Izquierdo-Gomez, Rocío; Martinez-Gómez, David; Tejero-Gonzalez, Carlos María; Cabanas-Sánchez, Verónica; Ruiz Ruiz, Jonathan; Veiga, Óscar L.

ARE POOR PHYSICAL FITNESS AND OBESITY TWO FEATURES OF THE ADOLESCENT WITH DOWN SYNDROME?

Nutrición Hospitalaria, vol. 28, núm. 4, julio-agosto, 2013, pp. 1348-1351

Grupo Aula Médica
España

Available in: http://www.redalyc.org/articulo.oa?id=309227544055
Comunicación breve

Are poor physical fitness and obesity two features of the adolescent with Down syndrome?

Rocío Izquierdo-Gomez1, David Martínez-Gómez1, Carlos María Tejero-Gonzalez1, Verónica Cabanas-Sánchez1, Jonathan Ruiz Ruiz2,3 and Óscar L. Veiga1

1Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid. Madrid. Spain.
2Department of Physical Education and Sport, School of Sport Sciences, University of Granada. Granada. Spain.
3Department of Biosciences and Nutrition at NOVUM, Unit for Preventive Nutrition, Karolinska Institutet. Huddinge. Sweden.

Abstract

Introduction: “Obesity” is considered a feature of youth with DS but whether “low physical fitness” is also a feature is unknown.

Objective: The aim of this case-control study was to compare the levels of fatness and fitness in adolescents with and without DS.

Methods: Participants included 17 (5 girls) adolescents with DS aged 12-18 years and a control group of 94 (45 girls) adolescents without DS aged 12-16 years. The ALPHA health-related fitness test battery for children and adolescents was selected to assess fatness and fitness in both groups.

Results: There were no differences in levels of fatness between groups (all P > 0.27). Adolescents with DS had lower levels of fitness in all the tests than adolescents without DS (all P < 0.001).

Conclusion: Adolescents with DS have similar levels of fatness and lower levels of fitness than their peers without DS.

(Nutr Hosp. 2013;28:1348-1351)
DOI:10.3305/nh.2013.28.4.6566

Key words: Obesity. Physical fitness. Down syndrome. Adolescents.

Abbreviations

DS: Down syndrome.
%BF: Percentage body fat.
ICC: Intraclass correlation coefficient.

Introduction

There is strong evidence regarding the detrimental effect of fatness on health across the lifespan.1 Physical fitness is also an important contributor to health, not only in adults but also in youth. Many studies aimed to determine the levels of fatness and fitness in adoles-

Correspondence: Óscar L. Veiga.
Departamento de Educación Física, Deporte y Motricidad Humana.
Universidad Autónoma de Madrid.
Ctra. de Colmenar, km. 15.
28049 Madrid. España.
E-mail: oscar.veiga@uam.es

Recibido: 11-III-2013.
Obesity and fitness in Down syndrome

Data were analyzed using an SPSS statistical software package (version 17.0, Chicago, IL, USA) for Macintosh. Mean ± SD were calculated for all variables. The Mann–Whitney U test was used to compare groups. Initially, differences between groups were examined unadjusted. Then, fatness and fitness variables were regressed onto age and sex using a linear regression process, and differences between groups were again calculated taking into account for any age- and sex-related differences in these variables.

Results

Among adolescents with DS, one girl was not able to perform the handgrip strength test (due to a disease in the hands) and the standing broad jump test. Also, it was not possible to measure skinfolds in one boy because he was uncomfortable with the caliper. Table I shows differences in levels of fatness and fitness between adolescents with or without DS. Adolescents with DS were older than adolescents without DS (P = 0.001). Adolescents without DS were heavier and taller than their peers with DS, even after controlling for sex and age. Regarding fatness variables, both body mass index (BMI) and waist circumference were similar in both groups (both P > 0.2). Significant differences were observed in triceps skinfold thickness (P = 0.012) and %BF (P = 0.029) using unadjusted values, however these differences disappeared once the analyses were controlled for sex and age (both P > 0.4). Adolescents without DS had significantly better scores in all fitness variables than adolescents with DS and these results did not change after controlling for age and sex (all P < 0.001).

Discussion

The results of the present study indicate that fatness levels were similar in adolescents with and without DS. In contrast, we observed that adolescents with DS had lower scores in all the study fitness tests than their peers without DS. These differences could be due to the clinical characteristics of this population (e.g. heart and respiratory diseases, muscle hypotonicity, hypermobility of the joints, short stature) that limit their physical performance.2,5

Although “obesity” is a term commonly used to describe physical characteristics in individuals with DS, nowadays this issue is not so clear, at least, in youth with DS. A narrative review about this issue by Gonzalez-Agüero et al. reported mixed results. The same group measured anthropometry variables, as well % BF by dual energy X-ray absorptiometry (DXA) and air-displacement plethysmography (ADP). They did not find differences between groups in levels of BMI, waist circumference, and %BF by both DXA and ADP, which concur with our study. Therefore obesity might
be not correct to characterize children and adolescents with DS.

Physical fitness research in adolescents with DS is scarce. In general, as shown in previous studies, it seems that adolescents with DS have lower levels of fitness. Cardiorespiratory fitness is, by far, the component of physical fitness more studied in young population with DS. In agreement with our results, several studies also found that youth with DS had lower levels of cardiorespiratory fitness than youth without DS or young with mental retardation. Available data suggested that it might be linked to both chronotropic incompetence and poor exercise economy. Chronotropic incompetence would limit peak cardiac output that produces lower peak oxygen consumption (VO$_{2peak}$), and exercise economy could be reducing due to biomechanical variables and clinical characteristics of these populations.

Less is known about the musculoskeletal fitness in this population, and to our knowledge, only one study showed that youth with DS may have lower muscle strength, in terms of mean peak torque for hip abduction and knee extension. The reason for the lower muscle strength could be related to physiological characteristics and a combination of low levels of physical activity and high sedentariness.

In relation to motor fitness, there are no studies comparing motor fitness with field-based tests in children or adolescents with and without DS, but some clinical studies reported that individuals with DS have low levels of agility, gait speed and coordination. Some clinical characteristics may be the cause of a delayed motor developmental and, consequently, a poor motor fitness in this population.

In conclusion, the main results of this study indicate that (i) adolescents with DS have similar levels of fatness than adolescents without DS; and (ii) adolescents with DS have lower levels of all the components of fitness than adolescents without DS. Hence, taking into consideration the protective impact of fitness on health, and regardless of fatness levels, well-designed interventions to build fitness in adolescents with DS are warranted. In addition, longitudinal studies are necessary to understand changes over time in fatness and fitness levels in youth with DS compared with their peers without DS.

Acknowledgements

The UP&DOWN study was supported by the Spanish Ministry of Economy and Competitiveness (DEP 2010-21662-C04). JRR was supported by a contract from the Spanish Ministry of Science and Innovation (RYC-2010-05957).

References