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RESUMEN

Las enfermedades de las arterias coronarias constituyen una de las principales causas de
muerte en los países occidentales. Una de las manifestaciones patológicas en este tipo de
enfermedades es el daño al miocardio, el cual puede ser una consecuencia de los episodios de
isquemia/reperfusión que tienen lugar. A pesar de la complejidad de los mecanismos respon-
sables de la afectación al miocardio inducida por isquemia/reperfusión, se han podido iden-
tificar algunos factores que inciden notablemente en este proceso. Una serie de evidencias
implican a las especies reactivas del oxígeno y al estrés oxidativo en el daño celular que se
produce durante un episodio de isquemia/reperfusión. En este trabajo se realizó una revi-
sión del tema a través de una búsqueda bibliográfica en la base de datos Medline con el
objetivo de abordar el papel que desempeñan las especies reactivas del oxígeno durante la
isquemia/reperfusión en el miocardio.
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Isquemia - Reperfusión - Especies reactivas del oxígeno - Estrés oxidativo

ADN Ácido desoxirribonucleico NADPH Fosfato de dinucleótido de nicotinamida

ADP Difosfato de adenosina y adenina reducido

ATP Trifosfato de adenosina NO Óxido nítrico

ECV Enfermedades cardiovasculares NOS Óxido nítrico sintetasa

EO Estrés oxidativo PI Precondicionamiento isquémico

ERO Especies reactivas del oxígeno PMT Permeabilidad mitocondrial transciente

GC Guanilato ciclasa POL Peroxidación lipídica

GMPc Monofosfato cíclico de guanosina PTPm Poros transcientes de permeabilidad

I/R Isquemia/reperfusión mitocondrial

IAM Infarto agudo de miocardio RL Radical libre

iNOS Óxido nítrico sintetasa inducible SOD Superóxido dismutasa

NAD Dinucléotido de nicotinamida y adenina TNF-α Factor de necrosis tumoral alfa

NAD+ Forma oxidada del dinucléotido de XO Xantina oxidasa

nicotinamida y adenina

GENERALIDADES

Las enfermedades de las arterias coronarias constitu-
yen una de las principales causas de muerte en los
países occidentales. Una de las manifestaciones pato-
lógicas en este tipo de enfermedades lo constituye el
daño al miocardio, el cual puede ser una consecuencia
de los episodios de isquemia/reperfusión (I/R) que tie-
nen lugar. (1) Las consecuencias del daño al miocardio
inducido por I/R pueden diferir según la magnitud de
este fenómeno. En este sentido, pueden originarse
daños puntuales que derivan en una reversión de la
afectación o bien dañan zonas extensas y conducen a
la muerte celular, a la inestabilidad permanente del
miocardio y al fallecimiento del paciente. (2)

Con dependencia del tiempo de duración de la
isquemia, se han comunicado tres tipos de daño car-
díaco. El primer tipo de daño detectable es la apari-
ción de arritmias cardíacas provocadas por la reper-
fusión del tejido. Generalmente, la reperfusión que
se produce luego de 1-5 min de isquemia puede dar
por resultado episodios de taquicardia ventricular o
fibrilación sin muerte celular ni déficit en los cam-
bios de contractilidad ventricular. (3) La reperfusión
producida después de transcurridos 5-20 min de
isquemia lleva al segundo tipo de daño, conocido como
atontamiento del miocardio. (3, 4) Éste se caracteriza
por un déficit de la contractilidad miocárdica, lo que
ocurre sin que se produzca muerte celular. Esta falla
de la contractilidad ventricular puede persistir por un
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período de hasta 72 horas después del evento de I/R.
El tercer tipo de daño y más lesivo es el que se produ-
ce cuando la isquemia supera los 20 min. En estas
circunstancias, el daño al cardiomiocito es irreversi-
ble y el resultado es la muerte celular, lo que puede
originar un infarto agudo de miocardio (IAM). (3)

Es conocido que la muerte del cardiomiocito indu-
cida por I/R puede ocurrir por mecanismos apoptóticos
y necróticos, donde el daño mitocondrial tiene un pa-
pel central en ambas formas de muerte celular. (5-7)
A través de la fosforilación oxidativa que se lleva a
cabo en la mitocondria, las células del músculo car-
díaco obtienen la energía necesaria para realizar sus
funciones. (8) La mitocondria desempeña un papel
fundamental en el mantenimiento de la homeostasis
celular. Esta organela es responsable de suplir los re-
querimientos energéticos, regular las concentraciones
de Ca2+ intracelular, así como de otros eventos fisioló-
gicos necesarios para el funcionamiento adecuado del
cardiomiocito. (9) Al mismo tiempo puede estar aso-
ciada con eventos que tienen lugar en condiciones
patológicas, como el aumento de Ca2+ intracelular, la
activación de proteasas, de proteínas proapoptóticas
y antiapoptóticas, entre otras. (10)

Alrededor del 90% del metabolismo del corazón es
aeróbico, con un consumo de oxígeno que oscila entre
60 y 150 mmol/min en seres humanos. (11) Este nivel
alto de capacidad oxidativa es posible, ya que se esti-
ma que el 25-35% del volumen total del cardiomiocito
está ocupado por mitocondrias. (12) Dado que el mús-
culo cardíaco es un tejido fundamentalmente aeróbico,
una reducción del flujo sanguíneo traería aparejada
una disminución del transporte de oxígeno a las célu-
las. Al mismo tiempo se afectaría la oxidación de áci-
dos grasos y el ciclo de los ácidos tricarboxílicos, lo
cual comprometería el ATP generado durante la
fosforilación oxidativa y se produciría así la muerte
celular. (8, 13)

ESPECIES REACTIVAS DEL OXÍGENO: CONTRIBUYENTES
DEL DAÑO Y MUERTE CELULAR EN ISQUEMIA/
REPERFUSIÓN DEL MIOCARDIO

A pesar de la complejidad de los mecanismos respon-
sables de la afectación al miocardio inducido por I/R,
se han podido identificar algunos factores que inci-
den notablemente en este proceso de daño celular. (2)
Muchas evidencias apuntan a la existencia de una se-
rie de eventos relacionados entre sí, en los que se in-
cluyen la disminución del ATP celular, la producción
de especies reactivas del oxígeno (ERO), la acumula-
ción de iones H+, la activación de leucocitos, las
metaloproteinasas y las caspasas, así como el aumen-
to de la concentración de Ca2+ intracelular. (4, 8, 9,
14-18)

A continuación se centra la atención en el papel
que desempeñan las ERO en el fenómeno de I/R del
miocardio, así como su relación con otros procesos
involucrados en él.

Existe una serie de evidencias que implican a las
ERO y al estrés oxidativo (EO) en el daño celular que
se produce durante un episodio de I/R (Figura 1). (19,
20) Dada la gran variedad y complejidad de procesos
mediados por estos agentes oxidantes, se hace difícil
definir un mecanismo principal que explique su aso-
ciación con este tipo de daño celular. Se sabe, en cam-
bio, que pueden afectar biomoléculas esenciales, como
son los lípidos, las proteínas y el ADN. (21)

Estudios realizados con antioxidantes han refor-
zado el criterio anterior al mostrar efectos protecto-
res contra el daño celular en modelos de I/R, efectos
que pueden ser dependientes de la dosis, ya que la
administración de dosis bajas de antioxidantes se ha
relacionado con niveles bajos de daño. (22, 23)

Según se planteó anteriormente, la cadena respi-
ratoria mitocondrial constituye la fuente primaria de
obtención de energía para las células del corazón; sin
embargo, paralelamente a esto, constituye la fuente
generadora principal de ERO, (24) como puede verse
en la Figura 2. Durante la I/R, los complejos I y III de
la cadena de transporte de electrones son los respon-
sables de la mayor producción de ERO. (8) En esta vía
se genera el radical anión superóxido (O2

–), el cual es
dismutado por acción de la superóxido dismutasa
(SOD) para formar peróxido de hidrógeno (H2O2); este
último puede provocar daños en forma directa o indi-
recta, a través de la formación del radical hidroxilo
(OH) catalizada por metales de transición (reacción
de Fenton y Habber-Weis). (25) Otras vías generadoras
de ERO en el miocardio isquémico son el NADPH
oxidasa y la xantina oxidasa (XO), así como la infil-
tración de neutrófilos durante la reperfusión. (26, 27)

La generación de ERO en el corazón durante la
I/R se ha demostrado a través de técnicas de alta sen-
sibilidad como la resonancia paramagnética de elec-
trones. (26) La cantidad de ERO que se generan en
las células afectadas depende tanto del tiempo de anoxia
como de la reoxigenación. (28) Las evidencias experi-
mentales sobre la relación de éstas con la I/R incluyen
la detección de peróxidos lipídicos, la oxidación de pro-
teínas y los productos de nitración de éstas luego de la
reperfusión miocárdica. (15, 29) Otros mecanismos
involucrados en el daño oxidativo son los procesos de
oxidación del ADN celular y mitocondrial. (30)

En respuesta a la generación de concentraciones
bajas de ERO pueden activarse mecanismos cardio-
protectores. En condiciones de normoxia, los meca-
nismos antioxidantes endógenos (SOD, catalasa y
glutatión peroxidasa) son capaces de amortiguar los
daños oxidativos; sin embargo, al elevarse dichas con-
centraciones ocurre todo lo contrario. (8) Experimen-
tos realizados en animales han mostrado baja capaci-
dad antioxidante en el corazón, tanto sano como tra-
tado con adriamicina. Esto hace de este órgano un
blanco susceptible a los procesos de daño causados por
el EO. (31)

Otras comunicaciones relacionan a las ERO y la
homeostasis cálcica como contribuyentes del daño ce-
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lular inducido por I/R. (2) Existe un efecto dual entre
estos factores. En primera instancia, el incremento
del Ca2+ citosólico puede provocar alteraciones a tra-
vés de la activación de proteasas (calpaína y catepsina),
lo cual promueve el daño mitocondrial y la subsecuente
generación de ERO. Por otra parte, el EO puede lle-
var al aumento del Ca2+ intracelular por diferentes
vías, (32, 33) por ejemplo, a través de la formación de
aldehídos reactivos (4-hidroxil-2,3-trans-nonenal), los
que reducen la actividad del ATPasa Ca2+ dependien-
te de la membrana citoplasmática. (32) Este daño
oxidativo provoca un retardo en el flujo de Ca2+ a tra-
vés de la membrana y facilita la acumulación de este
catión en el interior celular. (2)

Varios autores afirman que esto contribuye al daño
celular en I/R, ya que se ha observado que una inhibi-
ción de la entrada excesiva de Ca2+ a la mitocondria
disminuye las áreas de infarto en preparaciones in
vitro de corazón. (8) También se conoce que la exposi-
ción a concentraciones elevadas de Ca2+ en condicio-
nes patológicas provoca la permeabilización de la mem-
brana mitocondrial en un número determinado de
moléculas (< 1.500 Da). Este fenómeno se conoce como
permeabilidad mitocondrial transciente (PMT). La
apertura de poros en la membrana facilita la salida de
moléculas como el citocromo c y la pérdida de nu-

cleótidos, especialmente de NAD+ y ADP. Este proce-
so afecta el potencial de membrana mitocondrial (ΔΨ),
la generación de ATP y por consiguiente se produce
la muerte celular por necrosis. (34)

La liberación de citocromo c a través de los poros
transcientes de permeabilidad mitocondrial (PTPm)
también puede activar rutas de muerte celular de tipo
apoptótico. (36) Este proceso es regulado por la fami-
lia de proteínas Bcl-2, cuyo sitio de acción son los
PTPm. Estudios recientes han revelado que concen-
traciones bajas de óxido nítrico (NO) generadas en la
mitocondria pueden prevenir la apertura de estos po-
ros a través de un mecanismo que involucra la inhibi-
ción de la acumulación de Ca2+ en la mitocondria. (37)
Otros efectos antiapoptóticos del NO en concentra-
ciones moderadas pueden estar relacionados con la
inhibición de los procesos de peroxidación lipídica
(POL), el cual desempeña un papel fundamental en
la apertura de estos poros. (35)

ÓXIDO NÍTRICO E ISQUEMIA/REPERFUSIÓN
DEL MIOCARDIO

El NO es un vasodilatador endógeno, involucrado en
varios procesos fisiológicos en el organismo. Este agen-
te es sintetizado por una familia de enzimas denomi-

Fig. 1. Papel de las especies
reactivas del oxígeno en los
mecanismos de señalización
que tienen lugar durante un
episodio de I/R del miocardio.
XD: Xantina deshidrogenada.
XO: Xantina oxidasa. O

2
–: Ra-

dical anión superóxido. ERO:
Especies reactivas del oxígeno.
iNOS: Óxido nítrico sintetasa
inducible. TNF-α: Factor de
necrosis tumoral alfa. HIF1:
Factor inducible por hipoxia
tipo 1. NFκB: Factor de trans-
cripción nuclear kappa B.
PTPm: Poros transcientes de
permeabilidad mitocondrial.
NO: Óxido nítrico. ONOO–:
Peroxinitrito. PARP: poli(ADP-
ribosa)polimerasa. AIF: Factor
inductor de la apoptosis. (+):
Activación.
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nadas óxido nítrico sintetasas (NOS) a través de la
oxidación enzimática del grupo guanidino de la L-
arginina para formar L-citrulina y NO. Esto ocurre
en dos reacciones secuenciales en las que se utili-
zan como cofactores NADPH y tetrahidroxibiopte-
rina (BH4) e involucra además al oxígeno. Los efec-
tos fisiológicos del NO (vasorrelajación, señalización
neuronal) están mediados por la activación de una
isoforma soluble de la guanilato ciclasa (GC); sin
embargo, la explicación de sus modos de acción du-
rante procesos fisiopatológicos es mucho más com-
pleja. (38)

El NO se ha asociado con la protección contra la
muerte celular provocada por isquemia en un gran
número de estudios, (36) aunque su mecanismo y
modo de acción no se ha esclarecido del todo. (21) Este
agente vasodilatador endógeno se requiere para que
se produzca el efecto citoprotector inducido por el
precondicionamiento isquémico (PI) en el corazón. (37,
39) Este efecto podría producirse durante la isquemia
o la reperfusión; sin embargo, aún no es posible cir-
cunscribirlo a uno de estos momentos. Además, algu-
nos estudios sugieren que el NO puede potenciar los

mecanismos apoptóticos en respuesta al proceso de
I/R en forma dependiente de la dosis. (40, 41) Aun
cuando la mayoría de los estudios apuntan hacia un
papel citoprotector del NO durante la I/R miocárdica
y el PI, resulta de gran importancia identificar los me-
canismos responsables de este tipo de efecto protec-
tor. (42) Éstos podrían estar relacionados con el in-
cremento de monofosfato cíclico de guanosina (GMPc)
mediado por el NO, (42, 43) la modulación de la acu-
mulación de Ca2+ intracelular, (44) la apertura de ca-
nales del K+ dependientes del ATP mitocondriales (45,
46) o a través de la inhibición de la PMT durante el
fenómeno de I/R. (47-49)

Otros estudios atribuyen la capacidad protectora
del NO durante la reperfusión a la recuperación del
ΔΨ, lo cual no estuvo relacionado con la activación de
la guanilato ciclasa (GC) ni con la inhibición de los
canales del K+ dependientes del ATP, sino que más
bien pudo deberse a la modulación del EO originado
durante la isquemia. (21) Todas estas evidencias re-
fuerzan el criterio de que el NO es capaz de conferir
citoprotección y modular los procesos de muerte celu-
lar asociados con la I/R en el corazón.

Fig. 2. Generación de ERO
durante la fosforilación oxida-
tiva a partir de los complejos I
y III de la cadena de transpor-
te electrónico. El complejo I
(NADH-ubiquinona óxido-
reductasa) cataliza la primera
transferencia electrónica. Pos-
teriormente, la ubiquinona
Q10 (UQ) del complejo III
cataliza la conversión del oxí-
geno molecular en anión su-
peróxido (O

2
–). A partir de este

radical se forman otras ERO,
como el peróxido de hidróge-
no (H

2
O

2
) y el radical hidroxilo

(OH). GPx: Glutatión peroxi-
dasa. GRd: Glutatión reduc-
tasa. GSH: Glutatión reducido.
GSSG: Forma oxidada del glu-
tatión. NO: Óxido nítrico.
ONOO–: Peroxinitrito. Cit c:
Citocromo c. TRd: Tiorredoxina
reductasa. Trx: Tiorredoxina,
forma reducida. Trx-H

2
: Tio-

rredoxina, forma oxidada.
NADPH: Fosfato de dinucleó-
tido de nicotinamida y adenina
(forma reducida). NADP+:
Fosfato de dinucleótido de
nicotinamida y adenina (forma
oxidada).
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RADICAL ANIÓN SUPERÓXIDO E ISQUEMIA/
REPERFUSIÓN DEL MIOCARDIO

Una de las ERO generadas en la mitocondria es el O2
–.

(50) En condiciones fisiológicas, el O2
– participa en va-

rios mecanismos de señalización y control celular; sin
embargo, una pérdida en la regulación de su produc-
ción se asocia con estados patológicos de gran interés
en la práctica médica. (49)

La generación de O2
– a partir de los complejos I y

III de la cadena transportadora de electrones ocurre
tanto en la matriz mitocondrial como en el espacio
intermembrana. (50) Dada la incapacidad del O2

– para
difundirse a través de la membrana interna de la
mitocondria, pueden verse afectadas diferentes estruc-
turas y funciones de esta organela. Con dependencia
de la localización de este radical libre (RL), se produ-
cen daños en lípidos, proteínas y ADN. (51) El daño
en el ADN mitocondrial (ADNm) originado por el O2

–

durante la I/R del miocardio afecta la síntesis de
péptidos codificados por éste y que participan en la
cadena de transporte electrónico. Esto trae como con-
secuencia la generación de una cantidad mayor de
ERO y finalmente la muerte celular. (49) Además, una
generación persistente de O2

– provoca una disrupción
del balance redox celular, lo que favorece la activa-
ción del factor de transcripción nuclear NF-κB con la
consecuente expresión del factor de necrosis tumoral
alfa (TNF-α), de óxido nítrico sintetasa inducible
(iNOS), entre otros, así como de ASK-1, la cual indu-
ce la activación de las rutas de muerte celular mito-
condrial vía MAPK p38 o JNK. (52, 53)

Por otra parte, el O2
– es capaz de reaccionar con el

NO y formar peroxinitrito (ONOO–), el cual desem-
peña un papel fundamental en los daños celulares re-
lacionados con la I/R. (49)

PEROXINITRITO E ISQUEMIA/REPERFUSIÓN
DEL MIOCARDIO

El ONOO– es un potente oxidante biológico, que se
forma a través de la reacción que se produce entre el
NO y el O2

–. (54) Existen evidencias crecientes que
apuntan a la generación de ONOO– como el mecanis-
mo responsable de la muerte celular en una serie de
enfermedades, entre las que se encuentra la ate-
rosclerosis (55) y la I/R del miocardio. (56)

La oxidación de proteínas, lípidos y ADN, así como
la nitración de los residuos tirosina de las proteínas,
representan las consecuencias más importantes del
ONOO– en los sistemas biológicos. (57, 58) Con de-
pendencia de la magnitud de los daños oxidativos pro-
vocados por el ONOO–, las células pueden morir a tra-
vés de procesos necróticos o apoptóticos. (59)

Se acepta en general que la necrosis celular está
relacionada con la activación de la enzima nuclear
poli(ADP-ribosa)polimerasa (PARP). El daño colate-
ral más importante como consecuencia de la activa-
ción de esta enzima lo constituye la depleción de las

reservas de NAD+ celular. Esto se traduce en una ac-
tividad glucolítica reducida, así como en una depre-
sión de la cadena transportadora de electrones
mitocondrial, lo cual culmina en una falla energética
y necrosis celular. (60)

Durante los últimos años ha sido centro de aten-
ción la relación del ONOO– con las enfermedades
cardiovasculares (ECV). (61) Diversos estudios reve-
lan la acumulación de nitrotirosina, un marcador del
daño inducido por el ONOO–, en hipoxia miocárdica,
(62) I/R (63) y en procesos de trasplante de corazón.
(64) Los mecanismos que median los efectos necróticos
del ONOO– sobre las células del corazón incluyen la
inhibición de enzimas clave como la Ca2+ ATPasa de-
pendiente del retículo sarcoplasmático y la crea-
tincinasa, (65) la activación de metaloproteinasas, (66)
la modulación de la familia de las MAP cinasas (67) y
el NFκB, (68) así como la activación de la enzima PARP.
(69) En estudios recientes, Levrand y colaboradores
concluyeron que además de los efectos necróticos del
ONOO– sobre el cardiomiocito, este agente oxidante
también puede provocar la muerte celular a través de
mecanismos apoptóticos. Estos investigadores ob-
servaron que, en cultivo de células, las característi-
cas de la muerte celular inducida por el ONOO– com-
partían semejanzas con la apoptosis, como, por ejem-
plo, fragmentación del ADN y alteraciones morfo-
lógicas del núcleo, así como la activación de la
caspasa-3 y el clivaje de la enzima PARP. Por estas
razones se puede pensar que esta ERO constituye
un contribuyente fundamental del daño y muerte
celular en una amplia variedad de patologías
cardiovasculares. (70)

CONCLUSIÓN

Entre los mecanismos fisiopatológicos de la I/R, uno
de los más impactantes es sin lugar a dudas el que
postula la participación de las ERO durante ambas
fases del proceso. El desequilibrio redox y el subse-
cuente EO, presente en diversas patologías, continuará
siendo centro de atención y debate en la comunidad
científica. La aparición de resultados paradójicos y el
intento por explicarlos impulsarán los esfuerzos que
se realizan en este campo de investigación para con-
tribuir así al esclarecimiento de su papel en la fisio-
patología de muchas enfermedades. Todo aporte que
se realice en este sentido tendrá indudablemente un
impacto positivo en la salud humana.

SUMMARY

Role of Reactive Oxygen Species in Myocardial
Damage Induced by Ischemia/Reperfusion

Coronary artery diseases are one of the main causes of death
in the western countries. Myocardial damage is one of the
pathological manifestations of this type of diseases and it
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may be the consequence of the episodes of ischemia/
reperfusion. The mechanisms responsible for myocardial
damage induced by ischemia/reperfusion are complex, yet a
few factors linked with this process have been identified.
Reactive oxygen species and oxidative stress have been in-
volved in cell damage during an episode of ischemia/
reperfusion. We performed a review of this matter through
a bibliographic search in Medline to determine the role of
reactive oxygen species during myocardial ischemia/
reperfusion.

Key words > Ischemia - Reperfusion - Reactive Oxygen Species -
Oxidative Stress
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