Mendonça Machado, N.; Gragnani, A.; Masako Ferreira, L.
Burns, metabolism and nutritional requirements
Grupo Aula Médica
Madrid, España

Available in: http://www.redalyc.org/articulo.oa?id=309226773005
Burns, metabolism and nutritional requirements

N. Mendonça Machado¹, A. Gragnani² and L. Masako Ferreira³

Abstract

Objectives: To review the nutritional evaluation in burned patient, considering the literature descriptions of nutritional evaluation and energy requirements of these patients.

Introduction: Thermal injury is the traumatic event with the highest metabolic response in critically ill patients. Various mathematical formulas have been developed to estimate nutritional requirements in burned patient. Indirect Calorimetry is the only method considered gold standard for measuring caloric expenditure.

Methods: A survey of the literature and data was collected based on official data bases, LILACS, EMBASE and PubMed.

Results: The metabolic changes involved in hypermetabolism are designed to supply energy to support immune function, brain activity, wound healing, and preservation of body tissues. Body weight is considered the easiest indicator and perhaps the best to assess the nutritional status. The most common formulas utilized in these patients are the Curreri, Pennisi, Schofield, Ireton-Jones, Harris-Benedict and the ASPEN recommendations. For children is the Mayes and World Health Organization formula. The majority of mathematical formulas overestimate the nutritional needs. The regular use of Indirect Calorimetry supplies adequate nutritional support to the burn patient.

Discussion: The traditional nutritional evaluation considers anthropometry, biochemical markers and estimation of nutritional requirements. The weight provides a basis for decisions that are established in the clinical context. Classic parameters can be adapted to intensive care environment.

Conclusions: The use of Indirect Calorimetry is crucial to ensure the safety of the nutritional support of burn patients and this should be widely encouraged.

DOI:10.3305/nh.2011.26.4.5217

Key words: Burns. Metabolism. Nutritional evaluation.
Abbreviations:

TBSA: Total Body Surface Area.
ESPEN: European Society for Clinical Nutrition and Metabolism.
NRS: Nutritional Risk Screening.
ASPEN: American Society for Parenteral and Enteral Nutrition.
IC: Indirect Calorimetry.

Introduction

Thermal injury is the traumatic event with the highest metabolic response in critically ill patients. This response is proportional to the size of the burn and damage continue years after the incident. Pathophysiological changes induce an acute inflammatory response, peripheral resistance to insulin and immunodeficiency.

The effect of continuous and prolonged secretion of cytokines on metabolism can lead to an unstable and hypercatabolic condition, causing multiple organ failure. Objective determination of nutritional needs should be accurately evaluated to ensure adequate nutrition for this condition. Knowledge of the patient’s profile is essential to prevent under-nutrition or over-nutrition and to minimize the complications of nutritional support.

Various mathematical formulas have been developed to estimate nutritional requirements in burned patient. The objective of this study is to review the nutritional evaluation in burned patient, considering the literature descriptions of nutritional evaluation and energy requirements of these patients.

Methods and materials

A survey of the literature and data was collected utilizing the key words burns, metabolism, nutritional evaluation and intensive care unit based on official data bases from LILACS, EMBASE and PubMed.

Metabolic response to burns injury

The patient essentially exhibits two phases: the first is referred to the ebb stage, in which the patient shows a deficit in plasma volume and insulin levels, initial signs of shock, hypothermia, lowered oxygen consumption and a decrease in overall metabolic rate. After this, the body undergoes hormonal modifications and, the ebb phase evolves to the flow phase. This stage is characterized by an increased concentration of catabolic hormones regulating the metabolic response. An increase in heart rate, body temperature, calorie consumption, proteolysis and neoglycogenesis is observed. These reactions result of metabolic events aimed at wound healing.

Hypermetabolism begins at about the fifth post-burn day and persists for close to twenty-four months, causing loss of lean body mass, reduced bone density and muscle weakness, among other events.

The intensive use of energy substrates predisposes the patient to malnutrition, which can cause a deficiency in the immune system, infections, an important nitrogen loss, delayed wound healing, prolonged hospital stay and mortality.

The catabolic state is maintained by the inflammatory events activated by the damaged tissues. The cytokines released from these tissues transform the modified basal metabolism and keep it altered for long periods after acute trauma.

Metabolic response in patients with more than 40% TBSA represents values above 100% of the resting metabolic rate.

Nutrition

Currently the concept that nutritional support plays an indisputable role in treating critically ill patient is well-accepted by scientific and health professional societies. The metabolic changes involved in hypermetabolism are designed to supply energy to support immune function, brain activity, wound healing and preservation of body tissues.

Tissue repair, accentuated and persistent muscle catabolism, and wound losses promote an increased protein needs after thermal injury. A clear recommendation is more problematic, although numerous investigators have discussed the increased protein needs of the thermally injured patient.

The molecular mechanism of the hypermetabolic response to burn injury is not completely understood. Studies indicate that approximately 60% of the increased metabolic response to burn injury is attributable to an increased protein synthesis, gluconeogenesis, urea production and substrate cycling.

Nutritional therapy aims: to offer favorable conditions for the establishment of the therapeutic plan, to

Fig. 1.—Resting metabolic rate of patients with more than 40% TBSA in thermal neutral temperature (33°C). Source: Herndon DN, Tompkins RG. Support of the metabolic response to burn injury. The Lancet. 2004;363:1895-902. Adapted.
offer energy, fluids and nutrients in adequate quantities to maintain vital functions and homeostasis, recover the activity immune system, reduce the risks of overfeeding, ensure offers of protein and energy necessary to minimize the protein catabolism and nitrogen loss. Metabolic transformations involving nutrients

Exogenous protein, while capable of enhancing protein synthesis, cannot totally abate muscle protein breakdown despite high nitrogen intakes. Protein breakdown may increase two to four times the usual levels, particularly in burn. Liver gluconeogenesis rises from 2.0 to 2.5 mg/kg body weight/min to 4.4 to 5.1 mg/kg body weight/min in the stressed patient. Proteins play the most important role throughout the entire wound-healing process.

Numerous studies have established that hypercatabolic and hypermetabolic states are associated with profound glutamine deprivation. A study conducted by Peng et al. (2005) found that when supplemented at a rate of 0.5 g/kg/day burned patients were capable of reversing the changes made during the burn.

Hyperglycemia from metabolic perspective results from an increase in hepatic gluconeogenesis and a resistance to the action of insulin to clear glucose into muscle.

Futile recycling of free fatty acids and triglycerides results of the enhanced lipolysis combined with fat oxidation.

Nutritional evaluation

Assessment is used to identify patients who would benefit from nutritional support and suggests a design for that therapy. In general, the same methods are used for other patients to conduct an assessment of nutritional status of critically ill patients, such as anthropometric and biochemical markers. However, nutritional assessment is limited in the burned patient.

Most nutritional assessment tools available in a clinical setting are confounded by the physiological elements of the inflammatory response. Despite their limitations, many of markers of nutritional status when used collectively can help in daily monitoring of nutritional support.

Table I

<table>
<thead>
<tr>
<th>Initial screening</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is BMI < 20.5?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has the patient lost weight within the last 3 months?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has the patient had a reduced dietary intake in the last week?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the patient severely ill? (e.g. in intensive therapy)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yes: If the answer is ‘Yes’ to any question, the screening in table II is performed. No: If the answer is ‘No’ to all questions, the patient is re-screened at weekly intervals. If the patient e.g. is scheduled for a major operation, a preventive nutritional care plan is considered to avoid the associated risk status.

<table>
<thead>
<tr>
<th>Final screening</th>
<th>Impaired nutritional status</th>
<th>Severity of disease (E increase in requirements)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent Score 0</td>
<td>Normal nutritional status</td>
<td>Absent Score 0 Normal nutritional requirements</td>
</tr>
<tr>
<td>Mild Score 1</td>
<td>Wt loss >5% in 3 mths or Food intake below 50–75% of normal requirement in preceding week</td>
<td>Mild Score 1 Hip fracture* Chronic patients, in particular with acute complications: cirrhosis*, COPD*, Chronic hemodialysis, diabetes, oncology</td>
</tr>
<tr>
<td>Moderate Score 2</td>
<td>Wt loss >5% in 2 mths or BMI 18.5-20.5 + impaired general condition or Food intake 25-60% of normal requirement in preceding week</td>
<td>Moderate Score 2 Major abdominal surgery* Stroke* Severe pneumonia, hematologic Malignancy</td>
</tr>
<tr>
<td>Severe Score 3</td>
<td>Wt loss >5% in 1 mth (>15% in 3 mths) or BMI >18.5 + impaired general condition or Food intake b-25% of normal requirement in preceding week in preceding week.</td>
<td>Severe Score 3 Head injury* Bone marrow transplantation* Intensive care patients (APACHEI0)</td>
</tr>
</tbody>
</table>

Score | Score | Total score:
Score ≥ 3: the patient is nutritionally at-risk and a nutritional care plan is initiated.
Score < 3: weekly rescreening of the patient. If the patient e.g. is scheduled for a major operation, a preventive nutritional care plan is considered to avoid the associated risk status.
*indicates that a trial directly supports the categorization of patients with that diagnosis.
Table II

Description of peculiarities of burned patient that must be constantly monitored with the anthropometric assessment

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Restrictions</th>
<th>Clinical Relevance</th>
<th>Method</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>It is affected by the presence of edema in burned patient and is a difficult variable to be monitored because of the patient’s inability to walk by their clinical condition or bedridden for medical advice.</td>
<td>Provides monitoring of nutritional status of the patient while showing a simplified and general condition of the body compartments. This measure serves as a foundation of nutritional status and facilitates the monitoring during hospitalization.</td>
<td>Measuring with the aid of balance.</td>
<td>Biweekly during the acute phase and once a week during the convalescence.</td>
</tr>
<tr>
<td>Height</td>
<td>In some cases the patient may not want to cooperate or be unable to assist with measuring.</td>
<td>Assists in the investigation of nutritional status by BMI nutritional needs.</td>
<td>The measurement can be performed with the patient in a supine position with the aid of a fixed scale or tape measure properly.</td>
<td>On admission.</td>
</tr>
<tr>
<td>BMI (Body Mass Index)</td>
<td>May overestimate the nutritional status of patients with edema.</td>
<td>It is a noninvasive and practical tool for assessing nutritional status. The use of BMI is considered a good method of evaluation. Rates below 20 kg/m² are indicative of malnutrition and are associated with significant increase in mortality in different types of patient.</td>
<td>Mathematical formula: Weight/height². * Always consider the presence or absence of edema.</td>
<td>Weekly.</td>
</tr>
<tr>
<td>Evaluation of the Temporal Muscle</td>
<td>It may be impossible in patients with facial burns due to use of occlusive dressings or edema.</td>
<td>Constitutes a practical and noninvasive evaluation. Demonstrates the reduced intake of solid food and therefore calories and macronutrients. It is considered a physical sign of malnutrition.</td>
<td>Symptomatic evaluation.</td>
<td>Monthly.</td>
</tr>
<tr>
<td>Nutritional Risk</td>
<td>No specific restrictions.</td>
<td>Important tool for improving the nutritional therapy.</td>
<td>Questionnaire and verification of nutritional status.</td>
<td>During all the hospital stay.</td>
</tr>
<tr>
<td>%TBSA</td>
<td>Depends on the evaluation of plastic surgery.</td>
<td>Whereas energy expenditure is proportional to the length of the burn, the monitoring of wound healing must be done by the nutritionist to avoid over-nutrition when the IC is not available. Practically speaking, the knowledge of %TBSA assists in monitoring and allows the application of predictive equations.</td>
<td>%TBSA Diagram, adaptation scheme Lund-Browder.</td>
<td>Weekly.</td>
</tr>
<tr>
<td>Fasting</td>
<td>No specific restrictions.</td>
<td>Observation can be used as a tool to assess dietary intake and the clinical course of patients when analyzed together.</td>
<td>Verification of patient records and with the team.</td>
<td>Daily.</td>
</tr>
<tr>
<td>Estimation of energy requirements</td>
<td>Predictive equations tend to estimate the energy expenditure above or below the real, predisposing the patient to over-nutrition or under-nutrition.</td>
<td>Assists in the determination of nutritional therapy when the IC is not available.</td>
<td>Mathematical formulas described in the literature.</td>
<td>Weekly.</td>
</tr>
<tr>
<td>Measurement of nutritional needs with IC</td>
<td>The high equipment cost prevents the wide use of it in clinical practice.</td>
<td>It is considered the only valid method for determining the nutritional requirements by measuring the oxygen consumption and carbon dioxide excretion.</td>
<td>Specific exam.</td>
<td>Weekly.</td>
</tr>
<tr>
<td>Assessment of nutritional intake</td>
<td>Depends on the patient’s memory when it is made orally.</td>
<td>It is important for the detection of nitrogen and calorie balance. Assists in detecting eating disorders in which an excessive food restriction is adopted.</td>
<td>Interview with the patient completing the 24-hour recall or food record diary.</td>
<td>Daily.</td>
</tr>
</tbody>
</table>

Adaptation of:

Nutritional risk is defined as “the chances of a better or worse outcome from disease or surgery according to actual or potential nutritional and metabolic status” by the European Society for Clinical Nutrition and Metabolism (ESPEN), Nutritional Risk Screening (NRS) 2002.2,4 The Nutritional Risk Screening predicts that all adult patients with over 20% of TBSA burned must receive specific and individualized nutritional support.3,4 Moreover, presence of edema are common.27

The increase in energetic expenditure significantly contributes to the development of malnutrition and predicts that all adult patients with over 20% of TBSA burned must receive specific and individualized nutritional support.3,4

The majority of mathematical formulas overestimate the nutritional needs of burn patient.4 It is difficult for a single formula to define individual nutritional needs with satisfactory precision, since all the factors involved in affecting metabolism are very complex. Predetermined equations to estimate energy expenditure are not recommended.3,14

Between 1970 and 1980 the most frequently used formula for estimating the nutritional needs of burn patients was developed by William Curreri.37,38 In 1976, Pennisi created a more comprehensive formula, designed for adults and children, estimating both the energetic needs in calories and protein needs in grams.39 Other formulas developed for critically ill and burn patients include Toronto,40 Schofield,41 Ireton-Jones,42 Harris-Benedict,43,44 and the American Society for Parenteral and Enteral Nutrition (ASPEN) recommendations.45 The most widely used formulas in children are those of Harris and Benedict, Mayes and the World Health Organization46 (table III). A study by a group of researchers analyzed the accuracy of these formulas in children comparing caloric expenditure determined by IC. All the formulas overestimate the patient’s caloric expenditure, predisposing him to over-nutrition.47

In order to compare the energy requirements suggested by the formulas most commonly used in adults, it was hypothesized a case of burn, and all formulas were employed. Hypothetically, was taken as reference for the use of formulas to a patient following conditions: 30 years old, weighing 72 kg, height 170 cm, 40% of TBSA, bedridden, with eight days of burning, body temperature of 37°C, breathing spontaneously and with average intake of 2,000 calories per day (fig. 2).

Over-nutrition predisposes the patient to hyperglycemia, overload of the respiratory system, steatosis and hyperosmolarity. When dealing with under-nutrition, the patient could suffer from malnutrition and subsequent reduction of immunocompetence, prolonged dependency on mechanical ventilation and delay in the healing processes, increased risk of infection, morbidity and mortality.48

In 1783, a study on the physiology of breathing – Mémoire sur la Chaleur, published by Lavoisier and Laplace for a periodical on the study of heat, generated the initial concepts of energy metabolism. The study explained the relationship between the inspired oxygen and the heat lost by the body.49

With respect to the study of energy metabolism, Indirect Calorimetry (IC) is the only research method considered gold standard for measuring caloric expenditure.50 Identifying the patient’s metabolic rate is essential to prevent deficits in energetic equilibrium. The regular use of IC supplies adequate nutritional support to the burn patient and is useful in the early detection of under-nutrition and over-nutrition.51

Due to its high cost, the use of IC for nutritional evaluation is infrequent.28,29 (table I).

Anthropometric variables

Body compartments and evolution of hydration status in burn patients invalidate anthropometric variables for nutritional evaluation.3 Body weight is considered the easiest indicator and perhaps the best to assess the nutritional status.3 Moreover, presence of edema are common.27

The anatomical point for the anthropometry measurements may be inaccessible and surgical procedures require days of bed rest. Semiologic analysis is important to detect the signs of depletion and some situations must be constantly monitored (table II).
Table III

Formulas for calculating approximate nutritional needs in burn cases. Electronic archive study, 2010

<table>
<thead>
<tr>
<th>Author</th>
<th>Gender</th>
<th>Formula</th>
</tr>
</thead>
</table>
| **Harris & Benedict** | Male | Estimated Energy Requirements: BMR x Activity factor x Injury factor
66 + (13.7 x weight in kg) + (5 x height in cm) + (6.8 x age)
665 + (9.6 x weight in kg) + (1.8 x height in cm) + (4.7 x age)
Activity factor
Confined to bed: 1.2
Minimal ambulation: 1.3
Injury factor
< 20% TBSA: 1.5
20-40% TBSA: 1.6
> 40% TBSA: 1.7 |
| | Female | |
| **Curreri** | For all patients | Estimated Energy Requirements:
(25 kcal x w) + (40 x %TBSA) |
| **Pennisi** | Adults | Estimated Energy Requirements:
Calories (20 x w) + (70 x %TBSA)
Protein (1 g x w) + (3 g x %TBSA) |
| | Children | Estimated Energy Requirements:
Calories (60 kcal x w) + (35 Kcal x %TBSA)
Protein (3 g x w) + (1 g x %TBSA) |
| **Toronto Formula** | For all patients | Estimated Energy Requirements:
[- 4343 + (10.5 x %TBSA) + (0.23 x kcal) + (0.84 x Harris Benedict)
+ (114 x T (°C)) - (4.5 x days post-burn) x Activity Factors
Activity factors non-ventilated:
Confined to bed: 1.2
Minimal ambulation: 1.3
Moderate act, 1.4
Ventilated-Dependent: 1.2 |
| **Modified Schofield** | Men | Estimated Energy Requirements: BMR x Injury factor
10-18 yrs = (0.074 x w) + 2.754
18-30 yrs = (0.063 x w) + 2.896
30-60 yrs = (0.048 x w) + 3.653
60 yrs = (0.049 x w) + 2.459
Women
10-18 yrs = (0.056 x w) + 2.898
18-30 yrs = (0.062 x w) + 2.036
30-60 yrs = (0.034 x w) + 3.538
> 60 yrs = (0.038 x w) + 2.755
Injury Factors:
< 10% TBSA = 1.2
11-20% TBSA = 1.3
21-30% TBSA = 1.5
31-50% TBSA = 1.8
> 50% TBSA = 2.0 |
| **ASZEN** | For all patients | 25 x 35 kcal/kg/day |
| **Ireton–Jones Formula** | For spontaneously breathing patients | Estimated Energy Requirements:
629 - (11 x yrs) + (25 x w) - (609 x O)
Ventilated-Dependent 1784 - (11 x yrs) + (25 x w) + (244 x S) + (239 x t) + (804 x B) |
| **WHO** | For Children
Male < 3 years
Male 3 to 10 years
Female < 3 years
Female 3 to 10 years | Estimated Energy Requirements:
Male < 3 years
(60.9 x weight in kg) + 54
Male 3 to 10 years
(22.7 x weight in kg) + 495
Female < 3 years
(61 x weight in kg) - 51
Female 3 to 10 years
(22.5 x weight in kg) + 499 |
| **Mayes** | For Children
Male & Female < 3 years
Male & Female 3 to 10 years | Estimated Energy Requirements:
105 + (68 x weight in kg) + (3.9 x %TBSA)
818 + (37.4 x weight in kg) + (9.3 x %TBSA) |

Kcals: calorie intake in past 24 hours
Harris Benedict: basal requirements in calories using the Harris Benedict formula with no stress factors or activity factors
T: body temperature in degree Celsius
Days post burn: the number of days after the burn injury is sustained using the day itself as day zero
w: weight in kg
yrs: age in years
S: Male = 1 / Female = 0
t: trauma present: 1 / No trauma present: 0
O: presence of obesity > 50% above IBW: 1 / absent: 0
B: burn present = 1 / No burn present = 0
been published. The rate of publications over the last three decades follows an irregular pattern.

Nutritional support

The American College of Chest Physicians suggests that enteral nutrition should be initiated as soon as possible after resuscitation. Burn patients frequently receive inadequate nutrition, initially because of hemodynamic instability and paralytic ileus. Eventually, nutrition is still inadequate due to required fasting for surgical procedures or diagnostic exams, the difficulty in chewing solid foods because of facial burns and due to anorexia and vomiting.

The introduction of nutritional support cannot suppress hypermetabolic and hypercatabolic responses produced by a burn. Nevertheless, simply providing enteral nutrients in the first 24 hours postburn, reduces the caloric deficit.

A study designed to compare the benefits of enteral nutrition when provided in different amounts was verified that the mortality of patients in the group receiving enteral nutrition in the proportion of 30 kcal/kg/day or more had lower mortality rates.

In general rule critically ill adults require around 2 g of protein/kg/day or approximately 15% to 20% of total caloric intake in 24 hours. The nutrients often used for Pharmacological nutrition in burned patients are glutamine, arginine and omega-3. These components, when supplied in quantities 2-7 times higher than those commonly eaten by healthy people, appear to have a beneficial effect on the pathophysiological changes induced by burns.

Discussion

Nutritional support has become a major focus in the care of severely burned patients to overcome clinical events. Malnutrition is an increasing problem in critically ill adults and can have a profound impact on outcomes. Given the ongoing challenges associated with nutrition screening, assessment, and support processes, this situation is perhaps not surprising. There is an unacceptably high prevalence of malnutrition in critically ill adults.

Nutrition support may reduce morbidity and mortality after severe thermal injury, but excessive caloric and protein intakes cannot overcome the catabolic response to critical illness.

Some patients do not exhibit the expected hypermetabolism response from their wounds. There are other individual factors that interfere with this response and advance the patient’s progress to hypometabolism. The chief factors responsible for this unusual response are: the use of analgesia and sedatives, the presence of malnutrition, hypothyroidism, shock or hemodynamic instability, cellular bio-energetic failure, hypothermia and advanced hepatitis.

This unusual response of some patient’s causes an increase in the risk of developing clinical complications related to over-nutrition, because this picture is “masked” by typical hypermetabolism of burn patients. Accurate determination of resting energy expenditure is necessary in patients receiving nutritional support to ensure that their energy needs are met and to avoid the complications associated with over or underfeeding.

Determining nutritional needs in burns becomes a challenge for nutritionists. The valorization of metabolic aspects of critical ill patient should be promoted with the inclusion of IC equipment. Nutritional evaluation should include a specific investigation, considering the clinical condition and patient’s exposure to situations that may interfere with nutritional support.

In clinical practice, the burned patient is constantly exposed to periods of fasting, mostly due execution of examinations or surgical procedures. However, what differs this from other patients in intensive care is the constant need to make bandages. The frequency of these procedures can be daily and also require fasting. Moreover, it is widely described in literature that some inflammatory markers induced anorexia in patients submitted to metabolic stress.

Keeping patients “fasted” to avoid aspiration complications when attempting extubation and a variety of other reasons generally delay enteral feeding. Several studies and reviews have shown that only about 75% of prescribed nutrients are actually delivered, with substantial variability.94

Even in a simple fasting, as a prolonged fasting, the body of an average adult loses about 60 to 70 g of protein (240 to 280 g of muscle tissue) per day. In severe trauma or sepsis, this loss can reach 150 to 200 g (600 to 1,000 g of muscle tissue) per day.

The constant development of nutritional assessment reveals a promising future for the discipline. The results of these investigations will allow professionals in the field to broaden knowledge and devise new treatment strategies, improving the quality of care. Nutrition occupies a central role in our lives and for this reason it should be approached seriously, especially in pathological states.

Conclusion

There are lists of possible markers for nutritional assessment, but a minimum set of standards should be established. The use of IC is crucial to ensuring the safety of the nutritional support of burn patients and this should be widely encouraged.

References

2. Waymack JP, Jenkins M, Gottschlich M, Alexander JW, War-

den GD. Effect of ibuprofen on the postburn hypermetabolic

3. Jeschke MG, McIak RP, Finnerty CC, Norbury WB, Gauglitz

GG, Kulp GA et al. Burn size determines the inflammatory

4. Dickerson RN, Tompkins RG. Support of the metabolic response

5. Sue Slone D. Nutritional support of the critically ill and injured

patients: in experience of a tertiary care hospital. Burns 2006; 32:

594-6.

6. Saffle RJ. What’s new in general surgery: burns and metabol-

7. Miles JM. Energy expenditure in hospitalized patients: implica-

8. Pereira JL, Vázquez L, Gámez-Cia MG, Parejo M, Obeng

MK et al. Persistence of muscle catabolism after severe burn.

9. De-Souza DA, Greene LJ. Pharmacological Nutrition After

10. Herndon DN, Tompkins RG. Support of the metabolic response

of burn patients: experience in a tertiary care hospital. Burns

2000; 233: 827-34.

11. Dickerson RN, Gervasio JM, Riley ML, Scott BJ, Daugherty

et al. Attenuation of Posttraumatic Muscle Catabolism and

Osteopenia by Long-Term Growth Hormone Therapy. Ann

Surg 2001; 233: 827-34.

12. Ramakrishnan MK, Sankar J, Venkatraman J, Ramesh J. Infecc-

ions in burn patients: in a tertiary care hospital. Burns. Burns 2006; 32:

90-4.

13. De-Souza DA, Greene LJ. Pharmacological Nutrition After

14. Mateos AGL, Aguilar TCF, Malpica AB. Multiple trauma and

burns. J Burn Care Rehabil 2005; 26 (Suppl. 1): 1SA-

44-5.

16. Pereira JL, Vázquez L, Gámez-Cia MG, Parejo M, Obeng

MK et al. Persistence of muscle catabolism after severe burn.

17. Dickerson RN, Gervasio JM, Riley ML, Scott BJ, Daugherty

et al. Attenuation of Posttraumatic Muscle Catabolism and

Osteopenia by Long-Term Growth Hormone Therapy. Ann

Surg 2001; 233: 827-34.

18. Dickerson RN. Estimating Energy and Protein Requirements of

burned patients. Burns 2000; 26 (Suppl. 1): 1SA-

44-5.

19. Yu YM, Tompkins RG, Ryan CM, Young VR. The metabolic

20. Herndon DN, Tompkins RG. Support of the metabolic response

of burn patients: experience in a tertiary care hospital. Burns

2000; 233: 827-34.

nutrition in severely burned patients. JPEN J Parenter Enteral Nutr

2005; XX (Suppl. 2): 298-306.

22. Fontoura CSM, Cruz DO, Londero LG, Vieira RM. Avaliação

nutricional de pacientes queimados. Rev Bras Terap Int 2006; 18 (3):

298-306.

23. Loclis H, Allison SP, Meier R, Pifrlkh M, Kondrup J, Schneider

S et al. Introduction to the ESPEN Guidelines on Enteral Nutri-

25. González JCM, Calebras-Fernández JM, Mateos AGL. Ame-

loration of the nutritional care of burned patients. Rev Med Chil

2006; 134: 1049-56.

27. De-Souza DA, Greene LJ. Pharmacological Nutrition After

28. De-Souza DA, Greene LJ. Pharmacological Nutrition After

29. De-Souza DA, Greene LJ. Pharmacological Nutrition After

30. De-Souza DA, Greene LJ. Pharmacological Nutrition After

31. De-Souza DA, Greene LJ. Pharmacological Nutrition After

32. De-Souza DA, Greene LJ. Pharmacological Nutrition After

33. De-Souza DA, Greene LJ. Pharmacological Nutrition After

34. De-Souza DA, Greene LJ. Pharmacological Nutrition After

35. De-Souza DA, Greene LJ. Pharmacological Nutrition After

57. De-Souza DA, Greene LJ. Correlação entre as alterações fisiopatológicas de pacientes queimados e o suporte nutricional. Revista Virtual de Medicina 1998; 1 (2).