Zhao, Jinhong; Zhou, Yongkang; Wang, Shaosheng; Tu, Genjun; Tang, Xiaoniu; Wu, Xiaobing
Preliminary report on the intestinal parasites and their diversity in captive Chinese alligators
Nutrición Hospitalaria, vol. 31, núm. 2, febrero, 2015, pp. 813-819
Grupo Aula Médica
Madrid, España

Available in: http://www.redalyc.org/articulo.oa?id=309233495037
Abstract

Objective: Although intestinal parasites are commonly detected in either wild or farmed crocodiles in other parts of the world, yet few reports have ever been on the captive bred Chinese alligators (Alligator sinensis) since they are only distributed in the southern areas of the Yangtze River. The current work was undertaken to investigate the intestinal parasites and their diversity in the Chinese crocodylian species.

Methods: In May and October of 2013, we randomly collected a total of 328 fecal samples of the captive Chinese alligators in a breeding centre in south Anhui province.

Results: Three genera of protozoa (Entaoeba, Eimeria and Isospora), five genera of nematodes (Ascaris, Dujardinastracris, Capillaria, Toxocara and Strongyulus), two genera of trematodes (Echinostoma and Clonorchis) and two families of trematodes (Schistosomatidae and Cryptogonimidae) were identified, in which Dujardin Ascaris was the most prevalent and led to the highest infection rate (14.33%), and Entaoeba ranked the second (13.11%). The number of species, richness index, diversity index and evenness index were higher in July and August, and those indexes were relatively most in juvenile and sub-adult alligators.

Conclusions: Our findings suggest that the intestinal parasites infection was prevalent in captive Chinese alligators, and this condition requires our attention, whatever it is for controlling or preventing the intestinal parasite disease from spreading to humans or conservation of this endangered species.

(Nutr Hosp. 2015;31:813-819)
DOI:10.3305/nh.2015.31.2.8190

Key words: Intestinal parasites. Chinese alligators. Diversity, Anhui province.

INFORME PRELIMINAR SOBRE LOS PARÁSITOS INTESTINALES Y SU DIVERSIDAD EN CAIMANES CHINOS EN CAUTIVIDAD

Resumen

Objetivo: Aunque los parásitos intestinales son comúnmente detectados en los cocodrilos salvajes o en criados en cautividad en otras partes del mundo, existen muy pocos informes del caso concreto del caimán chino criado en cautividad (Alligator sinensis), ya que sólo están distribuidos en las zonas del sur del río Yangtze. El presente estudio fue realizado para investigar los parásitos intestinales y sus diversidad en las especies de cocodrilo chino. Métodos: En mayo y octubre de 2013, se recopilaron aleatoriamente un total de 328 muestras fécales de caimanes chinos en cautividad de un centro de cría en el sur de la provincia de Anhui. Resultados: Fueron identificados tres géneros de protozoos (Entaoeba, Eimeria e Isospora), cinco géneros de nematodos (Ascaris, Dujardin Ascaris, Capillaria, Toxocara y Strongyulus), dos géneros de trematodos (Echinostoma y Clonorchis) y dos familias de trematodos (Schistosomatidae y Cryptogonimidae), de los cuales la mayor prevalencia correspondió a Dujardin Ascaris y producían la mayor tasa de infección (14.33%); entaoeba se situó en el segundo puesto (13.11%). El número de especies, índice de riqueza, índice de diversidad y de equitatividad fue superior en los meses de julio y agosto, y éstos, relativamente más para caimanes jóvenes y sub-adultos.

Conclusión: Nuestros resultados apuntan la prevalencia de la infección por parásitos intestinales en caimanes chinos en cautividad y ello exige nuestra atención, ya sea para controlar o prevenirla la propagación de la enfermedad parasitaria intestinal a los seres humanos, o para la conservación de esta especie en peligro de extinción.

(Nutr Hosp. 2015;31:813-819)
DOI:10.3305/nh.2015.31.2.8190

Correspondence: Xiaobing Wu.
College of Life Sciences, Anhui Provincial Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui 241000, China.
E-mail: wxxb@mail.ahnu.edu.cn

Recibido: 7-X-2014.
Introduction

Animal parasitic disease has characteristics of easy infection and transmission diversity, and makes it to become the major disease to wildlife. Crocodiles, in common with other reptiles, usually harbor a wide variety of protozoa and metazoans external and internal parasites. In other parts of the world, information on the parasitic infections of crocodiles is richly available. There revealed the presence of eight helminthines (Acanthostomum americaniense, Telorchis sp. juv., Pseudoneodiplostomum groschafti sp. n., Dujardinascaris helicina, Contracaecum sp. Type 2 larvae, Micropleura sp., and Paratrichosoma recurvum) in the Morelet’s crocodile from the Lagoon of Celestún, Yucatan, Mexico. One species of pentastome (Sebekia oxyccephala), two species of nematodes (Dujardinascaris waltoni and Multicaecum tenuecolle), four species of trematodes (Polycoyle ornata, Acanthostomum coronarium, Archaeodiplostomum acetabulum and Pseudocrocodiliocola americaniense) and one species of hemogregarine (Haemogregarina crocodilnorum) were recovered in American alligators from South Carolina. There investigated the parasite infection of Alligator mississippiensis from 3 lakes in north-central Florida using a gastric lavage technique, and found four nematodes (Dujardinascaris waltoni, Orteppascaris antipini, Brevimulticaecum tenuecolle and larvae of Contracaecum sp.).

The Chinese alligator, Alligator sinensis Fauvel, 1879, a unique animal in China, is listed as a critically endangered species. Although recent progress has been made to ensure the species survival by captive-born means, yet there go threats from physique angular, loss of appetite, and a large number of death caused by digestive tract parasitizing of the nematodes or other artificial factors. Nevertheless, little is known about the parasitic fauna infecting the Chinese alligators, and such reports are rare, either. The only information in the literature regarding the parasitic fauna infecting Chinese alligators, and the parasitic infections of crocodiles is richly available from Wang et al. (2007), who collected fecal samples of reptiles from Chengdu Zoo, Sichuan, China, including snakes, turtles and crocodiles, and incidentally identified the cysts on amoeba in one fecal sample of captive Chinese alligators.

Unfortunately, little attention has ever paid on the follow-up study, even if the intestinal parasites are of great importance for the endangered Chinese alligator itself or the health of raisers in the breeding center. In order to understand the prevalence of the intestinal parasites in this species, we collected the fecal samples of Chinese alligators from May and October of 2013 in a captive breeding center in southern China, where the prevalence of intestinal parasites was examined. We used also to provide evidence for controlling the parasitic diseases in this species population and the safety of the feeders in breeding center.

Methods

Study site

Chinese alligator, one of the known living species of alligator, is native only to eastern China and primarily distributed in the middle and lower reaches of the Yangtze River and Taihu Lake. The present study was conducted at Anhui Research Center for Chinese Alligator Reproduction, namely Chinese Crocodile Lake, an important breeding center/facility in southern China and plays a vital role in conservation of A. sinensis. The Chinese Crocodile Lake was officially opened in 1979, and so far housed over 10,000 captive populations over the past decades and has been achieved concept zoo for tourists.

Fecal sample collection and examination

Collection of the fecal samples was carried out on every 15th day of the month from May to October in 2013, and the samples were sorted out from yearlings, juveniles, sub-adults and adults. Because the research centre is located in the subtropical humid monsoon climate zone, the Chinese alligator stays dormant from November to April the following year. Sample collection was performed in the morning under the assistance of the raisers. Once obtained, the samples were sorted and labeled separately to prevent contamination and mixing. All fecal samples were processed and examined by techniques of physiological saline direct smear, iodine stain, concentrated brine floatation and natural sedimentation, respectively, and were fixed in 4% formalin for preservation and made slides using mounting medium (neutral balsam) for observation.

Data processing

1. The Margalef’s richness index (R) was used to measure the biodiversity, where R represents the quantity of species within a community. The Margalef index was calculated from the equation $R=(S-1)/\ln N$, where S indicates the total number of species recorded, and N represents the total number of individuals in the sample.

2. The Pielou’s evenness index (J) was used to measure the biodiversity. The species evenness index was not positively relevant to species richness index, where J represents the evenness extent of species distribution instead of the quantity of species recorded. The Pielou index was calculated as $J=H/H_{max}$, where S denotes the total number of species in the community and H means the Shannon-Wiener diversity index.

3. The Shannon-Wiener’s diversity index (H) was used to measure the biodiversity, for it can estimate the evenness with which individuals of the
community are divided among the taxon present, particularly, for a given equitability, the index increases either as the species richness increases or species diversity increases. The Shannon-Wiener’s index calculated as $H=-\Sigma P_i \ln P_i$, where P_i denotes the proportion of individuals in the total species.

4. The Simpson’s dominance index (D) was introduced to measure the biodiversity\(^1\). Simpson’s index is heavily weighted towards the most abundant species in the sample, while being less sensitive to species richness. As D increases, diversity decreases, too. The Simpson’s index was calculated by equation of $D=\sum P_i^2$.

Results

Intestinal parasite infection status in captive Chinese alligators

A total of 328 faecal samples were randomly collected from the captive Chinese alligators living in Anhui breeding centre and underwent final examination. The intestinal parasites finally identified were three protozoa (Entamoeba spp., Eimeria spp. and Isospora spp.), five nematodes (Ascaris spp., Dujardinascaris spp., Capillaria spp., Toxocara spp. and Strongylus spp.) and four trematodes (Echinostoma spp., Clonorchis spp., Schistosomatidae and Cryptogonimidae). In addition, Dujardinascaris spp. was identified according to the adult worms in the intestine of captive Chinese alligator, yet we failed to identify the genera for Schistosomatidae and Cryptogonimidae. Interestingly, two or more species of parasite infection were commonly found in one head of a crocodile, and occurrence of parasites was observed in different months or different age of crocodiles.

The number of samples collected in May, June, July, August, September and October were 61, 72, 58, 61, 58 and 18, respectively, and most captive Chinese alligators were infected with at least one intestinal parasite, especially in July and August. Meanwhile, it was found that highest occurrence compared to other intestinal parasites were Dujardinascaris spp. (14.3%), followed by Entamoeba spp. (13.11%). Entamoeba spp. occurred most in May (6.56%) and June (11.10%). Dujardinascaris spp. and Entamoeba spp. occurred most in July, August and September (27.60%, 24.60% and 15.50% vs. 20.70%, 21.30% and 10.34%, respectively), whereas the most species in October was Ascaris spp. (11.10%) (Table I), and Dujardinascaris spp. were spatially distributed in different months in a typical year (Table I).

The number of samples collected from alligators of yearlings, juveniles, sub-adults and adults were 86, 88, 76 and 78, respectively. The highest occurrence in yearling, juvenile and sub-adult was involved in all Entamoeba spp. by 10.5%, 14.80% and 13.20%, respectively. However, Dujardinascaris spp. occurred most in adults was 41.00% (Table II). Entamoeba spp., Eimeria spp., Dujardinascaris spp., Schistosomatidae and Cryptogonimidae were spatially distributed in different years of life of alligators (Table II).

Table I

<table>
<thead>
<tr>
<th>Paroza</th>
<th>May (%)</th>
<th>June (%)</th>
<th>July (%)</th>
<th>August (%)</th>
<th>September (%)</th>
<th>October (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entamoeba spp.</td>
<td>6.56(4/61)</td>
<td>11.11(8/72)</td>
<td>20.69(12/58)</td>
<td>21.31(13/61)</td>
<td>10.34(6/58)</td>
<td>0</td>
<td>13.11(43/328)</td>
</tr>
<tr>
<td>Eimeria spp.</td>
<td>1.64(1/61)</td>
<td>2.78(2/72)</td>
<td>13.80(8/58)</td>
<td>9.84(6/61)</td>
<td>0</td>
<td>0</td>
<td>5.18(17/328)</td>
</tr>
<tr>
<td>Isospora spp.</td>
<td>0</td>
<td>1.39(1/72)</td>
<td>6.90(4/58)</td>
<td>9.84(6/61)</td>
<td>3.45(2/58)</td>
<td>0</td>
<td>3.96(13/328)</td>
</tr>
<tr>
<td>Nematode</td>
<td>Ascaris spp.</td>
<td>0</td>
<td>1.39(1/72)</td>
<td>10.30(6/58)</td>
<td>6.56(4/61)</td>
<td>8.62(5/58)</td>
<td>11.10(2/18)</td>
</tr>
<tr>
<td>Dujardinascaris spp.</td>
<td>3.26(2/61)</td>
<td>5.56(4/72)</td>
<td>27.60(16/58)</td>
<td>24.60(15/61)</td>
<td>15.50(9/58)</td>
<td>5.56(1/18)</td>
<td>14.3(47/328)</td>
</tr>
<tr>
<td>Capillaria spp.</td>
<td>0</td>
<td>2.78(2/72)</td>
<td>8.62(5/58)</td>
<td>3.28(2/61)</td>
<td>0</td>
<td>0</td>
<td>2.74(9/328)</td>
</tr>
<tr>
<td>Toxocara spp.</td>
<td>0</td>
<td>0</td>
<td>6.90(4/58)</td>
<td>9.84(6/61)</td>
<td>6.90(4/58)</td>
<td>0</td>
<td>4.27(14/328)</td>
</tr>
<tr>
<td>Strongylus spp.</td>
<td>0</td>
<td>1.39(1/72)</td>
<td>12.10(7/58)</td>
<td>9.84(6/61)</td>
<td>0</td>
<td>0</td>
<td>4.27(14/328)</td>
</tr>
<tr>
<td>Trematode</td>
<td>Echinostoma spp.</td>
<td>1.64(1/61)</td>
<td>0</td>
<td>10.30(6/58)</td>
<td>8.20(5/61)</td>
<td>1.72(1/58)</td>
<td>0</td>
</tr>
<tr>
<td>Clonorchis spp.</td>
<td>0</td>
<td>0</td>
<td>6.90(4/58)</td>
<td>4.92(3/61)</td>
<td>3.45(2/58)</td>
<td>0</td>
<td>2.74(9/328)</td>
</tr>
<tr>
<td>Schistosomatidae</td>
<td>0</td>
<td>1.39(1/72)</td>
<td>5.17(3/58)</td>
<td>6.56(4/58)</td>
<td>1.72(1/58)</td>
<td>0</td>
<td>2.74(9/328)</td>
</tr>
<tr>
<td>Cryptogonimidae</td>
<td>0</td>
<td>5.56(4/72)</td>
<td>6.90(4/58)</td>
<td>8.20(5/61)</td>
<td>3.45(2/58)</td>
<td>0</td>
<td>4.57(15/328)</td>
</tr>
</tbody>
</table>

* Infection rate is positive samples to total samples in different months. **Infection rate is positive samples to total samples in all months.
The richness index was topmost in August (2.55), sequentially followed by June (2.52), July (2.52), September (2.31), May (1.44) and October (0.91). The greatest value of diversity index was 2.35 for July and 2.33 for August compared to the smallest (0.64) in October. The value of evenness index differed somewhat in different months, and the largest value of dominance index was 0.56 for October and the smallest was 0.11 and 0.11 respectively for July and August (Table III).

Intestinal parasite infection diversity for captive Chinese alligators in different years of life

The juveniles were mostly affected by diverse intestinal parasites (12 species), and the yearling did relatively less (8 species). The richness index stood highest in the juveniles (2.78), secondarily in sub-adults (2.38), adults (2.10) and yearlings (2.06). The diversity index ranked from 2.34 for sub-adults, 2.32 for the juvenile, 1.94 for yearlings to 1.82 for adults. The evenness index was maximal in sub-adults (0.97) and minimal in adults (0.79). Value of dominance index was as high as 0.24 in adults and remained comparatively smaller in sub-adults (0.10) (Table IV).

Discussion

The majority of the captive Chinese alligators examined in current study were infected with at least one intestinal parasite species, and most of these parasitic species are recorded previously in diverse species of crocodiles except Clonorchis, for some trematodes belonging to Clonorchis is endemic to China, which suggests that parasitic infection with crocodil-

Table II

<table>
<thead>
<tr>
<th>Parasites</th>
<th>Yearlings (%)</th>
<th>Juveniles (%)</th>
<th>Sub-adults (%)</th>
<th>Adults (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protozoan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entamoeba spp.</td>
<td>10.5(9/86)</td>
<td>14.80(13/88)</td>
<td>13.20(10/76)</td>
<td>14.10(11/78)</td>
<td>13.11(43/328)</td>
</tr>
<tr>
<td>Eimeria spp.</td>
<td>2.33(2/86)</td>
<td>3.41(3/88)</td>
<td>10.50(8/76)</td>
<td>5.13(4/78)</td>
<td>5.18(17/328)</td>
</tr>
<tr>
<td>Isospora spp.</td>
<td>4.65(4/86)</td>
<td>3.41(3/88)</td>
<td>7.89(6/76)</td>
<td>0</td>
<td>3.96(13/328)</td>
</tr>
<tr>
<td>Nematode Ascaris spp.</td>
<td>0</td>
<td>4.55(4/88)</td>
<td>10.50(8/76)</td>
<td>7.69(6/76)</td>
<td>5.49(18/328)</td>
</tr>
<tr>
<td>Dujardinascaris spp.</td>
<td>4.65(9/86)</td>
<td>5.68(5/88)</td>
<td>7.89(6/76)</td>
<td>41.00(32/78)</td>
<td>14.3(47/328)</td>
</tr>
<tr>
<td>Capillaria spp.</td>
<td>3.49(3/86)</td>
<td>1.14(1/88)</td>
<td>6.58(5/76)</td>
<td>0</td>
<td>2.74(9/328)</td>
</tr>
<tr>
<td>Toxocara spp.</td>
<td>0</td>
<td>4.55(4/88)</td>
<td>7.89(6/76)</td>
<td>5.13(4/78)</td>
<td>4.27(14/328)</td>
</tr>
<tr>
<td>Strongylus spp.</td>
<td>0</td>
<td>3.41(3/88)</td>
<td>9.21(7/76)</td>
<td>5.13(4/78)</td>
<td>4.27(14/328)</td>
</tr>
<tr>
<td>Trematode Echinostoma spp.</td>
<td>2.33(2/86)</td>
<td>3.41(3/88)</td>
<td>5.26(4/76)</td>
<td>5.13(4/78)</td>
<td>3.96(13/328)</td>
</tr>
<tr>
<td>Clonorchis spp.</td>
<td>2.33(2/86)</td>
<td>4.55(4/88)</td>
<td>0</td>
<td>3.85(3/78)</td>
<td>2.74(9/328)</td>
</tr>
<tr>
<td>Schistosomatidae</td>
<td>0</td>
<td>4.55(4/88)</td>
<td>2.63(2/76)</td>
<td>3.85(3/78)</td>
<td>2.74(9/328)</td>
</tr>
<tr>
<td>Cryptogonimidae</td>
<td>4.65(4/86)</td>
<td>5.68(5/88)</td>
<td>6.58(5/76)</td>
<td>1.28(1/78)</td>
<td>4.57(15/328)</td>
</tr>
</tbody>
</table>

* Infection rate is positive samples to total samples in different years Chinese alligators. ** Infection rate is positive samples to total samples in all Chinese alligators.

Table III

<table>
<thead>
<tr>
<th>Month</th>
<th>Number of species</th>
<th>Number of individuals</th>
<th>Richness index</th>
<th>Diversity index</th>
<th>Evenness index</th>
<th>Dominance index</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>4</td>
<td>8</td>
<td>1.44</td>
<td>1.21</td>
<td>0.88</td>
<td>0.34</td>
</tr>
<tr>
<td>June</td>
<td>9</td>
<td>24</td>
<td>2.52</td>
<td>1.91</td>
<td>0.87</td>
<td>0.19</td>
</tr>
<tr>
<td>July</td>
<td>12</td>
<td>79</td>
<td>2.52</td>
<td>2.35</td>
<td>0.95</td>
<td>0.11</td>
</tr>
<tr>
<td>August</td>
<td>12</td>
<td>75</td>
<td>2.55</td>
<td>2.33</td>
<td>0.94</td>
<td>0.11</td>
</tr>
<tr>
<td>September</td>
<td>9</td>
<td>32</td>
<td>2.31</td>
<td>1.96</td>
<td>0.89</td>
<td>0.17</td>
</tr>
<tr>
<td>October</td>
<td>2</td>
<td>3</td>
<td>0.91</td>
<td>0.64</td>
<td>0.92</td>
<td>0.56</td>
</tr>
</tbody>
</table>

816
Nutr Hosp. 2015;31(2):813-819
Jinhong Zhao Berumen et al.
ian is characterized to a certain extent by geographic distribution. Importantly, some parasites identified in our work are known to be pathogenic to both animals and human (animal handlers and visitors)\(^8\).

The intestinal parasite species we identified consist of protozoa in genera *Entaoeba* (Lobosea), *Eimeria* (Coccidia) and *Isospora* (Coccidia). They were previously reported in crocodilians\(^9,19,20\). Crocodilians were considered to be resistant carriers of this parasite *Entaoeba*\(^21\). However, coccidia may become pathogenic, causing illness or death in younger alligators under captive feeding and reproduction\(^19\). Buenvias et al.\(^22\) described coccidiosis as one of the major disease affecting farmed crocodiles in Queensland and the Northern Territory, yet the infection rate of *Eimeria* (5.18%) and *Isospora* (3.96%) was relatively lower in our findings. *Entaoeba* appeared the second higher infection rate (13.11%) in all parasite species, but affected dominantly the host in different seasons or different ages of crocodiles. These findings showed that the amoebic pollution was serious in the breeding centre.

Five nematodes in genera *Ascaris*, *Capillaria*, *Strongylus*, *Dujardinascaris* and *Toxocara* were identified, and all the nematode have been recorded in other crocodiles, such as the eggs of *Ascaris lumbricoides* were found in the fecal samples of a zoo-kept *Crocodylus acutus* and *Dujardinascaris* were also reported in crocodiles in Australia\(^12,24\), Papua New Guinea\(^3\) and Irian Jaya\(^5\), *Strongylus* sp. was acquired from the intestine of *Alligator mississippiensis* in New York Aquarium, New York, USA, by Biosystematics and the US National Parasite Collection (NPC) in 2010, *Dujardinascaris* and *Toxocara* were also reported in previous literature for other crocodiles\(^8,9,28,29\). In this study, we found that *Dujardinascaris* was the most prevalent species in Anhui breeding centre, and led to the highest infection rate (14.33%), especially in July and August. It is also a major parasitic species in adult captive Chinese alligators, a similar finding in north-central Florid\(^30\), where the *Dujardinascaris waltoni* was recognized as the most prevalent species in all 3 lakes (Apopka, Griffin and Woodruff). Again, in Okavango River, Botswana, *Dujardinascaris madagascariensis* was found to have mostly infected the host *Crocodylus niloticus*\(^36\). Gastrointestinal nematode infection in crocodiles is often asymptomatic, but which may be occasionally associated with the disease, such as gastric ulceration and running in hatchlings with infection of *Dujardinascaris*\(^19\).

We also found trematodes are composed of *Echinostoma* spp., *Clonorchis* spp, Schistosomatidae and Cryptogonimidae. However, the total infection rate of each trematode was not high (2.74%-4.57%). And some eggs were identified to family Schistosomatidae and Cryptogonimidae only, for there was a very similar in morphology about these eggs. The *Echinostoma* sp. was recorded from intestine of *melanosuchus niger* in Mato Grosso, Brazil\(^4\), yet *Clonorchis* are the first time recorded in captive Chinese alligators, for some trematode belonging to *Clonorchis* is endemic to China. Schistosomatidae in genera *Grithobitharia* were first time recorded in crocodiles\(^25\). The family Cryptogonimidae recorded is associated with the genera of *Acanthostomum*, *Caimanicola*, *Capsulodiplostomum*, *Proctocacum und Timonella*\(^8,9,28,29\). These parasites were not considered to be the cause of significant disease in their crocodilian hosts. But, *Acanthostomum loossi* recovered from farmed *Crocodylus acutus* and *Crocodylus rhombifer* in Cuba was associated with poor health and growth rates\(^8\).

The richness index, diversity index, evenness index and dominance index of community diversity were often analysis in order to compare them with the diversity found in different community, such as in vegetation, birds, soil animals, bacteria and mites, etc.\(^3,12,23\). Nevertheless, no parasitic diversity data regarding the parasites infection crocodiles were present. Our measurement on the indices in different months showed the highest parasitic diversity (richness index $R=2.55$, diversity index $H=2.35$, evenness index $J=0.95$, Table III) in July or August over the remaining months, in which October was the lowest ($H=0.64$, $R=0.91$, Table III), and the Simpson’s dominance index appeared totally inverse. This may be explained that the environment of the breeding centre, a region in sub-tropical monsoon climate with warm temperature and humidity, plenty of rainfall and distinct four seasons. July and August are the summer season that is favorable to the parasite growth and

<table>
<thead>
<tr>
<th>Years</th>
<th>Number of species</th>
<th>Number of individuals</th>
<th>Richness index</th>
<th>Diversity index</th>
<th>Evenness index</th>
<th>Dominance index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yearlings</td>
<td>8</td>
<td>30</td>
<td>2.06</td>
<td>1.94</td>
<td>0.93</td>
<td>0.17</td>
</tr>
<tr>
<td>Juveniles</td>
<td>12</td>
<td>52</td>
<td>2.78</td>
<td>2.32</td>
<td>0.93</td>
<td>0.12</td>
</tr>
<tr>
<td>Sub-adults</td>
<td>11</td>
<td>67</td>
<td>2.38</td>
<td>2.34</td>
<td>0.97</td>
<td>0.10</td>
</tr>
<tr>
<td>Adults</td>
<td>10</td>
<td>72</td>
<td>2.10</td>
<td>1.82</td>
<td>0.79</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Preliminary report on the intestinal parasites and their diversity in captive Chinese alligators

Nutr Hosp. 2015;31(2):813-819
reproduction. However, the parasitic infection is less in October, for it turns cold, and Chinese alligator begins to go into hibernation. On examination of the different years of alligators, the juvenile had maximal richness value ($R=2.78$), sub-adults had the highest values of diversity ($H=2.34$) and evenness ($J=0.97$). This may attributed to the juvenile and sub-adults were breeding in the same area with similar breeding conditions that were in relatively serious parasitic pollution. Contrarily, smallest number of parasite species (8 species) and lower richness index ($R=2.06$) were found in the yearling, for they were bred in strictly treated food and clean environment and less human interference. Meanwhile, the fecal samples of adult crocodiles were collected from a relatively wider area with rich variety of food in the breeding centre, but showed lowest values of diversity index ($H=1.82$) and evenness index ($J=0.79$) and highest values of dominance index ($D=0.24$). This also tells us that the parasitic community infection in adult alligators is mainly composed of several parasites, which provides guidance for prevention of parasitic disease. The parasite community infection crocodiles found in the present study indicated the community structure and diversity of parasites were closely related to such factors as the natural environment, social environment, foods, etc.

Conclusion

This is the first report on the parasitic infection in the captive Chinese alligator in a breeding center in south Anhui province. The findings suggest that the infection of parasites is popular, even if the alligators are bred in a closed area. Besides, the number of species, richness index, diversity index and evenness index are higher in July and August, and the juvenile and sub-adults appear mostly affected. This condition calls our great attention to controlling and prevention the parasites in these endangered creatures, though we have achieved in successful breeding of captive Chinese alligators.

Acknowledgements

The authors were grateful to Dr. Marisa Tellez from University of California, Professor Li Chaopin with Wannan Medical University, and Professor Huang Bing from Shanghai Institute of Veterinary Research, Chinese Academy of Agricultural Science, for assistance in identifying eggs from fecal samples and encouragement in the process of experiment. We greatly appreciate the Chinese alligator raisers for providing guidance and technical assistance during our sample collection. This study was supported by the National Natural Science Foundation of China (No: 31272337 and 31472019) and Key Project of Wannan Medical University of China (No: WK2013ZD04).

Author disclosure statement

The authors have no conflicts of interest.

References

Preliminary report on the intestinal parasites and their diversity in captive Chinese alligators