de Luis, Daniel; Izaola, Olatz; de la Fuente, Beatriz; Aller, R.
Effect of L-arginine supplementation on insulin resistance and adipocytokines levels in head and neck cancer non diabetic patients after surgery
Nutrición Hospitalaria, vol. 30, núm. 4, octubre, 2014, pp. 870-875
Grupo Aula Médica
Madrid, España

Available in: http://www.redalyc.org/articulo.oa?id=309232271023
Effect of l-arginine supplementation on insulin resistance and adipocytokines levels in head and neck cancer non diabetic patients after surgery

Daniel de Luis, Olatz Izaola, Beatriz de la Fuente and R. Aller


Abstract

Introduction: Previous studies have found that L-arginine induced beneficial effects over insulin resistance both in type 2 diabetes mellitus patients and healthy individuals. The aim of our study was to investigate whether an L-arginine enteral supplementation (20 g per day) in head and neck cancer patients could modify insulin resistance, leptin and adiponectin levels after surgery.

Material and Methods: At surgery 82 patients were randomly allocated to two groups: group I received an enteral diet supplements with a high dose of arginine (20g per day) and group II received an enteral formula without arginine. At basal time and on postoperative day 10, the following parameters were recorded: glucose, c-reactive protein, insulin, HOMA (homeostasis model assessment), leptin and adiponectin.

Results: Values of weight, body mass index, fat mass and fat free mass remained unchanged during the acute nutritional intervention in both groups. Insulin levels UI/L (-0.21+/-0.18) and HOMA units (-0.07+/-0.13) decreased in the arginine group. Adiponectin levels (+1.8+/-2.3ng/ml) increased in the arginine group.

Conclusion: Short-term enteral L-arginine therapy added to usual enteral nutrition of patients affected by head and neck cancer and surgery without diabetes mellitus type 2 is able to improve insulin resistance and adiponectin levels.

(Nutr Hosp. 2014;30:870-875)
DOI:10.3305/nh.2014.30.4.7864

Key words: Adiponectin, Arginine, Head and neck cancer, insulin resistance, leptin.

Correspondence: Dr. D. A de Luis
Head of Center of Investigation of Endocrinology and Nutrition.
Medicine School. Valladolid University.
C/ Los perales 16. (Urb Las Aceñas). Simancas.
47130 Valladolid.
Email: dadluis@yahoo.es

870
Introduction

The current view of adipose tissue is that of an active secretory organ, sending out adipokines that modulate insulin sensitivity, energy expenditure and inflammation. Adipokines are proteins produced mainly by adipose tissue. These molecules have been shown to be involved in the pathogenesis of the metabolic syndrome and cardiovascular disease in obese patients. Adiponectin is an adipocyte-derived collagen like protein identified through an extensive search of adipose tissue. Hypoadiponectinemia increased risk of coronary artery disease together with the presence of multiple risk factors, indicating that adiponectin is a key factor of the metabolic syndrome. Leptin is a protein secreted primarily from adipocytes. Leptin suppresses food intake and increase energy expenditure by enhancing thermogenesis and metabolic rate. Reports suggest that leptin contributes to atherosclerosis and cardiovascular disease in obese patients. Most studies of serum profile of adipokines have been conducted in cross sectional studies in obese patients. Most studies of serum profile of adipokines have been conducted in cross sectional studies in obese patients and in dietary intervention trials, which analyzed adipokine changes secondary to weight loss.

Moreover, nitric oxide, a secondary product of L-arginine, is involved in a wide variety of regulatory mechanisms of the cardiovascular system. Previous studies have found that L-arginine induced beneficial effects over insulin resistance both in type 2 diabetes mellitus patients and healthy individuals. Until now, few data have been available on the effects of L-arginine supplementation in ameliorating insulin resistance and serum adipokines changes after surgery. For example, in cardiopatic nondiabetic patients after an aortocoronary bypass, chronic oral L-arginine administration (6.4 g/d) for 6 months increased insulin sensitivity.

There is evidence that giving patients perioperative nutritional supplements with immunonutritional additives can favourably modulate the immune and inflammatory response both in vitro and in patients with trauma, burns or those undergoing oncological surgery. Arginine is the most common immunonutrient given to patients with head and neck cancer. The highest dose of arginine used in these clinical studies was 20 g per day with an improvement in wound complications. This high dose of arginine administered in these protocols could be used to evaluate the acute effect of a high dose of arginine on insulin resistance and adipokines changes induced by cancer surgery.

The aim of our study was to investigate whether an L-arginine enteral supplementation (20 g per day) in head and neck cancer patients could modify insulin resistance, leptin and adiponectin levels after surgery.

Material and methods

Patients and design

The study protocol was designed to study patients with head and neck cancer after a surgery in absence of type 2 diabetes mellitus or alteration of fasting glucose, diagnosed by fasting plasma glucose less than 110 mg/dl. Eighty two patients with head and neck cancer eligible for surgery that entered the Department of Otologyngology of our Univeristary Hospital participated in this protocol. The study has been approved by the local ethics committee and all patients signed an informed consent. All patients have a histologically proven squamous cell carcinoma of the oral cavity, larynx, oropharynx or hypopharynx and required major ablative surgery. Patients were excluded from the study if they were impaired renal function (serum creatinine concentration >2.5 mg/dl), ongoing infections, autoimmune disorders, steroids treatment, nutritional oral supplementation in previous 6 months and severely malnourished (weight loss >10% of body weight). Baseline studies on all patients consisted of complete history taking and physical examination. General assessment of nutritional status included measurements of height, body weight, body mass index (kg/m²).

Nutritional intervention

Patients were randomly assigned to one of the following treatment groups: group I (42 patients) received an enteral diet supplements with a high dose of L-arginine (20 g per day) and group II (40 patients) received an isocaloric, isonitrogenous enteral formula without L-arginine. Blinding of patients and dietitians involved in patient treatment was maintained. Table I shows the composition of the two enteral diets.

<table>
<thead>
<tr>
<th>Table I</th>
<th>Composition of enteral diet (per 1.000 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group I (High Dose)</td>
</tr>
<tr>
<td>Total energy(Kcal)</td>
<td>1.020</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>49.8</td>
</tr>
<tr>
<td>Free L-arginine</td>
<td>8</td>
</tr>
<tr>
<td>Total lipid (g)</td>
<td>48.6</td>
</tr>
<tr>
<td>W6/w3</td>
<td>5/1</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>10.18</td>
</tr>
<tr>
<td>a-linolenic acid</td>
<td>2.3</td>
</tr>
<tr>
<td>Carbohydrate (g)</td>
<td>135.8</td>
</tr>
<tr>
<td>Dietary fiber (g)</td>
<td>13.8</td>
</tr>
</tbody>
</table>

Dietary fiber: (oligofructose, inulin, soy polysaccharide, resistant starch, arabic gum, cellulose).

Enteral arginine and insulin resistance

Postoperatively, all patients were tube-fed for approximately 15 days, as is the standard hospital procedure. The infusion rate was progressively increased every 24 hrs until the daily nutritional goal (35 total kcal/kg; 1.7 g protein/kg) was reached, on postoperative day 4. All patients reached 100% of calculated requirements. No drop-outs were present in the study. The end point to discontinuing nutritional support was a minimum oral intake of 1700 cal day and 1 g/kg/d of protein with supplementation with a minimum of 10 days of enteral support.

Biochemical assays

At basal time and on postoperative day 10, the following parameters were recorded: glucose, c-reactive protein (CRP), insulin, HOMA (homeostasis model assessment), leptin and adiponectin. Plasma glucose levels were determined by using an automated glucose oxidase method (Glucose analyser 2, Beckman Instruments, Fullerton, California). Insulin was measured by enzymatic colorimetry (Insulin, WAKO Pure-Chemical Industries, Osaka, Japan) and the homeostasis model assessment for insulin sensitivity (HOMA) was calculated using these values. CRP was measured by immunoturbimetry (Roche Diagnostics GmbH, Mannheim, Germany), analytical sensitivity 0.5 mg/dl. Hemoglobine A1c levels were measured by using high-pressure liquid chromatography. Leptin was measured by ELISA (Diagnostic Systems Laboratories, Inc., Texas, USA) with a sensitivity of 0.05 ng/ml and a normal range of 10-100 ng/ml. Adiponectin was measured by ELISA (R&D systems, Inc., Mineapolis, USA) with a sensitivity of 0.246 ng/ml and a normal range of 865-21424 ng/ml.

Anthropometric measurements

Body weight was measured to an accuracy of 0.05 Kg and body mass index computed as body weight/ (height²). Waist (narrowest diameter between xiphoid process and iliac crest) and hip (widest diameter over greater trochanters) circumferences to derive waist-to-hip ratio (WHR) were measured, too. Tetrapolar body electrical bioimpedance was used to determine body composition.

Statistical analysis

Sample size was calculated to decrease 10% of insulin resistance with L-arginine administration with 80% power and 5% significance. To minimize the potential for introducing bias, all randomized patients were included in the comparisons, irrespective of whether or not and for how long they complied with their allocated regimen (intention-to-treat analysis). For descriptive purposes, we used median and standard deviation. The distribution of variables was analyzed with Kolmogorov-Smirnov test. Quantitative variables with normal distribution were analyzed with two tailed paired or unpaired Student’s t-test, as needed. Non-parametric variables were analyzed with the Friedman and Wilcoxon tests. A p-value under 0.05 was considered statistically significant. All analyses were performed using SPSS version 15.0 software (SPSS, Chicago, IL).

Results

82 patients were enrolled in the study. The mean age was 64.6±11.4 years (10 females (12.2%)/72 males (77.8%)). Basal HbA1c was 4.3±0.5%. There were 42 patients in the group I (high arginine-enhanced formula) and 40 patients in the control diet group II (no arginine-enhanced formula). Characteristics of the patients on enrollment were similar for the two groups, reflecting the homogeneity of the patient population under study. There were no significant intergroup differences with regard to gender, mean age, body weight, location and stage of tumor (Table II).

Eleven patients underwent resection of a tumor located in the oral cavity with unilateral or bilateral neck dissection; 71 patients underwent laryngectomy (total or partial) or pharyngo-laryngectomy, with the same distributions of surgery in group I and II (Table II).

As shown in table III, no significant intergroup differences in the trend of anthropometric parameters were detected. Values of weight, body mass index, fat mass and fat free mass remained unchanged during the acute nutritional intervention in both groups.

Table IV shows changes in insulin levels, HOMA and adipocitoquines. Insulin levels UI/L (-0.21±/-
DISCUSSION

To our knowledge, this is the first study evaluating the effects on insulin resistance, adiponectin and leptin levels of an acute high dose of L-arginine supplementation added on enteral nutrition as usual nutritional treatment in head and neck cancer patients after surgery. In particular, the present study demonstrated that L-arginine supplementation was able to improve both insulin resistance and adiponectin levels.

The beneficial effect of L-arginine on insulin resistance could be mediated by an increase in adiponectin levels, as previously reported (9). The direct effect of adiponectin on atherosclerosis was investigated by Kumada et al (17) who showed that adiponectin specifically increased tissue inhibitor of metalloproteinase-1, reducing vascular inflammation and delaying the development of atherosclerosis. With our data, a stimulating result of the present study is that 10 days of L-arginine supplementation at a dose of 20 g/d improved insulin resistance and insulin levels in a group of non diabetic patients submitted to head and neck cancer surgery. This data support a potential beneficial effect of L-arginine on insulin resistance in this type of patients. Previous studies have found that oral L-arginine supplementation improved insulin resistance, endothelial function, oxidative stress in type 2 diabetes mellitus patients (9,18).

As mentioned above, the beneficial effect of oral arginine administration on insulin resistance could be secondary to adiponectin increase. Adiponectin is thought to contribute to the regulation of insulin sensitivity (99).

<table>
<thead>
<tr>
<th>Table III</th>
<th>Changes in anthropometric parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>Baseline</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>Group I 72.0±12.8</td>
</tr>
<tr>
<td></td>
<td>Group II 70.4±15.7</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>Group I 25.1±5.3</td>
</tr>
<tr>
<td></td>
<td>Group II 24.7±4.2</td>
</tr>
<tr>
<td>Fat mass (kg)</td>
<td>Group I 16.0±9.2</td>
</tr>
<tr>
<td></td>
<td>Group II 15.4±8.8</td>
</tr>
<tr>
<td>Fat free mass (kg)</td>
<td>Group I 53.0±9.4</td>
</tr>
<tr>
<td></td>
<td>Group II 53.8±10.6</td>
</tr>
</tbody>
</table>

*(p<0.05) with baseline values.

0.18 and HOMA units (-0.07±0.13) decreased in the arginine group. Adiponectin levels (+1.8±2.3 ng/ml) increased in the arginine group, too.

<table>
<thead>
<tr>
<th>Table IV</th>
<th>Insulin resistance, homa and adipokines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>Baseline</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>Group I 93.9±10.9</td>
</tr>
<tr>
<td></td>
<td>Group II 94.8±11.2</td>
</tr>
<tr>
<td>Insulin (UI/L)</td>
<td>Group I 19.0±17.9</td>
</tr>
<tr>
<td></td>
<td>Group II 22.5±19.7</td>
</tr>
<tr>
<td>HOMA (Units)</td>
<td>Group I 0.37±0.16</td>
</tr>
<tr>
<td></td>
<td>Group II 0.32±0.09</td>
</tr>
<tr>
<td>Leptin (ng/ml)</td>
<td>Group I 11.1±15.8</td>
</tr>
<tr>
<td></td>
<td>Group II 9.7±14.6</td>
</tr>
<tr>
<td>Adiponectin (ng/ml)</td>
<td>Group I 7.8±3.8</td>
</tr>
<tr>
<td></td>
<td>Group II 9.2±6.1</td>
</tr>
<tr>
<td>C reactive protein (mg/dl)</td>
<td>Group I 9.1±7.2</td>
</tr>
<tr>
<td></td>
<td>Group II 10.3±6.9</td>
</tr>
</tbody>
</table>

*(p<0.05) with baseline values.

Homeostasis model assessment (HOMA) provides a powerful index of insulin resistance (IR) in epidemiological studies (20). Adiponectin and HOMA thus represent two different aspects of IR with opposite relations to this condition. Adiponectin accounts for ~0.02% of total plasma protein in humans, and its concentration is inversely associated with the risk of type 2 diabetes (21) and obesity (22). Moreover, hypoadiponectinemia is associated with hypertension (23), with circulating lipid levels (24), and with coronary artery disease (25). Consistent with these findings, a chronic inhibition of NO release by N-nitro-L-arginine methyl ester administration in rats induced a state of hypoadiponectinemia, suggesting that NO per se might modulate adiponectin release (26) and increasing NO synthesis secondary to oral arginine could modify adiponectin levels.

In a previous study (27), after a hypocaloric diet and exercise training program, fasting and postprandial glucose levels were normalized within 3 weeks, in an oral arginine enhanced protocol (8.3 g per day). However, this protocol was performed with obese diabetic patients and with a reduction of caloric intake. Our design showed that the beneficial effect on insulin resistance is only due to arginine because weight remained unchanged during enteral nutrition support. However, this improvement is very small and may not of clinical relevance, without a significant change in
glucose levels. Another limitation of this design is the determination of a single isolated determination of the insulin resistance after 10 days of administering arginine. Probably it would have been a need for further determinations, and an analysis of dose effect of arginine. It will therefore be necessary to design new work with different times and concentrations of arginine administered. Another limitation of our work is to use only HOMA as a measure of saturated insulin resistance, and the impossibility of performing a euglycemic clamp.

In conclusion, short-term enteral L-arginine therapy added to usual enteral nutrition of patients affected by head and neck cancer and surgery without diabetes mellitus type 2 is able to improve insulin resistance and adiponectin levels. However, further studies are needed to elucidate if this metabolic changes could be beneficial to this postsurgical population (28,29) with an enteral supplementation or to the general population with an oral supplementation regimen.

No conflict of interest

Statement of authorship. All authors have made substantial contributions to all of the following: the conception and design of the study, or acquisition of data, or analysis and interpretation of data, drafting the article or revising it critically for important intellectual content and final approval of the version to be submitted.

Acknowledgements section

D. A. de Luis designed the protocol and wrote the article. Olatz Izaola, realized nutritional evaluation. B. de la Fuente, realized laboratory evaluation. R Conde, realized laboratory evaluation. D Primo, realized laboratory evaluation. M Gonzalez realized laboratory evaluation.

References


