Merino, Jordi; Mateo-Gallego, Rocío; Plana, Nuria; Bea, Ana María; Ascaso, Juan; Lahoz, Carlos; Aranda, José Luis; On behalf of the Hypertriglyceridemic Registry of the Spanish Arteriosclerosis Society

LOW-FAT DAIRY PRODUCTS CONSUMPTION IS ASSOCIATED WITH LOWER TRIGLYCERIDE CONCENTRATIONS IN A SPANISH HYPERTRIGLYCERIDEMIC COHORT

Nutrición Hospitalaria, vol. 28, núm. 3, mayo-junio, 2013, pp. 927-933

Grupo Aula Médica
Madrid, España

Available in: http://www.redalyc.org/articulo.oa?id=309226242051
Low-fat dairy products consumption is associated with lower triglyceride concentrations in a Spanish hypertriglyceridemic cohort

Jordi Merino, Rocío Mateo-Gallego, Nuria Plana, Ana María Bea, Juan Ascaso, Carlos Lahoz, José Luis Aranda; On behalf of the Hypertriglyceridemic Registry of the Spanish Arteriosclerosis Society**

Abstract

Introduction: The first line of treatment for hypertriglyceridemic (HTG) includes a well-balanced diet, although the association of dietary components with triglyceride (TG) concentrations in hypertriglyceridemic patients is not fully understood.

Objective: To describe the main dietary patterns in a cohort of hypertriglyceridemic patients and to evaluate the association between dietary components and TG levels.

Methods: This multicentre cross-sectional study included subjects (n = 1,394) with HTG (TG ≥ 2.25 mmol/L) visiting lipid units affiliated with the Spanish Atherosclerosis Society. A validated 14-item food questionnaire was performed to assess diet. Clinical, anthropometry and biochemical parameters were also obtained.

Results: Two dietary patterns were defined a posteriori by cluster analysis. Patients following the “prudent dietary pattern” (predominantly fish, fruits, vegetables, low-fat dairy and legumes) had lower TG levels than those with the “western dietary pattern” (predominantly red and processed meat products, alcohol, cakes and pastries and sugar) (3.51 ± 2.41 vs. 3.96 ± 3.61 mmol/L, P = 0.002). In a multivariate test, low-fat dairy products (B: -0.089; 95% IC: -16.1, -3.1, P = 0.004) and alcohol intake (B: 0.070; 95%
IC: 1.1, 13.1, \(P = 0.022 \) were significantly associated with TG concentrations independently of potential confounders.

Conclusions: Mediterranean dietary pattern including low-fat dairy products and abstaining from alcohol intake is highly associated with lower TG concentration in hypertriglyceridemic patients even under lipiden-lowering treatment. The reinforcement in nutritional counselling mainly in these food groups should be done and further specifically studies about the direct association of these and other dietary groups should be carried out to the development of more effective nutritional recommendations.

(\textit{Nutr Hosp.} 2013;28:927-933)

DOI:10.3305/nh.2013.28.3.6363

Key words: Low-fat dairy products. Triglycerides. Hypertriglyceridemic. Dietary patterns. Alcohol.

Abbreviations

- BMI: Body mass index.
- DM2: Type 2 diabetes mellitus.
- GGT: Gamma-glutamyl transpeptidase.
- GIP: Glucose-dependent insulino-trrophic polypeptide.
- GLP-1: Glucagon-like peptide-1.
- GOT: Alanine aminotransferase.
- GPT: Aspartate transaminase.
- HDLc: High density lipoprotein cholesterol.
- HTG: Hypertriglyceridemic.
- MS: Metabolic syndrome
- TG: Tryglicerides.

Introduction

The association between elevated triglycerides (TG) levels and cardiovascular disease has been widely established.\(^1\) Hypertriglyceridemic (HTG) is a common lipid metabolism disorder with a high prevalence in the Spanish population (at least 8% in middle-aged male workers and 31% in primary care outpatients).\(^1\) HTG is a multifactorial disease with an important interaction between genetic and environmental factors, especially with overweight, obesity, peripheral insulin resistance and metabolic syndrome (MS).\(^6\) The first line treatment for HTG includes the promotion of a healthy lifestyle including daily physical activity, normal body weight and a well-balanced diet.\(^6\) It is known that certain macronutrients and food groups, such as carbohydrates, fat or alcohol, increase TG concentration, however, the potential impact of the dietary patterns and the association between different dietary components in subjects with HTG is unknown.\(^1\)

The Spanish Atherosclerosis Society created in 2007 the Spanish Hypertriglyceridemia Registry including data from affiliated lipid units throughout Spain.

Therefore, the objective of the present study was to describe the main dietary patterns of this group of patients and to evaluate the possible association between dietary components and TG levels.

Methods

Study design

A detailed description of the study has been previously published.\(^1\) Briefly, the study included cross-sectional data from the Spanish Hypertriglyceridemia Registry of the Spanish Atherosclerosis Society where patients aged \(\geq \) 18 years of both genders referred to the lipid units belonging to this Society for the screening and treatment of HTG were included. HTG was defined as plasma levels of TG \(\geq 2.25 \) mmol/L in the first fasting blood sample tested in the lipid unit. HTG aetiology was defined by medical criteria and it was classified in: primary (hypercholesterolemia, familial combined hyperlipidemia, familial hypertriglyceridemia and dysbetalipoproteinemia), and secondary (to alcohol, MS, type 2 diabetes (DM2) or other causes). The study was approved by the Ethics Committee of the Carlos III Hospital (Madrid, Spain) and by the other participant hospitals in the study.

Lifestyle parameters

Patients were asked about tobacco consumption, physical activity and a dietary assessment was performed. Physical activity evaluation included work activity and leisure-time activity questions with a score from 0 to 4, being 0 the most sedentary level. The short food questionnaire was developed by the Spanish Hypertriglyceridemia Registry and included 14 questions (yes/no) about the frequency of the main foods.
consumption based on Mediterranean dietary pattern. The food questionnaire was validated in 63 consecutive
patients attending to the lipids units of Reus and Zaragoza comparing to the validated 134-items food
frequency questionnaire used in PREDIMED trial and a high concordance was observed between both
methods. All items showed a kappa index upper than 0.75 with a mean concordance index of 0.722. The
strongest concordance was observed in added sugar variable with a kappa of 0.876. Daily intake of low-fat
dairy showed a concordance of 0.747 between data included in both registers. Alcohol intake was separ-
ately registered including the total intake and the kind of beverage consumed during a week.

Clinical and laboratory determinations

Demographic, medical treatment and personal and family background data (coronary disease, cerebrovascular
disease, peripheral artery disease, hypertension, diabetes and smoking habits) were registered. Clinical
and anthropometric data involved weight, height, calculated body mass index (BMI), waist circumference
and blood pressure. The presence of metabolic syndrome was registered, according to The National
Cholesterol Education Program (Adult Treatment Panel III) criteria. Laboratory analyses were locally
performed in the lipid units in accordance with standardized methods. Analyses of total cholesterol, TG, high
density lipoprotein cholesterol (HDLc), glycaemia, alanine aminotransferase (GOT), aspartate transami-
nase (GPT), gamma-glutamyl transpeptidase (GGT) were performed using enzymatic and turbidimetric
assays. When plasma TG concentration was > 4.52
mmol/L, LDLc was calculated by using the Friedewald formula.

Statistical analysis

Normality distribution of variables was assessed with the Kolmogorov-Smirnov test. Differences in
anthropometrical or biochemical data were analyzed using the Kruskall-Wallis test or chi-squared test when
indicated. To identify major baseline dietary patterns of subjects based on the similar diets we used a two-step cluster analysis with Schwarz Baye-
sian criteria. Unadjusted and adjusted lineal stepwise logistic regression models were performed to determin-
ate predictors of TG concentrations in all of the participants including TG levels as dependent variable and
the 14 items of the food questionnaire plus alcohol intake as independent ones. Adjusted factors were age,
gender, BMI, presence of type 2 diabetes mellitus, HTG aetiology, lipid-lowering drugs, physical activity
level and tobacco consumption. P-values were calculated as two-sided; a p-value of less than 0.05 was
considered statistically significant. SPSS version 18.0 (SPSS Inc., Chicago, IL) was used for all statistical
analyses.

Results

Dietary patterns

Participants were classified a posteriori into two major dietary patterns according to 14 items data using
a cluster analysis. The cluster labelled “prudent dietary pattern” included daily intake of fruits, vegetables and
low-fat dairy products, three or more servings a week of fish and two or more servings a week of legumes (n =
682). The cluster labelled “western dietary pattern” included daily intake of sugar, daily alcohol, consump-
tion of red meat and processed meat products (more than two servings a week of each one) and cakes,
pastries and other in baked goods with added sugar more than once a week, (n = 557). Daily consumption
of olive oil and salt were closely related in the two dietary patterns. Furthermore, consumption of eggs
(more than 3 units a week), nuts (two or more servings a week) and crisps or other snacks more than once a
week were excluded from both dietary patterns. Loading factors of food across these major food
patterns are presented in table I.

Clinical and biochemical characteristics
between dietary patterns

Anthropometric, demographic and biochemical differences according to dietary patterns (prudent
dietary pattern and western dietary pattern) are shown in table II. Those subjects following a prudent dietary
pattern had significantly lower TG levels compared to those with a western dietary pattern subjects (3.51 ± 2.41
vs. 3.96 ± 3.61 mmol/L, P = 0.002). HDLc was higher in participants with the prudent dietary pattern (1.04 ± 0.36
vs. 0.98 ± 0.34 mmol/L, P = 0.034) as well as glycaemia
(5.83 ± 2.00 vs. 5.50 ± 1.55 mmol/L, P = 0.001). In the
prudent dietary pattern study group, there were more
patients with DM2 (28.0 vs. 17.8%, P < 0.001), primary
HTG (60.7 vs. 52.0%, P = 0.003) and MS (65.2 vs.
63.8%, P = 0.019) than in the western dietary pattern
group. Moreover, the percentage of active smokers (44.5
vs. 27.5%, P < 0.001) and sedentary lifestyle (83.7 vs.
70.5%, P < 0.001) were higher in individuals following
the western dietary pattern compared with those patients
with the prudent dietary pattern. When patients with
DM2 (n = 340) were excluded from the analysis, dif-
f erences in glycaemia between participants in the prudent
dietary pattern compared to participants in the western
dietary pattern (5.38 ± 0.94 vs. 5.33 ± 0.94 mmol/L, P = 0.385) were not observed and TG concentration
remained significantly lower for individuals with the
prudent dietary pattern (3.53 ± 2.31 vs. 3.79 ± 3.59
mmol/L, P = 0.041).
Table I

Factors loading and percentage of intake according to the dietary pattern*

<table>
<thead>
<tr>
<th>Food groups</th>
<th>Loading factor</th>
<th>Prudent diet</th>
<th>Western diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processed meat products</td>
<td>1</td>
<td>27.1</td>
<td>75</td>
</tr>
<tr>
<td>Fish</td>
<td>0.92</td>
<td>75.7</td>
<td>30</td>
</tr>
<tr>
<td>Cakes & pastries</td>
<td>0.84</td>
<td>13</td>
<td>53.7</td>
</tr>
<tr>
<td>Fruits</td>
<td>0.82</td>
<td>88.7</td>
<td>49.6</td>
</tr>
<tr>
<td>Crisps and other snacks</td>
<td>0.74</td>
<td>6.2</td>
<td>39.7</td>
</tr>
<tr>
<td>Low-fat dairy products</td>
<td>0.63</td>
<td>78.2</td>
<td>41.5</td>
</tr>
<tr>
<td>Sugar</td>
<td>0.56</td>
<td>35.1</td>
<td>74.7</td>
</tr>
<tr>
<td>Vegetables</td>
<td>0.56</td>
<td>70.4</td>
<td>34.8</td>
</tr>
<tr>
<td>Red meat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td>0.53</td>
<td>47.2</td>
<td>80.8</td>
</tr>
<tr>
<td>Olive oil</td>
<td>0.32</td>
<td>34.2</td>
<td>60.7</td>
</tr>
<tr>
<td>Salt</td>
<td>0.16</td>
<td>55</td>
<td>72.9</td>
</tr>
<tr>
<td>Legume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs</td>
<td>0.07</td>
<td>28.4</td>
<td>39.1</td>
</tr>
<tr>
<td>Nuts</td>
<td>0.01</td>
<td>18.9</td>
<td>15.8</td>
</tr>
</tbody>
</table>

*Percentage of patients that answered “yes” or “no” on each item according to the eating register. Those foods in bold have been included in the “prudent” dietary pattern and those that appear in bold and underlined in the “western” dietary pattern. Foods in cursive not discriminated between dietary patterns.

Table II

Clinical characteristics of the patients according to their dietary pattern*

<table>
<thead>
<tr>
<th></th>
<th>All (n = 1,394)</th>
<th>Prudent diet (n = 682)</th>
<th>Western diet (n = 557)</th>
<th>P between groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>50 ± 15</td>
<td>53 ± 15</td>
<td>47 ± 15</td>
<td><0.001</td>
</tr>
<tr>
<td>Gender, % men</td>
<td>74.1</td>
<td>64.7</td>
<td>83.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>38.8</td>
<td>41.3</td>
<td>36.8</td>
<td>0.128</td>
</tr>
<tr>
<td>DM2, %</td>
<td>23.2</td>
<td>28</td>
<td>17.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Active smokers, %</td>
<td>35.3</td>
<td>27.5</td>
<td>44.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Primary HTG, %</td>
<td>53.8</td>
<td>60.7</td>
<td>52</td>
<td>0.003</td>
</tr>
<tr>
<td>Metabolic Syndrome, %</td>
<td>64.6</td>
<td>65.2</td>
<td>63.8</td>
<td>0.019</td>
</tr>
<tr>
<td>Physical activity, %</td>
<td>76.9</td>
<td>70.5</td>
<td>83.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Lipid-lowering treatment, %</td>
<td>36.2</td>
<td>35.6</td>
<td>36.9</td>
<td>0.672</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>28.72 ± 5.32</td>
<td>28.61 ± 5.26</td>
<td>29.03 ± 5.57</td>
<td>0.127</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>99 ± 14</td>
<td>99 ± 14</td>
<td>100 ± 15</td>
<td>0.021</td>
</tr>
<tr>
<td>Systolic blood pressure, mm</td>
<td>132 ± 20</td>
<td>132 ± 20</td>
<td>131 ± 20</td>
<td>0.796</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>80 ± 15</td>
<td>80 ± 14</td>
<td>82 ± 14</td>
<td>0.112</td>
</tr>
<tr>
<td>Total cholesterol, mmol/L</td>
<td>6.29 ± 1.99</td>
<td>6.21 ± 2.04</td>
<td>6.32 ± 1.94</td>
<td>0.292</td>
</tr>
<tr>
<td>LDL cholesterol, mmol/L</td>
<td>3.67 ± 1.86</td>
<td>3.55 ± 1.94</td>
<td>3.70 ± 1.63</td>
<td>0.461</td>
</tr>
<tr>
<td>HDL cholesterol, mmol/L</td>
<td>1.01 ± 0.34</td>
<td>1.04 ± 0.36</td>
<td>0.98 ± 0.34</td>
<td>0.034</td>
</tr>
<tr>
<td>Triglycerides, mmol/L</td>
<td>3.69 ± 3.01</td>
<td>3.51 ± 2.41</td>
<td>3.96 ± 3.61</td>
<td>0.002</td>
</tr>
<tr>
<td>Glucose, mmol/L</td>
<td>5.66 ± 1.72</td>
<td>5.83 ± 2.00</td>
<td>5.50 ± 1.55</td>
<td>0.001</td>
</tr>
<tr>
<td>GOT, ukat/L</td>
<td>0.42 ± 0.22</td>
<td>0.40 ± 0.18</td>
<td>0.45 ± 0.23</td>
<td><0.001</td>
</tr>
<tr>
<td>GPT, ukat/L</td>
<td>0.51 ± 0.41</td>
<td>0.48 ± 0.38</td>
<td>0.55 ± 0.43</td>
<td><0.001</td>
</tr>
<tr>
<td>GGT, ukat/L</td>
<td>0.65 ± 0.72</td>
<td>0.60 ± 0.51</td>
<td>0.76 ± 0.95</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*Values are given as medians ± interquartile ranges for numerical variables or percentages for categorical ones. P differences between participants with prudent dietary pattern and with the western dietary pattern.
The multiple linear stepwise regression model was performed to assess the relation between food patterns and TG concentration. Unadjusted analysis showed significant associations between daily consumption of low-fat dairy (B: -0.092; 95% CI: -16.61, -3.95, \(P = 0.001 \)) and alcohol intake (B: 0.084; 95% CI: 2.98, 15.31, \(P = 0.004 \)) with TG levels. After adjusting the analysis by age, gender, BMI, presence of DM2, HTG aetiology, lipid-lowering drugs and physical activity level, the significance remained between low-fat dairy (B: -0.089; 95% CI: -16.1, -3.1, \(P = 0.004 \)) and alcohol intake (B: 0.070; 95% CI: 1.1, 13.1, \(P = 0.022 \)) (fig. 1).

Figure 2 shows the differences in TG according to each dietary pattern and the consumption of low-fat dairy products. Those patients in the western dietary pattern group with regular intake of low-fat dairy (n = 231) had lower TG concentration than individuals in the same group but without habitual consumption of low-fat dairy (n = 326) (3.65 ± 2.89 vs. 4.17 ± 4.11 mmol/L, \(P = 0.033 \)). The same results were observed in individuals in the prudent dietary pattern group; non-habitual consumers of low-fat dairy (n = 149) had higher TG levels than habitual consumers of low-fat dairy (n = 533), (3.61 ± 3.57 vs. 3.50 ± 2.14 mmol/L, \(P = 0.015 \)).

Discussion

This study was firstly aimed to determine the main dietary patterns in a group of hypertriglyceridaemic patients included in a Spanish Hypertriglyceridaemic Registry. Secondly, we aimed to evaluate the association between dietary components and TG concentrations in these patients. We mainly observed that a dietary pattern characterized by: daily consumption of fruits, vegetables and low-fat dairy products, three or more servings a week of fish and two or more servings a week of legumes was associated with lower TG concentrations. This pattern also included the lack of consumption of red and processed meat products more than two servings a week, daily intake of sugar and alcohol, and more than once a week of cakes, pastries and other in baked goods with added sugar.
Low-fat dairy products and alcohol intake were the main food groups related to lower TG levels in our study population. According with this observation, different studies have suggested a beneficial role of low-fat dairy consumption on MS and DM2, but not yet in TG concentrations.18-21 It is complex to define the physiologic effect of low-fat dairy products on TG concentrations, but several studies suggested that the incretinotropic effect of milk has been attributed to casein and other soluble whey proteins that increased the incretin hormones concentrations.22-25 It seems that the mechanism by which whey proteins induce hyperinsulinaemia involve two separate pathways: one connected to the significant increment in certain amino acids, such as branched chain amino acids; and other one connected through incretins, with glucose-dependent insulinotropic polypeptide (GIP) being particularly stimulated.26 It was reported that saturated fatty acids decrease postprandial biodisponibility of glucagon-like peptide-1 (GLP-1) and GIP suggesting that the benefit of low-fat dairy products in insulin-mediated metabolic pathways are not attributable in whole dairy products.24,27

The effect of alcohol in TG levels has been widely proved and our data provide more evidence on the matter in a specific well characterized cohort of hypertriglyceridaemic patients with a relative regression coefficient of alcohol of 7%.13,28,29 A meta-analysis including 42 studies the authors described that TG concentrations increased by 0.19 mg/dl per gram of alcohol consumed per day and 5.69 mg/dl (2.49 to 8.89) per 30 g consumed a day, representing a 5.9% increase over baseline30.

Olive oil and nuts are representative foods of the traditional Mediterranean dietary pattern, and their properties are associated with a lower risk of MS and cardiovascular disease.31-33 However, we did not observe a relationship between these foods and the prudent dietary pattern. It may be explained by the fact that the majority of participants in the study (97.1% in the prudent dietary pattern group and 84.4% in the western dietary pattern group) consumed olive oil every day and did not present a consumption of nuts two times per week (18.9% in prudent dietary pattern group and 15.8% in western dietary pattern group), thus this was not considered a discriminating factor for the different dietary patterns.

Another observation of this work is the larger number of subjects with MS, DM2 and primary HTG found in the group of the prudent dietary pattern. It might be explained by the possibility that these patients had probably received previous nutritional advice from a general practitioner before being referred to the lipids unit. Other explication of this observation is the reverse cause of cross-sectional studies, particularity in studies focused on lifestyle and cardiovascular risk factors.

One limitation of our study is its observational nature; therefore, we cannot conclude that increase in low-fat dairy intake reduces TG concentration in causal manner. We included in this study Spanish patients, therefore the extrapolation regarding the association of dietary patterns and foods with TG must be performed with caution in other study populations.

Another inherent limitation is related to the potential measurement error in the dietary assessment by using a short food questionnaire which provides subjective information.

Conclusions

This is the first study, to our knowledge, carried out in specific hypertriglyceridaemic patients evaluating the main food predictors of TG concentrations. We mainly observed that daily intake of low-fat dairy products are related to lower TG concentrations whereas alcohol consumption was directly associated, both in patients with primary or secondary HTG even if they were under lipid-lowering therapy. A dietary pattern including fruits and vegetables, legumes, fish and low-fat dairy seems to be a better dietary pattern associated with lower TG concentration. Intervenional studies in different aethiology of hypertriglyceridermic in hypertriglyceridermic subjects with specific foods are needed to elucidate and clarify the associations found in this study.

Acknowledgments

This work was supported by grants from Ferrer’s Group Cardiovascular Area wich had no role in any of the following: the study design; the collection, analysis, and the interpretation of data; the writing of the manuscript; and the decision to submit the manuscript for publication. We especially offer our acknowledge to J Fernandez-Ballart and R Ferré for the statistical assistance.

Conflict of interests, source of funding and authorship

The authors of the manuscript declare no conflicts of interest. J. Merino, R. Mateo-Gallego (complete CRF and wrote the manuscript) N. Plana, A. M. Bea, J. Ascaso (design the study and enrolled the participants) C Lahoz and J. Merino (performed the statistical analysis) J. L. Ascaso (reviewed the final version). We considered that the manuscript represents valid work, have reviewed the final version of the submitted manuscript, and approve it for publication. No significant amount of data reported in this manuscript has been published elsewhere or is under consideration for publication elsewhere. There are no affiliations with or involvement in any organisation or entity with a direct financial interest in the subject matter or materials discussed in this manuscript.
References

2. rosclerosis, Thrombosis and Vascular Biology; Council on Cardio-

3. vascular Nursing; Council on the Kidney in Cardiovascular Disease. Triglycerides and Cardiovascular Disease: A Sci-

4. entific Statement From the American Heart Association. Circula-

7. 14:00 13:00 Página 933

18. Lutsey PL, Steffen LM, Stevens J. Dietary intake and the deve-

19. lopment of the metabolic syndrome: the Atherosclerosis Risk in

22. Liu S, Choi HK, Ford E, Song Y, Klevak A, Buring JE, Manson J,

24. Larsson SC, Virtamo J, Wolk A. Dairy consumption and risk of

27. equivalent meals of milk and other food proteins: the role of

29. 1246-53.

30. Pal S, Radavelli-Bagatini S. The effects of whey protein on

31. cardiometabolic risk factors. Obes Rev 2012. [Epub ahead of

32. print]

33. Nilsson M, Holst JJ, Björkem IM. Metabolic effects of amino

35. 996-1004.

37. Bisset C. Effects of intraduodenal fatty acids on appetite, ant-

38. pyloroduodenal motility, and plasma CCK and GLP-1 in humans vary with their chain length. Am J Physiol Regul Integr

40. Liangpunsakul S. Relationship between alcohol intake and
dietary pattern: findings from NHANES III. World J Gastroen-

41. terol 2010; 16 (32): 4055-60.

42. Brinton EA. Effects of ethanol intake on lipoproteins. Curr

47. Casas-Agustench P, López-Uriarte P, Bulló M, Ros E, Cabré-

49. Ros E. Olive oil and CVD: accruing evidence of a protective