), de 6xido nitrico sintetasa inducible
(iNOS), entre otros, asi como de ASK-1, la cual indu-
ce la activacion de las rutas de muerte celular mito-
condrial via MAPK p38 o JNK. (52, 53)

Por otra parte, el O, es capaz de reaccionar con el
NO y formar peroxinitrito (ONOOQO"), el cual desem-
pena un papel fundamental en los danos celulares re-
lacionados con la I/R. (49)

PEROXINITRITO E ISQUEMIA/REPERFUSION
DEL MIOCARDIO

El ONOO- es un potente oxidante biolégico, que se
forma a través de la reaccién que se produce entre el
NO y el O, (54) Existen evidencias crecientes que
apuntan a la generacién de ONOO- como el mecanis-
mo responsable de la muerte celular en una serie de
enfermedades, entre las que se encuentra la ate-
rosclerosis (55) y la I/R del miocardio. (56)

La oxidacién de proteinas, lipidos y ADN, asi como
la nitracién de los residuos tirosina de las proteinas,
representan las consecuencias mas importantes del
ONOO-en los sistemas biol6gicos. (57, 58) Con de-
pendencia de la magnitud de los danos oxidativos pro-
vocados por el ONOOr, las células pueden morir a tra-
vés de procesos necréticos o apoptoticos. (59)

Se acepta en general que la necrosis celular esta
relacionada con la activaciéon de la enzima nuclear
poli(ADP-ribosa)polimerasa (PARP). El dafo colate-
ral mas importante como consecuencia de la activa-
cion de esta enzima lo constituye la deplecion de las

reservas de NAD* celular. Esto se traduce en una ac-
tividad glucolitica reducida, asi como en una depre-
sién de la cadena transportadora de electrones
mitocondrial, lo cual culmina en una falla energética
y necrosis celular. (60)

Durante los tltimos afos ha sido centro de aten-
cion la relacion del ONOO- con las enfermedades
cardiovasculares (ECV). (61) Diversos estudios reve-
lan la acumulacién de nitrotirosina, un marcador del
dano inducido por el ONOO-, en hipoxia miocardica,
(62) I/R (63) y en procesos de trasplante de corazdn.
(64) Los mecanismos que median los efectos necroéticos
del ONOO- sobre las células del corazén incluyen la
inhibicién de enzimas clave como la Ca?* ATPasa de-
pendiente del reticulo sarcoplasmatico y la crea-
tincinasa, (65) la activaciéon de metaloproteinasas, (66)
la modulacién de la familia de las MAP cinasas (67) y
el NFkB, (68) asi como la activacién de la enzima PARP.
(69) En estudios recientes, Levrand y colaboradores
concluyeron que ademas de los efectos necréticos del
ONOO- sobre el cardiomiocito, este agente oxidante
también puede provocar la muerte celular a través de
mecanismos apoptéticos. Estos investigadores ob-
servaron que, en cultivo de células, las caracteristi-
cas de la muerte celular inducida por el ONOO- com-
partian semejanzas con la apoptosis, como, por ejem-
plo, fragmentacién del ADN y alteraciones morfo-
légicas del ntcleo, asi como la activaciéon de la
caspasa-3 y el clivaje de la enzima PARP. Por estas
razones se puede pensar que esta ERO constituye
un contribuyente fundamental del dano y muerte
celular en una amplia variedad de patologias
cardiovasculares. (70)

CONCLUSION

Entre los mecanismos fisiopatoldgicos de la I/R, uno
de los mas impactantes es sin lugar a dudas el que
postula la participaciéon de las ERO durante ambas
fases del proceso. El desequilibrio redox y el subse-
cuente EO, presente en diversas patologias, continuara
siendo centro de atencién y debate en la comunidad
cientifica. La aparicién de resultados paradéjicos y el
intento por explicarlos impulsaran los esfuerzos que
se realizan en este campo de investigacién para con-
tribuir asi al esclarecimiento de su papel en la fisio-
patologia de muchas enfermedades. Todo aporte que
se realice en este sentido tendra indudablemente un
impacto positivo en la salud humana.

SUMMARY

Role of Reactive Oxygen Species in Myocardial
Damage Induced by Ischemia/Reperfusion

Coronary artery diseases are one of the main causes of death
in the western countries. Myocardial damage is one of the
pathological manifestations of this type of diseases and it
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may be the consequence of the episodes of ischemia/
reperfusion. The mechanisms responsible for myocardial
damage induced by ischemia/reperfusion are complex, yet a
few factors linked with this process have been identified.
Reactive oxygen species and oxidative stress have been in-
volved in cell damage during an episode of ischemia/
reperfusion. We performed a review of this matter through
a bibliographic search in Medline to determine the role of
reactive oxygen species during myocardial ischemia/
reperfusion.

Key words > Ischemia - Reperfusion - Reactive Oxygen Species -
Oxidative Stress
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