EEG CONSUMPTION AND RISK OF TYPE 2 DIABETES IN A MEDITERRANEAN COHORT; THE SUN PROJECT

Nutrición Hospitalaria, vol. 28, núm. 1, enero-febrero, 2013, pp. 105-111

Grupo Aula Médica
España

Available in: http://www.redalyc.org/articulo.oa?id=309226055014
Egg consumption and risk of type 2 diabetes in a Mediterranean cohort; the SUN project

Itziar Zazpe1, Juan José Beunza1, Maira Bes-Rastrollo1, Francisco Javier Basterra-Gortari1,2, Amelia Mari-Sanchis1,3, Miguel Ángel Martínez-González4 on behalf of the SUN Project Investigators

1University of Navarra, Pamplona, Navarra, Spain. 2Hospital Reina Sofía, Tudela, Navarra, Spain. 3Hospital de Navarra, Pamplona, Navarra, Spain.

Abstract

Introduction & Aim: The prevalence of diabetes is increasing at an alarming rate in nearly all countries. Some studies from non-Mediterranean populations suggest that higher egg consumption is associated with an increased risk of diabetes. The aim of our study was to prospectively assess the association between egg consumption and the incidence of type 2 diabetes in a large cohort of Spanish university graduates.

Methods: In this prospective cohort including 15,956 participants (mean age: 38.5 years) during 6.6 years (median), free of diabetes mellitus at baseline. Egg consumption was assessed at baseline through a semi-quantitative food-frequency questionnaire repeatedly validated in Spain. Incident diabetes mellitus diagnosed by a doctor was assessed through biennial follow-up questionnaires and confirmed subsequently by medical reports or records, according to the American Diabetes Association criteria. Analyses were performed through multivariable non-conditional logistic regression.

Results: After adjustment for confounders, egg consumption was not associated with the development of diabetes mellitus, comparing the highest versus the lowest quartile of egg consumption (>4 eggs/week vs <1 egg/week): odds ratio=0.7; 95% CI 0.3-1.7.

Conclusion: Egg consumption was not associated with the development of diabetes mellitus in this Mediterranean cohort.

DOI:10.3305/nh.2013.28.1.6124

Key words: Diabetes mellitus. Epidemiology. Prospective study. Egg consumption. Dietary cholesterol.

CONSUMO DE HUEVO Y RIESGO DE DIABETES TIPO 2 EN UNA COCHORTE MEDITERRÁNEA; EL PROYECTO SUN

Resumen

Introducción y Objetivo: La prevalencia de la diabetes está aumentando a un ritmo alarmante en casi todos los países. Algunos estudios en poblaciones no mediterráneas sugieren que un mayor consumo de huevo se asocia con un mayor riesgo de diabetes. El objetivo de nuestro estudio fue evaluar prospectivamente la asociación entre el consumo de huevo y la incidencia de diabetes tipo 2 en una gran cohorte de graduados universitarios españoles.

Métodos: Un total de 15.956 participantes (edad media: 38,5 años) seguidos durante 6,6 años (mediana), y libres de la diabetes mellitus al inicio del estudio fueron incluidos en este estudio. El consumo de huevos se evaluó al inicio del estudio a través de un cuestionario semi-cuantitativo de frecuencia de alimentos repetidamente validado en España. Incident diabetes mellitus diagnosticada por un médico a través de cuestionarios de seguimiento biannuales y posteriormente confirmada por los informes médicos o registros, según los criterios de la American Diabetes Association. Los análisis se realizaron a través de modelos de regresión logística no condicional multivariable.

Resultados: Después de ajustar por factores de confusión, el consumo de huevo no se asoció con el desarrollo de diabetes mellitus, comparando el cuartil superior frente al inferior de consumo de huevo (>4 huevos/semana frente a <1 huevo/semana): Odds Ratio=0,7; IC 95% 0.3-1.7.

Conclusión: El consumo de huevos no se asoció con el desarrollo de diabetes mellitus en esta cohorte mediterránea.

DOI:10.3305/nh.2013.28.1.6124

Abreviaturas

SUN: Seguimiento Universidad de Navarra.
FFQ: Food-Frequency Questionnaire.
BMI: Body Mass Index.
CHS: Cardiovascular Health Study.

Introducción

En los últimos años, la prevalencia de diabetes está aumentando a un ritmo alarmante en casi todos los países y las proyecciones para 2030 indican un aumento de la prevalencia de obesidad y estilos de vida sedentarios, envejecimiento poblacional y urbanización. La «epidemia de diabetes» sigue siendo un problema de salud pública importante y permanente, con un costo económico en los sistemas de salud en todo el mundo. En el caso de los EE.UU., la población diabética se gasta 2½ veces más en cuidados médicos que la población general sin esta condición.

Para prevenir esta tendencia actual al diabetes, la identificación y modificación de los factores de riesgo para el desarrollo de diabetes es un primer paso prioritario. En este contexto, el consumo de huevo puede desempeñar un papel protector.

Diabetes puede compartir algunos factores de riesgo dietéticos con enfermedades del corazón y la circulación. Interesante, no obstante, es que algunos de los factores dietéticos previamente considerados como asociados a un mayor riesgo cardiovascular no aumenten ese riesgo en la población general, pero sí en los diabéticos. En el caso del consumo de huevo, existen algunos estudios de poblaciones no mediterráneas que sugieren que el consumo de 1 huevo/día o más está asociado con un mayor riesgo de diabetes.

El huevo es una fuente de proteínas de alta calidad y otros nutrientes (minerales, folato, vitamina B y ácidos grasos poli y monoinsaturados). Aunque algunos de estos nutrientes pueden estar asociados con un mayor riesgo de diabetes, otros podrían reducir este riesgo.

La Asociación Americana del Corazón (2000) recomienda 300 mg/d de colesterol dietético en promedio para individuos sanos y <200 mg/día para aquellos con diabetes.

Hay muy pocos estudios epidemiológicos en poblaciones de vida libre (no en una población mediterránea) que hayan examinado el papel del consumo de huevo como fuente completa de la incidencia de tipo 2 diabetes. Uno de los estudios observacionales en China y otro más grande prospectivo en EE.UU. han sugerido que el consumo de huevo en adultos durante un seguimiento promedio de 20 años respectivamente, se asoció con un aumento del riesgo de diabetes en hombres y mujeres. Sin embargo, otro estudio prospectivo en mayores halló no asociación. \(^{21}\)

Objetivo

El objetivo de nuestro estudio fue prospectivamente examinar la asociación entre el consumo de huevo y la incidencia de diabetes tipo 2 en un gran cohortes de graduados universitarios de la Universidad de Navarra.

Métodos

Población de estudio

El proyecto SUN es un proyecto prospectivo dinámico y español diseñado para evaluar la asociación entre el consumo de huevo y la incidencia de diabetes tipo 2 en mayores de 55 años. La resección de participantes comenzó en 1999 y es permanente. Todos los participantes son universitarios y más de 50% son profesionales de la salud.

La información se recoge mediante cuestionarios autoadministrados y enviados a los participantes cada 2 años. Los objetivos y métodos del SUN have been reported in detail elsewhere.\(^{21}\)

Para este análisis, incluimos sólo a aquellos participantes que ya habían respondido al cuestionario de seguimiento, a aquellos que habían respondido al cuestionario de seguimiento y a aquellos que habían respondido a al menos 2 años de seguimiento. Entre ellos, 3.039 no respondieron ninguna de las encuestas de seguimiento, y después de 4 más envíos separados por 2 meses, el 2-year follow-up. Among them, 3.039 had not answered any of the follow-up questionnaires, and after five more mailings separated by 2 months each they were considered lost to follow-up. We therefore retained 18,291 participants (90.6%).

Excluimos a aquellos participantes con un o más de los siguientes criterios: autoreporte de diabetes a la base (n=312), valores faltantes en este variable (n=91), límites predeterminados para el consumo de energía en el segundo grupo (menos de 800 o más de 4,000 kcal/d para hombres y menos de 500 o más de 3,500 kcal/d para mujeres) (n=1,678), y, finalmente, excluimos a participantes con valores faltantes para el consumo de huevo (n=254). Después de exclusión, un total de 15,956 participantes se consideró en el análisis.

Animación a seguir el protocolo de cuestionarios cada 2 años. The study was approved by the Human Research Ethical Committee at the University of Navarra. Voluntary completion of the first questionnaire was considered as informed consent.

Evaluación del consumo de huevo

El consumo de huevo se evaluó a la base a través de un cuestionario de frecuencia de alimentos (FFQ) con 136 ítems que se ha validado repetidamente en España.\(^{23,24}\) Los participantes fueron invitados a reportar cuántas veces habían consumido huevo en los últimos años respectivamente.
on average, they had consumed eggs of hen (1 egg was a unit of consumption) during the previous year. The frequency of intake for each food item had nine responses, that ranged from “never or almost never” to “≥6 times/day”. Besides, the methods of preparation of the eggs taken not into account.

Adherence to the Mediterranean diet was defined according to the 0 to 9 points score proposed by Trichopoulo et al. (Trichopoulo et al., 2003) as previously described4.

We divided the participants into 4 categories based on the frequency of egg consumption: no consumption or <1/week, 1/week, 2-4/week, and >4/week. Nutrient intakes were calculated by trained dietitians with a computer program based on Spanish food composition tables17-18. Finally, food and nutrient intakes were adjusted for total energy intake using the residuals method19.

Assessment of other variables

The baseline questionnaire also collected information on socio-demographic variables, anthropometric characteristics, medical and family history, lifestyle and health-related habits and obstetric history for women. A specific questionnaire previously validated in Spain20 was also completed at baseline to assess the time spent during leisure-time in 17 different activities. A multiple of the resting metabolic rate (MET score) was assigned to each leisure-time activity21,22,23. We calculated for each participant a value of overall weekly MET-hours. Thus, taking also into account the weekly time resting metabolic rate (MET score) was assigned to each leisure-time in 17 different activities. A multiple of the completed at baseline to assess the time spent during leisure-time activity, we calculated for each participant a value of overall weekly MET-hours.

Assessment of diabetes

The baseline and follow-up questionnaires asked the participants whether they had received a medical diagnosis of diabetes, as well as the date of diagnosis. Participants were considered to have diabetes at baseline if they reported a medical diagnosis of diabetes or if they were on treatment with insulin and/or oral antidiabetic agents. When we observed a probable case of new onset diabetes in the follow-up questionnaires, we sent an additional questionnaire requesting more information such as date of diagnosis, symptoms of hyperglycemia, fasting glucose levels, figures of glycated hemoglobin, levels of glucose after an oral glucose tolerance test, treatment used for diabetes and type of diabetes. An expert panel of physicians, blinded to the information on diet and risk factors, adjudicated the events by reviewing medical records applying the diagnostic criteria issued by the American Diabetes Association4.

Incident cases of diabetes were defined as those participants without a diagnosis of diabetes at baseline, who 1) reported a physician’s diagnosis of diabetes in a follow-up questionnaire, 2) and completed and returned an additional questionnaire with written confirmation and medical records detailing the diagnosis, 3) and a team of medical doctors of the SUN project, blinded to the dietary exposure of the participant, reviewed their medical information and adjudicated the event as type 2 diabetes. The criteria of the American Diabetes Association were used to adjudicate these events22. We excluded cases of diabetes other than type 2 diabetes.

Statistical analysis

Chi-square tests or ANOVA were used to compare proportions or means, respectively. We estimated odds ratios (OR) of incident type 2 diabetes across categories of baseline egg consumption and their 95% confidence intervals (CI) for the risk of incident diabetes using multivariable logistic regression.

We fitted three multivariable-adjusted models controlling for the following baseline factors: a) age (continuous), sex, and total energy intake (continuous), b) additionally adjusting for adherence to the Mediterranean food pattern (continuous)4,26, and c) additionally adjusting for alcohol intake (continuous), BMI (Kg/m2, continuous), smoking status (never smoker, ex-smoker and current smoker), physical activity during leisure-time (MET-hours/week, continuous), family history of diabetes (yes/no), self-reported hypercholesterolemia (yes/no), self-reported cardiovascular disease (yes/no), and self-reported hypertension (yes/no). The lowest category of egg consumption was considered as the reference category.

A number of sensitivity analyses were performed: a) categorizing egg consumption into 5 categories instead of four, b) assigning the value 0 egg consumption to missing values (n=254) in the egg consumption variable, c) excluding those participants who had prevalent cardiovascular disease or cancer at baseline; d) excluding subjects who were following a special diet at baseline and e) including in the outcome also the incident cases of gestational diabetes (n=18).

All P values are two-tailed and statistical significance was set at P <0.05. We used SPSS version 15.0 (SPSS Inc., Chicago, Illinois, USA) for all analyses.

Results

The mean age of participants at baseline was 38.5 years (range: 20 to 90 years) and the median egg consumption was 3 units/week. The median follow-up was 6.6 years (mean=6.3 years). During the follow-up period, 91 new cases of diabetes were confirmed.

Baseline characteristics of the participants according to categories of egg consumption are presented in table I.
Participants belonging to the lowest category of egg consumption were more likely to be older, female and ex-smokers and reported a higher frequency of hypertension, cardiovascular diseases, and hypercholesterolemia at baseline. These subjects presented also higher intakes of carbohydrate and fiber and a lower intake of total energy, fat, polyunsaturated and monounsaturated fatty acids, and cholesterol.

On the other hand, subjects in the highest category of egg consumption were more likely to be current smokers, physically active, and with lower adherence to the Mediterranean diet.

When we assessed the risk of diabetes according to the baseline consumption of egg after adjustment for age, sex, total energy intake, adherence to a Mediterranean food pattern and for several diabetes risk factors (table II), higher egg consumption was non-significantly associated with a lower risk for the development of diabetes. The OR for diabetes comparing participants consuming >4 eggs/week versus those consuming <1 egg/week was 0.7 (95% CI, 0.3-1.7).

However, in the multivariable 2 model, adjusted for age, sex, total energy intake and for adherence to the Mediterranean food pattern, consumption of 2-4 eggs per week (but not > 4 eggs/week) was associated with lower risk of diabetes (HR 0.5; 95% CI: 0.3, 0.9) versus consuming <1 egg/week.

When we performed the sensitivity analyses dividing the highest intake category (>4 eggs/week) into two additional categories (5-6/week and ≥1/day) the ORs were: 0.5 (95% CI, 0.2-1.5) and 1.2 (95% CI, 0.4-3.2).

When we excluded persons with cancer or cardiovascular diseases at baseline or subjects following a special diet at baseline, we observed similar results (data not shown). Finally when we repeated the analysis assigning a value of 0 for egg consumption to participants with missing values in egg consumption or when incident cases of gestational diabetes were included in the definition of the outcome, the results were essentially the same (data not shown).

Table I

Baseline main characteristics of the 15,956 participants of the SUN cohort according to egg consumption (mean and standard deviations or percentages)

<table>
<thead>
<tr>
<th>Egg consumption</th>
<th>< 1 egg/week</th>
<th>1 egg/week</th>
<th>2-4 eggs/week</th>
<th>>4 eggs/week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>41.8 (13.5)</td>
<td>38.7 (12.0)</td>
<td>38.0 (11.8)</td>
<td>38.0 (12.0)</td>
</tr>
<tr>
<td>Baseline BMI (kg/m²)</td>
<td>23.9 (3.8)</td>
<td>23.4 (3.5)</td>
<td>23.4 (3.4)</td>
<td>24.0 (3.4)</td>
</tr>
<tr>
<td>Baseline weight (kg)</td>
<td>68.0 (14.2)</td>
<td>66.3 (13.5)</td>
<td>66.9 (13.3)</td>
<td>70.2 (13.6)</td>
</tr>
<tr>
<td>Physical activity during leisure time (METs-h/week)</td>
<td>20.3 (21.0)</td>
<td>20.78 (22.5)</td>
<td>21.1 (21.6)</td>
<td>22.7 (24.6)</td>
</tr>
<tr>
<td>Men (%)</td>
<td>42.3</td>
<td>36.2</td>
<td>39.0</td>
<td>55.6</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex-smoker (%)</td>
<td>35.1</td>
<td>30.7</td>
<td>29.0</td>
<td>28.0</td>
</tr>
<tr>
<td>Current smoker (%)</td>
<td>22.2</td>
<td>22.1</td>
<td>21.4</td>
<td>23.9</td>
</tr>
<tr>
<td>Hypertension at baseline (%)</td>
<td>14.7</td>
<td>11.2</td>
<td>9.7</td>
<td>10.3</td>
</tr>
<tr>
<td>Cardiovascular disease at baseline (%)</td>
<td>2.7</td>
<td>0.9</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Hypercholesterolemia at baseline (%)</td>
<td>28.0</td>
<td>20.9</td>
<td>15.2</td>
<td>11.2</td>
</tr>
<tr>
<td>Following a special diet at baseline (%)</td>
<td>13.9</td>
<td>8.7</td>
<td>6.8</td>
<td>5.2</td>
</tr>
<tr>
<td>Mediterranean Diet Score (Trichopoulou et al)</td>
<td>4.4 (1.8)</td>
<td>4.3 (1.8)</td>
<td>4.2 (1.8)</td>
<td>3.9 (1.8)</td>
</tr>
<tr>
<td>Total energy intake (kcal/day)</td>
<td>2,054 (634)</td>
<td>2,190 (601)</td>
<td>2,410 (586)</td>
<td>2,637 (587)</td>
</tr>
<tr>
<td>Carbohydrate intake (% total energy)</td>
<td>45.3 (8.4)</td>
<td>44.1 (7.6)</td>
<td>43.1 (7.1)</td>
<td>42.0 (7.1)</td>
</tr>
<tr>
<td>Protein intake (% total energy)</td>
<td>18.2 (3.7)</td>
<td>18.3 (3.4)</td>
<td>18.1 (3.1)</td>
<td>18.0 (2.9)</td>
</tr>
<tr>
<td>Fat intake (% total energy)</td>
<td>34.2 (7.4)</td>
<td>35.6 (6.6)</td>
<td>36.8 (6.3)</td>
<td>37.9 (6.2)</td>
</tr>
<tr>
<td>Polyunsaturated fatty acid intake (% total energy)</td>
<td>4.9 (1.7)</td>
<td>5.0 (1.5)</td>
<td>5.2 (1.5)</td>
<td>5.4 (1.5)</td>
</tr>
<tr>
<td>Saturated fatty acid intake (% total energy)</td>
<td>11.3 (3.7)</td>
<td>12.2 (3.5)</td>
<td>12.6 (3.0)</td>
<td>13.2 (3.1)</td>
</tr>
<tr>
<td>Monounsaturated fatty acid intake (% total energy)</td>
<td>14.8 (4.1)</td>
<td>15.3 (3.7)</td>
<td>15.8 (3.6)</td>
<td>16.1 (3.5)</td>
</tr>
<tr>
<td>Cholesterol intake (mg/day)</td>
<td>283.2 (112.3)</td>
<td>337.6 (124.4)</td>
<td>433.7 (121.5)</td>
<td>583.2 (166.4)</td>
</tr>
<tr>
<td>Fiber intake (g/day)</td>
<td>30.3 (12.3)</td>
<td>28.6 (10.8)</td>
<td>27.0 (10.1)</td>
<td>24.3 (10.0)</td>
</tr>
<tr>
<td>Alcohol intake (g/day)</td>
<td>7.1 (9.6)</td>
<td>6.5 (9.4)</td>
<td>6.7 (10.1)</td>
<td>7.5 (11.8)</td>
</tr>
</tbody>
</table>

To our knowledge, no previous study has examined prospectively the association of egg consumption and risk of diabetes in a large free-living Mediterranean population. However, we found in a previous publication on this same cohort no association between egg consumption and the incidence of cardiovascular disease, a factor risk of diabetes. Our research suggests that egg consumption was not associated with the incidence of type 2 diabetes after controlling for age, gender and for the main known risk factors.
The inconsistencies observed between our results and the Chinese and American findings may be related to differences in characteristics of participants (e.g. the mean age was >53 years in the American study), in the dietary pattern or in the different follow-up of participants (20 years in the study of Djoussé and 6.6 years in our study). However, even our point estimate for the association was under the null value. In any case, it is possible that egg consumption might be associated with higher diabetes risk only at levels of consumption above 5 eggs/week and the small number of new cases at those levels of consumption in our cohort did not allow us to observe that association.

Although the potential biological mechanisms by which high egg consumption might influence the risk of type 2 diabetes are largely unknown (eggs are very poor in carbohydrates), there are different explanations that might account for the lack of association in our study. First, it could be thought that a low biological plausibility exists to support that a two years exposure might not be sufficient for revealing an association between a dietary habit and diabetes development. For this reason, we excluded participants with a follow-up period shorter than 4 years and repeated the analyses. The results showed a significant association between eating 2-4 eggs/week and a lower risk for diabetes, compared with consuming <1 egg/week: the ORs for that category was 0.50 (95 % CI, 0.26-0.95). Second, the individual response to dietary cholesterol is due to variability in genetic and nongenetic factors. Thus, a reduction of cholesterol intake only decreases the plasma total cholesterol levels in 30% of subjects. Therefore, the genetic background or some environmental factors of a specific population might explain different responses to dietary cholesterol intake regarding the risk of type 2 diabetes. Third, epidemiological evidence suggests that adherence to the Mediterranean dietary pattern is associated with a significant reduction in the risk of developing type 2 diabetes or cardiovascular disease. In particular, some specific components of Mediterranean diet (virgin olive oil, fruits, vegetables, nuts or whole grains) are likely to protect against insulin resistance.

Table II

<table>
<thead>
<tr>
<th>Egg consumption</th>
<th>Incidence of diabetes</th>
<th>Odds Ratios (ORs) for incident diabetes according to categories of egg consumption in the SUN cohort (n = 15,956)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>< 1/week</td>
<td>1 week</td>
</tr>
<tr>
<td></td>
<td>1,227</td>
<td>3,309</td>
</tr>
<tr>
<td></td>
<td>9,761</td>
<td>1,659</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n=15,956</th>
<th>2-4/week</th>
<th>>4 /week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (ref.)</td>
<td>0.5 (0.3-1.1)</td>
</tr>
<tr>
<td>Crude model</td>
<td>0.4 (0.2-0.7)**</td>
<td>0.5 (0.2-1.1)</td>
</tr>
<tr>
<td>Multivariable 1</td>
<td>1 (ref.)</td>
<td>0.7 (0.4-1.5)</td>
</tr>
<tr>
<td></td>
<td>0.5 (0.3-0.9)*</td>
<td>0.6 (0.2-1.3)</td>
</tr>
<tr>
<td>Multivariable 2</td>
<td>1 (ref.)</td>
<td>0.7 (0.4-1.4)</td>
</tr>
<tr>
<td></td>
<td>0.5 (0.3-0.9)*</td>
<td>0.5 (0.2-1.2)</td>
</tr>
<tr>
<td>Multivariable 3</td>
<td>1 (ref.)</td>
<td>0.9 (0.4-1.8)</td>
</tr>
<tr>
<td></td>
<td>0.6 (0.3-1.2)</td>
<td>0.7 (0.3-1.7)</td>
</tr>
</tbody>
</table>

*p<0.05 **p<0.01
Multivariable 1: adjusted for age (continuous), sex and total energy intake (continuous)
Multivariable 2: additionally adjusted for adherence to the Mediterranean food pattern (continuous)
Multivariable 3: additionally adjusted for alcohol intake, baseline BMI, smoking status, physical activity during leisure time, family history of diabetes, self-reported ECV, self-reported hypertension, self-reported hypercholesterolemia.
resistance and the metabolic syndrome. It could therefore happen that our participants, with moderate adherence to the Mediterranean dietary pattern, might be protected for diabetes mellitus, in front of a potential cause of diabetes like egg consumption. For example, it is common in the Mediterranean area to use abundant olive oil as culinary fat or for dressing various dishes. Thus, for example one of the most delicious dishes of our cuisine is the Spanish potato omelet. Fourth, some authors have suggested that total dietary cholesterol might be related to incident diabetes. Since we did not take into account sources of cholesterol other than egg consumption, these other sources might act as potential confounders in our analysis. However, we assessed the risk of diabetes according to baseline dietary cholesterol intake categorized in quartiles, and we found no association. And finally, in spite that eggs contain saturated fat and cholesterol that might increase the development of type 2 diabetes, they also contain other potentially beneficial nutrients, such as monounsaturated and polyunsaturated fatty acids that might prevent this disease.

Our study has some limitations. The number of incident cases of diabetes was small and in consequence the statistical power might have been limited to detect associations between eating eggs more frequently and an increase in type 2 diabetes. However, the number of new cases of diabetes in a young cohort (mean age is 38.5 years) with high absolute levels of consumption of typical foods in a Mediterranean diet, is expected to be low. Another limitation is related to the generalizability of our findings in a young cohort of university graduates that is a non-representative sample of the general Spanish population. However, there is no biological argument to suppose that their dietary behaviors, including egg consumption, could have a different influence on the incidence of diabetes due to socioeconomic and/or educational backgrounds. Indeed, a strong internal validity, related to the quality of the information provided by highly educated subjects, high retention rate, adjustment for potential confounders, and confirmation of incident cases using medical documentation, is the first step to support the external validity of our results.

As it might happen in any observational study, residual confounding cannot be totally excluded. However, we adjusted for known and suspected confounders, and we consider that residual confounding is unlikely.

Another potential limitation might be related to the potential measurement error in the FFQ that we used, which provides only subjective information. However, our FFQ has been repeatedly validated in Spain.

Finally, egg consumption might be underestimated since we only have considered the units of this food consumed, but not eggs or yolk contained in other products (e.g., pastries).

On the other hand, the prospective design of the study, the large sample size, a high response rate, long duration of follow-up, the control for a wide variety of potential confounders and the robustness of the findings in sensitivity analyses are major strengths of our study.

Conclusion

In conclusion, our data suggest that higher egg consumption was not associated with elevated risk for type 2 diabetes. Future studies on potential biological mechanisms that may explain the association between frequent egg consumption and type 2 diabetes are warranted. Finally, confirmation of these findings in other Mediterranean population is needed.

Acknowledgments

The authors would like to thank the enthusiastic collaboration and participation of the SUN cohort participants. We would also like to thank the other members of the SUN study Group: Alonso A, Benito S, de Irala J, De la Fuente C, Delgado-Rodriguez M, Guillén-Grima F, Krafa J, Llorca J, Lopez del Burgo C, Martí A, Martínez JA, Núñez-Córdoba JM, Pimenta A, Sánchez D, Sánchez-Villegas A, Serrano-Martínez M, Toledo E, Vázquez Z. We are also grateful to the members of the Department of Nutrition of Harvard School of Public Health (A. Ascherio, W. Willett, and FB Hu), who helped us design the SUN study.

Source of funding

The SUN study has received funding from the Instituto de Salud Carlos III, Official Agency of the Spanish Government for biomedical research (Grants PI01/0619, PI030678, PI040233, PI042241, PI050976, PI070240, PI070312, PI081943, PI080819, PI1002293, PI1002658, RD060045, and G03/140), the Ministerio de Sanidad, Política Social e Igualdad through the Plan Nacional de Drogas (2010/087) the Navarra Regional Government (36/2001, 43/2002, 41/2005, 36/2008) and the University of Navarra.

References