

Chungara, Revista de Antropología Chilena

ISSN: 0716-1182

calogero_santoro@yahoo.com

Universidad de Tarapacá

Chile

Augustyniak, Szymon
Dating the Tiwanaku State
Chungara, Revista de Antropología Chilena, vol. 36, núm. 1, enero, 2004, pp. 19-35
Universidad de Tarapacá
Arica, Chile

Available in: http://www.redalyc.org/articulo.oa?id=32636103

Complete issue

More information about this article

Journal's homepage in redalyc.org

DATING THE TIWANAKU STATE¹

ANÁLISIS CRONOLÓGICO DEL ESTADO TIWANAKU

Szymon Augustyniak*

The number of radiocarbon dates associated with the Tiwanaku state has grown through the years, and there are more than 130 published ¹⁴C determinations. In this paper radiocarbon dates from different regions of the Tiwanaku culture area were collected, described, calibrated and analyzed. The results have been compared with existing chronological frameworks and various existing theories on the nature and development of the Tiwanaku state. Calibrated sets of ¹⁴C dates and their related cultural contexts show that phases Tiwanaku I, II and III overlap; and that Tiwanaku IV and V partially overlap. Calibration of sets, combined with geographical origin show the main period of Tiwanaku activity falling under the second half of the first millennium, but differences are found in particular areas of influence.

Key words: 14C, radiocarbon dating, calibration, cumulative calibration, chronology, Tiwanaku.

Los fechados radiocarbónicos del Estado de Tiwanaku han aumentado en los últimos años a más de 130 fechas. En este trabajo se discuten, analizan y se calibraron las fechas radiocarbónicas recopiladas de la literatura para diferentes regiones de Tiwanaku. Las fechas fueron comparadas con los diferentes marcos cronológicos propuestos para esta Cultura y su desarrollo cultural. Las fechas radiocarbónicas calibradas asociadas a contextos culturales muestra que hay un traslape entre las fases Tiwanaku I, II y III y sólo un traslape parcial con Tiwanaku IV y V. Las calibraciones de los fechados analizados según su origen geográfico demuestra que el período principal de Tiwanaku cae bajo la mitad del primer milenio, pero habrían algunas diferencias cronológicas de acuerdo al área de influencia.

Palabras claves: fechados radiocarbónicos, fechados calibrados cumulativos, cronología, Tiwanaku.

During the Middle Horizon (ca. A.D. 500-1000) the Tiwanaku culture and supposed empire dominated the entire area of the south central Andes including: Titicaca Lake basin, northern Chilean valleys, Cochabamba, Moquegua valley, and into the San Pedro de Atacama oasis to the Southwest. More than 360,000 km² (Ponce Sangines 1980:8) were under the influence and in some cases direct power of the Tiwanaku rulers (Berenguer 1978; Browman 1981; Byrne Caballero 1984; Higueras 1996; Kolata 1993a, 1993b; Núnez 1965; Owen 1992, 1994; Ponce Sangines 1981; Torres 1987; Wassen 1972).

Tiwanaku influence appeared in different regions in diverse forms. The results of excavations and experiments conducted in the 80s and 90s by Alan Kolata at Tiwanaku and Pampa Koani suggested that an application of intensive agricultural strategies was a very important factor for Tiwanaku development. This was the assumed base for power and export of ideology by a centralized, bureaucratic Tiwanaku state in Alan Kolata's model

(Kolata 1986, 1991, 1993a, 1996). More recent research has shown, that Tiwanaku could have had a more elastic and agglutinated nature; it could have consisted of semi-autonomous regions which were included within the state web, but with preexisting settlement patterns and hierarchy (the model of nested hierarchies by Albarracin-Jordan 1996). Critics of the centralized vision of the Tiwanaku state also have pointed out that probably even its efficient agricultural strategies were not so temporally and socially expansive (Erickson 1988; Graffam 1992), as it was suggested earlier. In some parts of the Tiwanaku area of influence, i.e. in the Moquegua valley, there is ample evidence for a metropolis - province relationship. In Moquegua, were found administrative centers, with temples, state architecture, etc. In other regions the interactions with Tiwanaku were not so clear and it has been more appropriate to describe them in terms of economic and ritual patterns of exchange (Higueras 1996). This is the case for Northern Chilean valleys, Cochabamba valleys and the oasis of

Recibido: abril 2001. Aceptado: marzo 2004.

^{*} Misión Arqueológica Andina (address for correspondence: 10/86 Suwalska Str., 03-252 Warsaw Poland, akapana@poczta.onet.pl).

San Pedro de Atacama (Kolata 1993b). Thus, the time in which certain forms emerged would be important indicators of the Tiwanaku culture and state archaeological reconstruction.

For more than 100 years research has focused on the art, economy, and chronology of Tiwanaku. The first reliable publication on the topic of chronology was produced by Max Uhle. Based on the ceramic sequence from Pachacamac, Max Uhle established chronology of five periods, with main units of Tiwanaku (classic and epigonic) and Inca (Uhle 1903). In the mid 1930s, after the excavations at Tiwanaku in 1932, Wendell Bennett presented a ceramic chronology consisting of Early, Classic and Decadent Tiahuanaco (Bennett 1934). For the areas outside Titicaca basin, local imitations of Tiwanaku style ceramics were described as Derived Style (Bennett 1934). The next chronological systematization was proposed by Carlos Ponce Sangines (Ponce Sangines 1969); five epochs division was based on 21 radiocarbon dates, that came mainly from the Tiwanaku site. Although criticized (Browman 1980; Mathews 1995; Albarracin-Jordan 1996), it persisted for a very long time as the most detailed proposition.

The way that radiocarbon evidence was used in constructing this scheme was one of the reasons for questioning it. The principal shortcomings of the five epochs chronology are specified below.

- 'Semi-historical' borders between periods, were difficult to defend, as originally they represented mode values of ¹⁴C dates chosen by Ponce Sangines, and it is not clear why certain modes appeared as borders.
- 2) Data used for the construction of the scheme often did not cover events important for defining periods. Dates which should represent certain epochs were not connected by the context of samples with events that should have appeared at that time. For example, samples for dates that represent epoch III, according to Ponce Sangines this was when the Tiwanaku ceremonial center with its main buildings was erected, were not taken from any of these structures and cannot be related to any of its construction phases (Albarracin-Jordan 1996:40).
- Definitions of periods were often incongruent with the archaeological data. In recent publications (for example Janusek 1999; Mathews

1995), the relative chronology of ceramic phases was revised. Ponce Sangines' epochs I and III ceramics represent most probably, according to Mathews, two different functional ceramic types from the same period of time (Mathews 1995:90). It is also possible, that the distinction of ceramic styles Tiwanaku 4 and 5 is related instead to spatial, functional, and/or prestige rather than a temporal difference (Janusek 1999). A new proposal for a general chronology of the Southern Titicaca Basin was presented recently by Janusek (2003).

4) The last, but a very important deficiency: the boundaries between periods, and actually the whole scheme was based on radiocarbon ages. These ones were never converted to absolute time through calibration into calendar years.

Gathering and calibrating the existing radiocarbon dates from Tiwanaku culture contexts was felt to be helpful to: (1) determine time relationships among existing relative chronological periods/stylistic phases, and (2) ameliorate an absolute chronology for Tiwanaku cultural presence in distinct regions. The approach to realize these two goals is presented below.

Application of ¹⁴C Method for Determination of Absolute Age

Because of the changing amount of ¹⁴C isotope in the atmosphere, results obtained in laboratories should be converted from radiocarbon years into calendar ages. This transformation called calibration is unfortunately not a one-to-one transformation and thus two or more calendar values may correspond to one radiocarbon date. As a consequence of course, the normal probability distribution of radiocarbon age date is divided into exact intervals of calendar age following the calibration curve. The radiocarbon date usefulness for further interpretations depends on several factors including: 1) technical nature (method, time of measurement, type of material), and 2) sample context (and it's association with certain events and periods of relative chronology).

The main source of Tiwanaku data used in analyses and discussed below was "Radiocarbon database for Bolivia, Ecuador and Peru", a joint publication of Andean Archaeological Mission of the Institute of Archaeology of Warsaw University and Gliwice Radiocarbon Laboratory of the Institute of Physics of Sileasian Technical University (Ziółkowski et al. 1994). It was also possible to include some new dates thanks to the help of Prof. P.R.Williams (references for dates from Moquegua, based on Dr. B. Owen 1989), Dr. JoEllen Burkholder (dates from Iwawe) (Burkholder 1997), Dr. Matthew Seddon (dates from Isla del Sol) (Seddon 1998), Dr. Alexey Vranich (one date from Puma Punku); and a large set of dates from 15 years at the Wila Jawira Project, which appeared in successive publications (i.e. Kolata 1993, Kolata 1996, 2003; Kolata and Ortloff 1996:51).

This collection consists of more than 130 dates. The first radiocarbon dates to come from Tiwanaku material were made in mid 1950s, and the majority of the dates we have come from publications and citations produced in 50's and 60's (Table 1). The 'old' dates, especially from the 50s and 60s, are not as reliable as those recently measured. Samples collection techniques, their pretreatment, and measurement techniques have all been improved considerably since that time (nowadays measurement of radioactivity usually can give results which accuracy is comparable with those made by AMS (Accelerator Mass Spectrometry) technique Pazdur and Pazdur 1994 in: Ziółkowski et al. 1994). More than one in every five dates gathered here, however, do not mention when they were produced. It was assumed, that the six 'not-fullydescribed' dates from Chile were probably produced in 1960s or 1970s (according to date of publication by Berenguer 1978). Many dates from Tiwanaku and Lukurmata (Kolata and Ortloff 1996:51) came from the laboratory of Southern Methodist University (SMU), which had been closed in the late 1980s or early 1990s (Ziółkowski et al. 1994; Radiocarbon vol 41 n 31999). Also worth noting, is that nearly half of the dates came from samples that were collected at Tiwanaku site itself. Although newer dates produced in the 1980s and 1990s (mainly from the Wila Jawira Project) represent almost half of collection, they come only from sites in the Moquegua valley and Titicaca basin. The cultural context of all gathered dates is often not described according to Tiwanaku I-V phases. Furthermore, in most cases, sample materials were charcoal, but often references lack any information about sample material.

The set of Tiwanaku radiocarbon dates gathered here is certainly not complete nor is it statistically very large, therefore it is difficult to treat the results presented here as precise answers to above mentioned aims. However, the worth of individual radiocarbon dates can be increased by the use of statistical methods. The method used here was the simple method of cumulative probability calibration. Probabilities of radiocarbon ages were gathered and then calibrated. The obtained interval of highest probability density were correlated with tested events or phases.

Cumulative Calibration

Two methods for dates sets selection were used to analyze the dates: 1) according to geographical and 2) cultural phase contexts of collected samples². In the geographical approach, the main purpose was to determine the calendar age of Tiwanaku influence in different regions. Tiwanaku ¹⁴C dates were divided into five main sets (A-E) according to their geographic location (Titicaca lake basin, Northern Chilean valleys, Moquegua valley, and Cochabamba). Dates from Moquegua valley were further divided into sets according to sample phase con-

Table 1. Distribution of ¹⁴C dates by time and geographic area.

Distribución de datos ¹⁴C por décadas y área geográfica.

Decades/Areas	Not described	'50	'60	'70	'80	'90 +	
Tiwanaku	18	25			3	16	62
Rest of Titicaca basin	6				2	35	43
Northern Moquegua			2		2	8	12
Chile	6	1		4			11
Cochabamba		1	2				3
Total	30	27	4	4	7	59	131

texts, and dates from the Titicaca site were divided according to Janusek's (2003) proposition of general division into Late Formative 1 2, and Tiwanaku periods (Table 2).

- A) 98 dates form the set from the Titicaca lake basin. Cultural/stylistic contexts of samples were determined from original publications as Tiwanaku I, II, III, IV, V, Early, Classic, Late Formative 1 or 2, or the dates were related to construction phases of supposed state / ritual architecture. There are 62 dates from samples collected from the Tiwanaku site: fourteen from Kalasasaya, thirteen from Akapana, five from the area "between Akapana and Putuni", four from Kantatayita (Ziółkowski et al. 1994), twelve from Akapana East sector, seven from Putuni, one from Kheri Kala, and one from Puma Punku (A. Vranich, 1999). The location of one sample collected in Tiwanaku site (ETH-5680) was not described - there were only references that the samples cultural context was Tiwanaku V phase (Kolata and Ortloff 1996:51). There were also four other dates from the Tiwanaku site, that were produced from the samples collected at Kalasasaya (P-534, P-GaK-51, GaK-52, GaK-53) (Ziółkowski et al. 1994) that have no descriptions of their cultural contexts and results of dating suggest that samples are not connected with the main period of occupation of the Kalasasaya temple. Perhaps they represented events related to earlier human activities at this site. Nineteen dates came from Lukurmata: two from Misiton I sector (Janusek 1999:117), nine from Ridge sector, four from Misiton II sector 1 from raised field, and two from K'atupata, and one other from an undescribed location (Kolata and Ortloff 2001:51). Four dates were from CK-65 (Kirawi) site in Catari valley. Fourteen dates were from samples that related to use or construction of waru waru platforms. Two dates were from Iwawe - these were obtained from Burkholder (1997), a member of the excavation project at this site. The last four dates come from Isla del Sol, and were included into this analysis thanks to Dr. M. Seddon (1998), a member of the excavation project at Isla del Sol. In accordance with Janusek's (2003) new chronology propositions for the Southern Titicaca basin, additional divisions were made
- for Late Formative 1-2 set (18 dates, set A1), and a Tiwanaku set (54 dates set A2). Finally dates from waru waru were calibrated together in set A3.
- B) The second set consists of four dates related to Tiwanaku presence in the Moquegua valley. One age determination was made on the sample from Omo M 12 site. Omo phase. Three other dates were from Omo, site M 10, from Chen Chen phase stratum (Goldstein 1989).
- C) Another set of dates from Moquegua valley is related to what is known as the Tumilaca phase. It is considered to be the post-Tiwanaku, but with Tiwanaku cultural manifestations. It consists of eight dates: two samples collected at Chen Chen, one from Omo, site M 11-1406, five from the sites along the coast of the Moquegua valley. Three of these latter dates are from El Aldogonal site, two others were from Loreto Alto. All five samples came from mixed Ilo-Tumilaca, Ilo-Tumilaca-Cabuza, Chiribaya / Ilo-Tumilaca / Cabuza contexts (Goldstein 1989).
- D) Set of dates from Cochabamba consisted of only three dates. Two of these were from the Mizque site (cultural context of sample was described as Tiwanaku IV), and one from the Omereque site (cultural context Tiwanaku V). All the samples were collected from burial contexts. These dates from Cochabamba were produced in the 1950s and 60s. There were also dates of Tiwanaku material from Cochabamba not included in this set. In some cases their standard error was too big and the date only give clues to the antiquity of the sample (i.e. Tx-1550 from Santa Lucia - see Table 2). In other cases (i.e. dates from Cruzpata site submitted by Byrne Caballero), the results produced ages too early for Tiwanaku material in Cochabamba (Tx 1818A - 2320±50 B.P., Tx 1818B 2400±80 B.P.).
- E) Six dates from Northern Chile were combined into another set. Two of them come from the Azapa-6 site, two others from Azapa-83 site in Arica. Another date came from a sample collected at the Pica-8 site and another from the Canamo-3 site. There are also four dates for the so called 'miner mummy', from Chuquicamata. The mummy wore clothes with Tiwanaku style motifs and it was found in a

Table 2. Radiocarbon dates from different region of Tiwanaku Culture. Dataciones radiocarbónicas de diferentes regiones de la Cultura Tiwanaku

Laboratory Code	Radiocarbon age B.P.	Calibrated age B.P.	Phase	Site	Sample	Used in calibration "cultural context" set	Used in calibration "geographical" set
			Northern Chile and San Pedro de Atacama	ma			
LJ-3947	1400±40	625-669	*	Chuquicamata	1979		
LJ-3948	1650±130	250-300 (0.150), 310-550 (.850)	*	Chuquicamata	1979		
LJ-3949	1350±80	630-780	*	Chuquicamata	1979		
LJ-3950	840±150	1040-1290	*	Chuquicamata	1979		
*	1700±150	210-530 (.953)	*	Quitor 6	*		
*	1570±65	420-550	*	Azapa 6	*		田
GaK-5917	1220±80	710-890	*	Azapa 6	*		Э
*	1390±110	540-720 (.881), 740-770 (.119)	*	Azapa 83	*		Э
GaK-5810	1190±70	770-900 (.849), 920-950 (.151)	*	Azapa 83	*		Э
IVIC-792	950±70	1030-1080 (.383), 1080-1260 (.617)	*	Pica 8	*		Э
Tk-101	1190 ± 60	770-900 (.897), 920-940 (.103)	*	Canamo 3	*		Щ
			Cochabamba				
B-449	840±100	1060-1090 (.154), 1120-1140 (.102),	Tiwanaku 4	Mizque	1965		D
B-550	930±100	1100-1280 (./44) 1020-1200 (.954)	Tiwanaku 4	Mizque	1965		D
M-509	900+200	970-1290 (.980)	Tiwanaku 5	Omereque	1955		D
Tx - 1817B	1550±330	120-790 (.970)	Tiwanaku	Santa Lucía	1973		D
			Moquegua				
Beta-51067	830±60	1170-1280	Tumilaca (Chiribaya/ Ilo-Tumilaca/ Cabuza)	El Aldogonal	*		C
Beta-51069	870±60	1050-1090 (.315), 1120-1140 (.124), 1160-1230 (.561)	Tumilaca (IloTumilaca/Cabuza)	Loreto Alto	*		C
Beta-51070	1040±50	960-1030 (.911)	Tumilaca (Ilo-Tumilaca/Cabuza)	Loreto Alto	*		C
Beta-51061	09∓086	1000-1070 (.506), 1080-1130 (.328), 1140-1160 (.166)	Tumilaca (Ilo-Tumilaca)	El Aldogonal	*		C
Beta-51065	09∓0∠6	1010-1080 (.485), 1080-1130 (.344)	Tumilaca	El Aldogonal	*		C
Hv-1076	1040±65	900-920 (.142), 940-1040 (.815)	(Ilo-Tumilaca) Tumilaca	Chen-Chen	1965		C

)	. For		submited		calibration "cultural context" set	calibration "geographical" set
Hv-1077	930±65	1030-1160	Tumilaca	Chen-Chen	1965		ر ر
(?) Hv-1080	470±235	1280-1670 (.984)	Loreto (Tiahuanacoid)	Loreto Viejo	*		
(?) Hv-1081	750±60	1220-1290	Loreto (Tiahuanacoid/ Chiribaya?)	?) Loreto Viejo	1965		
(?) Hv-1091	080±70	100-1070 (.502), 1080-1130 (.384),	Loreto (Tiahuanacoid)		1965		
		1130-1160 (.150)		,			
Beta-26649	1170±70	780-900 (.763), 920-960 (.237)	Tumilaca	Omo M11-1406	*		C
Beta-26650	1120±60	880-1000 (.954)	Chen-Chen	Omo M10 - 1758	*		В
Beta-26651	1990±70	57BC - 83 AD (.924)		Omo	*		
**L0-ZZZZ	1350+/70-	630-720 (.789), 740-770 (.211)	Omo	Omo M-12	1990		В
**80-ZZZZ	1050±60	900-920 (.166), 950-1030 (.834)	Chen-Chen	Omo M-10	1990		В
**60-ZZZZ	1064±50	900-920 (.220), 960-1020 (.780)	Chen-Chen	Omo M-10	1990		В
			Titicaca basin				
B-488	2400±200	790-360 BC (.931)	Tiwanaku I	Tiwanaku/Kalasasaya	1957	1	A, A1
B-489	2530±200	840-397 BC (.985)	Tiwanaku I	Tiwanaku/Kalasasaya	1957	-	A, A1
GaK - 192	1990±110	120 BC - 130 AD (.945)	Tiwanaku I	Tiwanaku/Kalasasaya	1958	1	A, A1
GaK - 193	1850±90	70-250 (.962)	Tiwanaku I	Tiwanaku/Kalasasaya	1958	-	A, A1
GaK - 194	3530±120	1990 - 1730 BC (.846)	Tiwanaku I	Tiwanaku/Kalasasaya	1958	-	A1
P-532	1653±61	330-440 (.773)	Tiwanaku I	Tiwanaku Kalasasaya	*	-	A, A1
B-490	2100±200	390 BC - 80 AD	Tiwanaku II	Tiwanaku/Kalasasaya	1957	2	A, A1
GaK - 195	1750±100	210 - 410 (.893)	Tiwanaku II	Tiwanaku/Kalasasaya	1958	2	A, A1
Hv- 19	1645±80	340-470 (.724), 490-530 (.229)	Tiwanaku II	Tiwanaku Kalasasaya	1958	2	A, A1
Hv-18	1630±130	320-560 (.877), 260-300 (.123)	Tiwanaku II	Tiwanaku Kalasasaya	1958	2	A, A1
P-533	778±133	1160 - 1310 (.734)	Tiwanaku IV	Tiwanaku Kalasasaya	*	4	A, A2
P-534	1866±62	80-220	*	Tiwanaku Kalasasaya	*		
GaK - 51	630±110	1290-1410	*	Tiwanaku/Kalasasaya	1957		
GaK - 52	2190±130	390 BC - 90 AD (.974)	*	Tiwanaku/Kalasasaya	1957		
GaK - 53	2410±140	760 - 670 BC (.236), 670-600 BC (.163),	*	Tiwanaku/Kalasasaya	1957		
0673 1141	1000100	000-390 (.001)	9	i.	1000		*
E1H-5059	1090100	900 - 1000	÷ -3	II waliaku/Akapalia	1900		ζ.
E1H-5040	1120±140	800-1030 (.904)	* *	Tiwanaku/Akapana	1988		∢ <
110 - 110 d	1120-140	70 - 1030 (343)		T			€ 4
P - 119 D 146	1460±200	380 - 780 (.984)	* *	11wanaku/Akapana-Putum Timonalm/Alamana Putumi	1955		∢ ∢
F-140	949490	1010-1190		I Iwanaku/Akapana-Futun		•	₹ .
P-147	1576±104	390-600	Tiwanaku Early	Tiwanaku/Akapana-Putuni	1955	m	A, A1

	age D.F.	B.P.		submited	•	calibration "cultural context" set	calibration "geographical" set
P-149	1707±93	220-430	Tiwanaku Early	Tiwanaku/Akapana-Putuni	1955	8	A, A1
P-150	1692 ± 104	230-440 (.891)	Tiwanaku Early	Tiwanaku/Akapana-Putuni	1955	3	A, A1
P-123	1817±103	110-260 (.691), 280-330 (.234)	Tiwanaku Early	Tiwanaku/Kantatayita	1955	3	A, A1
P-120	1702±103	220-440 (.951)	Tiwanaku Classic	Tiwanaku/Kantatayita	1955	4	A A2
P-120 A	1226 ± 100	068-069	Tiwanaku Classic	Tiwanaku/Kantatayita	1955	4	A A2
P-121	1423±175	420-780	Tiwanaku Classic	Tiwanaku/Kantatayita	1955	4	A A2
* * *	1510±25	540-600	*	Tiwanaku/Pumapunku	*		A
Beta-55490	1290±100	660-820 (.916)	*	Lukurmata-Misiton I	,06	S	A, A2
Beta-55487	1100 ± 200	760-1060 (.807)	*	Lukurmata-Misiton I	,06	S	A, A2
***	1225±50	720-740 (.147), 770-880 (.853)	*	Iwawe	,06	S	A, A2
****	1025±50	900-910 (.103), 960-1040 (.847)	*	Iwawe	,06	5	A, A2
OS-12671	1420±40	610-660	*	Isla del Sol	,06	5	A, A2
OS-12678	1370±35	640-680	*	Isla del Sol	,06	S	A, A2
OS-12676	1310±40	670-720 (.844)	*	Isla del Sol	,06	S	A, A2
OS-12675	1140±35	880-970	*	Isla del Sol	,06	5	A, A2
SMU-5639	1170±60	780-900 (.810), 920-960 (.190)	*	Tiwanaku/Akapana	*	5	Α
ETH-6306	1460±60	550-650	Tiwanaku IV Late	Tiwanaku/Akapana	*	4	A, A2
SMU-2468	1390±50	610-680	Tiwanaku IV Late	Tiwanaku/Akapana	*	4	A, A2
SMU-2165	1000±230	860-1250 (.962)	Tiwanaku V	Lukurmata	*	5	A, A2
ETH-3180	360 + 066	970-1170	Tiwanaku V	Lukurmata/Ridge	*	5	A, A2
ETH-3179	1180 ± 110	770-970	Tiwanaku V	Lukurmata/Ridge	*	5	A, A2
SMU-1920	1201±96	720-750 (.136), 770-900 (.735),	Tiwanaku V	Lukurmata/Misiton II	*	S	A, A2
		920-950 (.129)					
SMU-2367	1150±80	850-980 (.723), 810-850 (.222)	Tiwanaku V	Tiwanaku/Akapana	*	5	A A2
SMU-2330	1080±210	770-1160 (.979)	Tiwanaku V	Tiwanaku/Akapana	*	5	A A2
SMU-2276	1070±60	900-920 (.280), 940-1020 (.720)	Tiwanaku V	Tiwanaku/AkEast	*	5	A A2
SMU-2277	1130±60	870-990 (.894)	Tiwanaku V	Tiwanaku/AkEast	*	S	A A2
SMU-2469	1190±100	720-750 (.123), 770-900 (.663),	Tiwanaku V	Tiwanaku/AkEast	*	S	A A2
		910-970 (.214)					
ETH-5680	1170±65	780-900 (.808), 920-960 (.192)	Tiwanaku V	Tiwanaku	*	5	A A2
SMU-2467	1130±60	870-990 (.894)	Tiwanaku V	Tiwanaku/Putuni	*	5	A A2
SMU-2472	1200±115	760-900 (.643), 710-750 (.162),	Tiwanaku V	Tiwanaku/Putuni	*	5	A A2
		920-960 (.158)					
SMU-2465	1110±50	890-990	Tiwanaku V	Tiwanaku/Putuni	*	S	A A2
SMU-2466	1170±60	780-900 (.810), 920-960 (.190)	Tiwanaku V	Tiwanaku/Putuni	*	5	A A2
SMU-2289	1185±60	780-900 (.890), 920-950 (.110)	Tiwanaku V	Tiwanaku/AkEast	*	5	A A2

Laboratory Code	Radiocarbon age B.P.	Calibrated age B.P.	Phase	Site submited	Sample	Used in calibration "cultural context" set	Used in calibration "geographical"
SMU-2290	1120±70	860-1000 (.952)	Tiwanaku V	Tiwanaku/AkEast	*	ĸ	A A2
ETH-3178	1085±90	860-1030 (.935)	Tiwanaku V	Lukurmata/raised field	*	5	A, A2
SMU-2117	1090±60	900-1000	Tiwanaku V	Lukurmata/Misiton II	*	5	A, A2
SMU-2285	1425±211	410-780 (.893)	Tiwanaku V****	Tiwanaku/Akapana	*		A, A1
SMU-2293	1388±116	540-730 (.857) or 740-770 (.143)	Tiwanaku IV	Tiwanaku/Akapana	*		A A2
SMU-2329	1403±211	430-780 (.858)	Tiwanaku V	Tiwanaku/Akapana	*		A A2
SMU-2336	1243±113	670-890	LTiwanaku IV –	Ti wanaku/Akapana	*		A A2
			E Tiwanaku V				
SMU-2473	850±243	970-1330 (.891)	Tiwanaku V – Pacajes	Tiwanaku/Akapana	*		A A2
OS-11306	1560±25	440-450 (.127) or 460-520 (.751) or 530-540 (.122)	LF – Tiwanaku IV	Tiwanaku/Putuni	*		A A2
SMU-2369	1360±155	540-790 (.826) or 790-840 (.101)	LF – Tiwanaku IV	Tiwanaku/Putuni	*		A A2
OS-10643	1230±40	720-740 (.76) or 770-870 (.824)	Tiwanaku IV – V	Tiwanaku/Putuni	*		A A2
SMU-2333	1716±276	30-610	LF – Tiwanaku IV	Tiwanaku/Akapana East	*		A A2
Beta-55491	1500±100	530-640 (.655) or 460-520 (.295)	LF 1 – L Tiwanaku IV	Tiwanaku/Akapana East	*		A A2
SMU-2332	1017±115	940-1160 (.890) or 900-920 (.110)	Tiwanaku V	Tiwanaku/Akapana East	*		A A2
SMU-2331	872±197	980-1300	Tiwanaku V	Tiwanaku/Akapana East	*		A A2
SMU-2471	1428±99	530-700 (.945)	LF 2 - Tiwanaku IV	Tiwanaku/Akapana East	*		A A2
STCC_ITM/S	1746+117	068-089	F Tiwanaku V	Tiwanaku/Akanana Fact	*		CA A
SMU-2470	632+183	1190-1480	T TIMETING	Tiwanaku/Akanana E	*		
SMU-2115	1261±210	600-1000	Tiwanaku IV - V	Lukurmata/K' atupata	*		A A2
M-1051	1780±150	80-410	Late Formative $1-2$	Tiwanaku/Kalasasaya	*		A, A1
M-1050	1760±150	120-430	Late Formative $1-2$	Tiwanaku/Kalasasaya	*		A, A1
M-1047	1950±150	Ð	Late Formative 1	Tiwanaku/Kalasasaya	*		A, A1
1040	780+150	1150-1310 (.673) or 1040-1100	Y	T:	-94		·
M-1049	UCIIO0/	(1.104)	IIwanaku v	I I Wanaku/ Nnen Nala	÷ +		A AZ
SMU-2164	2100±235	BC 400-130 AD (.977)	LFI	Lukurmata/Ridge	* .		
SMU-2119	1997±70	BC 60-80 AD (.916)	LF1	Lukurmata/Ridge	*		Α
SMU-2116	2004 ± 62	BC 60-70 AD (.952)	LF 1	Lukurmata/Ridge	*		A
SMU-2120	1748±254	20-550 (.972)	LF1-2	Lukurmata/Ridge	*		A
SMU-2118	1619±67	380-540	LF2	Lukurmata/Ridge	*		A
SMU-3177	1340±95	(940) (970)	Late Tiwanaku IV Early Tiwanaku IV / Early	Lukurmata/Ridge	*		A
SMU-2113	1275±218	590-990 (.983)	Tiwanaku V	Lukurmata/Ridge	*		A A2
			IIWanaku v –				

B-55488 920±70 1030-1170 E. Pacajes B-55489 840±90 1160-1270 (.790) E. Pacajes B-55489 840±90 1160-1270 (.790) E. Pacajes SMU-2121 1473±377 210-900 (.920) E. Pacajes B-91780 1790±60 140-260 (.747) or 280-320 (.253) L.F1 – T. Tiwanaku V B-91777 1630±60 380-480 (.643) or 480-530 (.304) E. Tivanaku IV B-91778 1490±60 1800-1130 (.411) or 1140- E. Tiwanaku IV B-91778 1940±40 1800-1130 (.411) or 1140- E. Tiwanaku IV B-91778 940±40 1800-1130 (.411) or 1140- E. Tiwanaku IV B-91778 940±40 1800-1020 use or construction of ded-690 OS-2540 1040±130 960-1000 (.728) or 1090-1130 (.453) or construction of or construction of or construction of ded-690 use or construction of or construction o			submited		canbration "cultural context" set	"geographical" set
840±90 1160-1270 (.790) 11473±377 210-900 (.920) 1790±60 140-260 (.747) or 280-320 (.253) 1630±60 380-480 (.643) or 480-530 (.304) 1490±60 1030-1070 (.385) or 1080-1130 (.411) or 1140- 940±40 1030-1070 (.385) or 1080-1130 (.411) or 1140- 940±40 1030±35 960-1000 (.728) or 900-920 (.272) 1070±30 960-1000 (.728) or 900-920 (.272) 1070±30 960-1000 (.728) or 1080-1130 (.453) or 930±30 1040-1070 (.338) or 1080-1130 (.453) or 930±30 1030-1060 (.35) or 1090-1120 (.396) or 950±30 1130-1060 (.35) or 1090-1120 (.396) or 980±30 11280-1300 (.751) or 1370-1380 (.269) or 980±30 1140-1150 (.269) or 980±30 1140-1150 (.269) or	E. Pe Tiwan	acajes aku V –	Lukurmata/Misiton II	*		A A2
1473±377 210-900 (.920) 1790±60 140-260 (.747) or 280-320 (.253) 1630±60 380-480 (.643) or 480-530 (.304) 1490±60 1030-1070 (.385) or 1080-1130 (.411) or 1140- 940±40 1150 (.204) 1040±35 990-1020 820±30 1070±30 960-1000 (.728) or 900-920 (.272) 1070±30 960-1000 (.728) or 900-920 (.272) 1030±35 1040-1070 (.338) or 1080-1130 (.453) or 930±30 1030-1060 (.338) or 1080-1120 (.396) or 1290±50 680-770 1360±40 680-770 1360±30 1280-1300 (.751) or 1300-1120 (.396) or 980±30 1140-1150 (.269) or 980±30 1140-1150 (.269) or 1440-1150 (.265) or 1090-1120 (.269) or	E. P. LF 1 - Ti	acajes wanaku V	Lukurmata/Misiton II	*		A A2
1790±60 140-260 (.747) or 280-320 (.253) 1630±60 380-480 (.643) or 480-530 (.304) 1490±60 1030-1070 (.385) or 1080-1130 (.411) or 1140- 940±40 1130-1070 (.385) or 1080-1130 (.411) or 1140- 1040±35 990-1020 820±30 1070±30 960-1000 (.728) or 900-920 (.272) 1070±30 960-1000 (.728) or 900-920 (.272) 1030±35 1040-1070 (.338) or 1080-1130 (.453) or 930±30 1040-1070 (.338) or 1080-1120 (.396) or 1290±50 690±30 1130-1060 (.35) or 1090-1120 (.396) or 950±30 1130-1060 (.35) or 1090-1120 (.396) or 950±30 11280-1300 (.751) or 1370-1380 (.269) or 980±30 1140-1150 (.269) or 980±30 1140-1150 (.169)			Lukurmata/K'atupata	*		A A2
1630±60 380-480 (.643) or 480-530 (.304) 1490±60 530-640 1490±60 1030-1070 (.385) or 1080-1130 (.411) or 1140- 940±40 1150 (.204) 1040±35 990-1020 820±30 960-1000 (.728) or 900-920 (.272) 1070±30 960-1000 (.728) or 900-920 (.272) 1030±35 1040-1070 (.338) or 1080-1130 (.453) or 930±30 1080-1130 (.453) or 1360±40 640-690 640-690 1290±50 1030-1060 (.35) or 1090-1120 (.396) or 950±30 1280-1300 (.751) or 1370-1380 (.269) 1440-1150 (.269) or 980±30 1140-1150 (.269) or 1440-1150 (.269) or 1440-1150 (.269) or		1 - 2	CK-65 (Kirawi)	*		A
1490±60 530-640 1490±60 1030-1070 (.385) or 1080-1130 (.411) or 1140- 940±40 1150 (.204) 1040±35 909-1020 820±30 1070±30 960-1000 (.728) or 900-20 (.272) 1070±30 960-1000 (.728) or 900-20 (.272) 1030±35 960-1000 (.728) or 900-20 (.272) 1030±35 1040-1070 (.338) or 1080-1130 (.453) or 930±30 1040-1070 (.338) or 1080-1130 (.453) or 1290±50 640-690 (.380-770 1.390+30 1.380+130 (.751) or 1370-1130 (.269) 1280±30 1130-1060 (.351) or 1370-1130 (.269) or 980±30 1140-1150 (.269) or 980±30 1140-1150 (.269) or 1440-1150 (.269) or		1 - 2	CK-65 (Kirawi)	*		A
1030-1070 (.385) or 1080-1130 (.411) or 1140- 940±40		naku IV	CK-65 (Kirawi)	*		A A2
940±40 1150 (.204) 1040±35 990-1020 820±30 1210-1260 1070±30 960-1000 (.728) or 900-920 (.272) 1070±30 960-1000 (.728) or 900-920 (.272) 1030±35 990-1020 990-1020 1360±40 640-690 (.36) or 140-1150 (.209) 1290±50 1030-1060 (.35) or 1090-1120 (.396) or 1280±30 1280±30 11280-1300 (.751) or 1370-1380 (.249) 980±30 11010-1050 (.552) or 1090-1120 (.269) or 1090-1120 (.260) or 109		naku V –		*		
1040±35 820±30 1210-1260 1070±30 1070±30 1070±30 1070±30 1070±30 1030±35 1040-1070 (.728) or 900-920 (.272) 1030±35 1040-1070 (.338) or 1080-1130 (.453) or 930±30 11360±40 640-690 1290±50 1030-1060 (.35) or 1090-1120 (.396) or 950±30 11280-1300 (.751) or 1370-1380 (.249) 1010-1050 (.552) or 1090-1120 (.269) or 980±30 1140-1150 (.169) 1140-1150 (.169)	EPa	ıcajes	CK-65 (Kirawi)	*		A A2
820±30	use or con	struction of	suka kollu	*		A, A3
1070±30 960-1000 (.728) or 900-920 (.272) 1070±30 960-1000 (.728) or 900-920 (.272) 1030±35 990-1020 990-1020 1360±40 640-600 1290±50 1030-1060 (.35) or 1090-1120 (.396) or 950±30 11280-1060 (.35) or 1090-1120 (.396) or 1290±30 1280-1300 (.751) or 1370-1380 (.249) 1010-1050 (.552) or 1090-1120 (.269) or 980±30 1140-1150 (.169)	use or con	struction of	suka kollu	*		A, A3
1070±30 960-1000 (.728) or 900-920 (.272) 1030±35 990-1020 990-1020 1360±40 640-690 640-690 1290±50 1030-1060 (.35) or 1090-1120 (.396) or 950±30 11280-1060 (.35) or 1090-1120 (.396) or 1290±30 1280-1300 (.751) or 1370-1380 (.249) 1010-1050 (.552) or 1090-1120 (.269) or 980±30 1140-1150 (.169)		struction of	suka kollu	*		A, A3
1030±35 990-1020 930±30 1040-1070 (338) or 1080-1130 (453) or 1360±40 640-690 640-690 1290±50 1030-1060 (35) or 1090-1120 (396) or 950±30 11280-1300 (751) or 1370-1380 (249) 1010-1050 (552) or 1090-1120 (269) or 980±30 1140-1150 (169)	2	struction of	suka kollu	*		A, A3
1040-1070 (338) or 1080-1130 (453) or 930±30	use or con	struction of	suka kollu	*		A, A3
930±30 1360±40 640-690 1290±50 680-770 1030-1060 (.35) or 1090-1120 (.396) or 950±30 1140-1150 (.249) 1010-1050 (.562) or 1090-1120 (.269) or 980±30 1140-1150 (.169) 1140-1150 (.169) 1140-1150 (.169)	453) or					
1360±40 640-690 1290±50 680-770 1030-1060 (.35) or 1090-1120 (.396) or 950±30 1140-1150 (.249) 690±30 1280-1300 (.751) or 1370-1380 (.249) 1010-1050 (.562) or 1090-1120 (.269) or 980±30 1140-1150 (.169)	use or con	struction of	suka kollu	*		A, A3
1290±50 680-770 130-1060 (.35) or 1090-1120 (.396) or 950±30 1140-1150 (.254) 690±30 1280-1300 (.751) or 1370-11380 (.249) 1010-1050 (.562) or 1980±30 1140-1150 (.169) or 1140-1150 (.169) or 1140-1150 (.169)	use or con	struction of	suka kollu	*		A, A3
1030-1060 (.35) or 1090-1120 (.396) or 950±30 1140-1150 (.254) 690±30 1280-1300 (.751) or 1370-1380 (.249) 1010-1050 (.562) or 1090-1120 (.269) or 980±30 1140-1150 (.169)	use or con	struction of	suka kollu	*		A, A3
950±30 1140-1150 (.254) 690±30 1280-1300 (.751) or 1370-1380 (.249) 1010-1050 (.562) or 1090-1120 (.269) or 980±30 1140-1150 (.169) 900+30 1000-1040 (.751)	(96) or					
690±30 1280-1300 (.751) or 1370-1380 (.249) 1010-1050 (.562) or 1090-1120 (.269) or 980±30 1140-1150 (.169) 990+30 1000-1040 (.751)	use or con:	struction of	suka kollu	*		A, A3
980±30 1140-1150 (.169) god+30 1000-1040 (.251)		struction of	suka kollu	*		A, A3
990+30	use or con	struction of	suka kollu	*		A, A3
(10.1) 0+01-0001	use or con	struction of	suka kollu	*		A, A3
OS-2559 1220±40 780-880 (.923) use or construction of	use or con	struction of	suka kollu	*		A, A3
OS-2653 1440±45 590-660 use or construction of	use or con	struction of	suka kollu	*		A, A3

** See Ziółkowski et al. (1994)
 *** See Ziółkowski et al. (1994)
 *** Personal communication Dr. Aleksey Vranich, 2000.
 **** Personal communication Dr. JoEllen Burkholder, 2000.
 **** Dates with codes from SMU-2285 till B-91778 have phase context "established" according to results of dating and calibration (Janusek 2003) – not according to sample context.
 (?) Three dates from Loreto Viejo are hard to define its context.

Table 3. Distribution of ¹⁴C dates by relative chronological phases and regions. Distribución de datos ¹⁴C en relación a fases cronológicas y áreas geográficas.

	Titicaca basin & Tiwanaku	Moquegua	Northern Chile	Cochabamba	
Not described / other	51	8	11		70
V / Decadent Derived	25	3		1	29
IV / Classic	8	1		2	11
III / Early	5				5
II	4				4
I	12				12
Total	105	12	11	3	131

mine pit at the end of XIX century. Fragments of textile and bone were submitted to La Jolla laboratory in 1979. These dates were calibrated alone, in another set.

In the second approach, the main purpose was to add absolute date evidence to discuss Ponce Sangines' five epochs scheme. Calendar year determinations obtained after cumulative calibration of the subsets of dates related to phases would have helped in reviewing relationships between relative chronological periods. Unfortunately, from the whole set of Tiwanaku radiocarbon dates, less than half had well-described cultural contexts (Table 3). The subsets of dates related to five phases were formed by 14C determinations from sites in the Titicaca region, as it is the only region where all phase existed. In fact, all phases were represented only in Tiwanaku itself, according to Ponce Sangines. Tiwanaku I phase was represented by six dates, four were originally connected to Tiwanaku II, four to Tiwanaku III, six dates with Tiwanaku IV (two of "Late Tiwanaku IV" (Kolata and Ortloff 2001) context from an undescribed location in the Tiwanaku site, one from Kalasasaya and three from Kantatayita). Twenty-seven dates were associated with Tiwanaku V context: thirteen came from described locations in Tiwanaku (Kolata and Ortloff 1996), and the others were assumed to be Tiwanaku V, because of their non-Tiwanaku precedence (four dates are from Isla del Sol, two from Iwawe, and eight from Lukurmata).

Main Areas of Tiwanaku Cultural Influence

The calibration results of sets chosen by geographic criterion are presented in graphic form in Figure 1 and in Table 4. The picture below shows results for all subsets. For better presentation it was divided into two parts of the same scale. The X axis stands for calendar years BC / AD after calibration. The Y axis stands for a scale of the density of probability for joint calibration sets. Each line represents different "geographical" set of dates. Differences between maxima in graphs result from the fact that probability distributions after calibration have kept a characteristic of normal probability distribution - the area underneath the line is equal to 1.

The results for all dates from the most important region of Tiwanaku culture -the Titicaca basin- are presented by the solid line (Figure 1, upper part). As this figure presents a graphic depiction of the probability distribution after calibration for all dates from the Titicaca basin, not surprisingly, it covers the entire time axis considered for the Tiwanaku culture period. The results show the consistency of the data set: with 68% (1 sigma) of area encompassing the main calibrated age between A.D. 520 and 1060, or approximately 500 years (Table 4). It should be stressed, that the line covers all time intervals suggested in literature for the time of the Tiwanaku state existence. When the group of dates related to Tiwanaku Waru Waru construction and use is excluded, the calibration gives a wider range for the 1 sigma area of probability distribution: A.D. 380-1030. When treated more subtly (Figure 2, upper section), dates from the Titicaca basin also show some interesting tendencies. Calibrated alone, the fourteen dates from Waru Waru, at 1 sigma, have a small range (Table 4). The main range, A.D. 950-1070 (.500), shows little coincidence with the main range of highest probability for the set containing 54 of the Tiwanaku

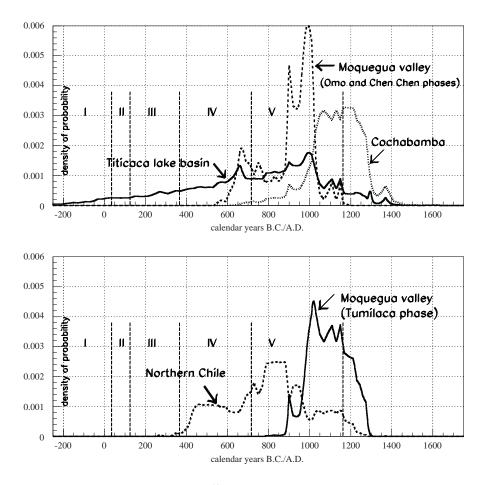


Figure 1. Results of Tiwanaku cumulative calibration of ¹⁴C dates, all regions combined. *Resultados calibraciones de ¹⁴C de las regiones presentadas*.

period dates (590-1020 (.972) at the 1 sigma level) and no coincidence at all with the set of twelve Late Formative dates (10 B.C. - A.D. 560 (.992) at 1 sigma, and 839 B.C. - A.D. 723 at 2 sigma level. However, more data is necessary because such important areas as Juli Pomata, Huatta or Umasuyu (according to J.W. Janusek's communication with Charles Stanish mentioned in Janusek 2003) are still not represented in this Tiwanaku radiocarbon database.

The most important area of Tiwanaku influence found outside the Titicaca basin so far is represented by the remains of a Tiwanaku administrative center in Moquegua valley (Kolata 1993a). During the second phase of Tiwanaku occupation (Chen Chen phase) the Moquegua valley was probably controlled from Chen (Kolata 1993a). I

do not understand this sentence, as it is it does not make much sense. The subset contains only four dates and results are generally in accordance with the interpretations of Tiwanaku state activity in Moquegua. The time interval between A.D. 600 and 700 (630-720 (.789) or A.D. 740-770 (.211) at 68% probability level) is related to a single date that represents the Omo phase. About 100 years later the second period of occupation of the valley, the Chen Chen phase, begins. This interval lasts from ca. A.D. 900 till 1050 (890-920 (.255) or 930-1010 (.745) at a 68% probability level) and marks the supposed main period of Tiwanaku expansion into the Moquegua valley (Kolata 1993a).

Date ranges for two Tiwanaku phases are separated by a few decades (Figure 1, upper part; Figure 2, lower part). However, despite the limited

Table 4. Calibration results - highest probability intervals for the subsets of dates from different regions of Tiwanaku cultural influence.

Resultados de calibraciones de intervalos altamente probables por subseries de datos de diferentes regiones bajo la influencia de Tiwanaku.

Region	Calibration	ı subset	Probability interval of calend	lar age (AD) after calibration
			1 sigma	2 sigma
Titicaca basin	Subset A 9	98 dates	520-1060 (.865)	BC 60-1310 AD (.994)
	84 dates (withou	t Waru Waru)	376-1034 (.980)	BC 120-1280 AD
	Late	17 dates	21-539	BC 790-660 AD
	Formative 1 2	18 dates	6 BC - 560 (.992)	839 BC - 723 (.957)
	Tiwanaku 4 5	(54 dates)	592-1021 (.972)	317-1308 (.987)
			950-1070 (.500)	930-1170 (.544)
	Waru V	Varu	or 1070-1160 (.215)	or 630-690 (.115)
			or 630-690 (.115)	or 1180-1300 (.118)
Moquegua Valley	Omo	(1 data)	630 - 720 (.789)	560-820 (.981)
			or 740 - 770 (.211)	
	Chen Chen	(3 dates)	890 - 920 (.255)	780-1040 (.973)
			or 930 - 1010 (.745)	
	Tumilaca	(8 dates)	970 - 1210	850-1260 (.964)
Northern Chile valleys	(6 dates from	n funeral	430 - 550 (.189)	410-1160 (.994)
•	conte	xt)	or 660 - 970 (.811)	
Cochabamba	(3 dates from fu	neral context)	1030 - 1250	860-1330 (.969)

quantity of dates, this might eventually support the theory of an ephemeral character of Tiwanaku presence during the Omo phase and abandonment of the valley at the end of that phase, before the new and limited colonization by Chen Chen phase settlers (Owen 1994). Again, more data will be necessary to better evaluate the evidence, especially in light of new discoveries at La Cantera, that may suggest coexistence of two Tiwanaku communities, Omo and Chen Chen in the valley (Owen 1999:1).

The obtained time ranges for Tiwanaku state in Moquegua valley were compared to time range of post-Tiwanaku cultural manifestations. According to Owen (1992), during the Tumilaca phase former Tiwanaku colonists abandoned the Altiplano state colonies at the middle part of the valley and moved to its upper and coastal areas. The eight samples of this phase came from sites in the coastal area of the valley and from a Chen Chen cemetery. Calibration results presented graphically in Figure 1 point to the time interval of A.D. 970-1210 (at 68% probability level). It is worth mentioning the cumulative calibration of post-Tiwanaku Tumilaca phase and Chen Chen phase dates partially over-

lap. Two distinct periods in political and cultural history of the region, probably overlapped for almost half a century. If supported by more data, this may be cautiously interpreted as a suggestion for the gradual fall of the Tiwanaku State organization and administration in Moquegua valley. Colonists would have begun to abandon the middle valley and settle in other parts of the region even before A.D. 1000, at the culmination of Tiwanaku state activity, which relates to the Chen Chen phase. The intensive colonization in Chen Chen phase, reminds D.L. Browman's interpretations (1981) of the dramatic efforts taken to stop political and economic recession in the core area of the state.

Calibration results of the dates from sites in Northern Chilean valleys (Azapa and San Pedro de Atacama) gave the greatest probability density interval between ca. A.D. 650 and 950 (at 68% probability level) (Table 4). Later and earlier periods of high probability density, between ca. A.D. 400 and 600 (430-550 (.189) at 68% probability level), and after A.D. 1000-1200 are also possible, but less probable. Because the samples were taken from burial, not settlement contexts it should be remembered that these results can be interpreted

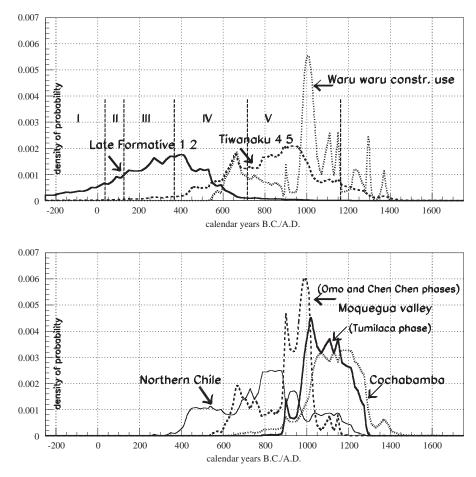


Figure 2. Results of cumulative calibration of ¹⁴C dates from all regions. Titicaca basin dates were divided into three subsets. *Resultados de calibraciones de ¹⁴C de todas las regiones. Los datos de la cuenca del Titicaca fueron divididos en tres subseries.*

only in terms of vague Tiwanaku influence. It should be stressed that most Chilean dates are significantly later than the only ¹⁴C determination from the San Pedro de Atacama oasis, Quitor-6 site (after calibration: A.D. 210-530 (.953). According to researchers (Kolata 1993:275-280; Stanish 1993:83), these areas experienced a different type of Tiwanaku influence, with the oasis thought to be a trading outpost or factory with a small Tiwanaku elite community, while the other valley colonies, in contrast, were established rather for agricultural production or mineral collecting. The calibration of date from Quitor-6 falls within the San Pedro II period (ca. A.D. 300-900), according to Llagostera and Costa (1984).

The last calibrated set of dates came from Cochabamba. The results gave an unexpected range

of Tiwanaku activity in the region. The interval of the highest probability density lies between ca. A.D. 1000 and 1250 (Table 4) (at 68% of probability level). These results suggest a very late date of contact, but we need more dates to support this conclusion. These results also contradict the hypothesis that Cochabamba represented a Tiwanaku agricultural province (i.e. Byrne Caballero 1984; Kolata 1993a). Moreover, no evidence of regional centers have been found such as those in the Titicaca basin and Moquegua valley (Kolata 1993:270) and, according to Higueras (1996), there is no evidence for a change in settlement pattern during the Middle Horizon either. Cochabamba results would also contradict Browman's (1981) vision of contacts between Tiwanaku and Cochabamba valleys, with Cochabamba being eliminated

from Tiwanaku political and economic domination long before the Tiwanaku decline. Perhaps a possibility of late Tiwanaku or post Tiwanaku peoples migration might be taken into account instead.

Time Relationships Between Relative Chronological Phases

The calibration of sets for epochs I-III (Figure 3, Table 5) gave comparable intervals of probability distribution for each subset. There is also very early evidence that goes back to ca 800 B.C. and even 2000 B.C. in the case of the Tiwanaku I subset. However, some dates may be from questionable and doubtful cultural contexts, though they were described as Tiwanaku I epoch. The upper bound-

ary for the three first phases of Ponce Sangines' scheme is A.D. 500-550 (see also results for Late Formative 1-2 subset, Figure 2, Table 4). Peaks for sets of Tiwanaku IV and V dates overlap partially, but the highest probability density value for each set is distinct. Figure three presents the results of joint calibration of the sets of dates from distinct relative phases and contexts.

Conclusions

I. The first important observation that results from these analyses concerns the Ponce Sangines' chronology. The joint calibration of the described subsets of dates supports the thesis of coincidence of epochs I, II and III in terms of stylistic criteria. Thus there is insuffi-

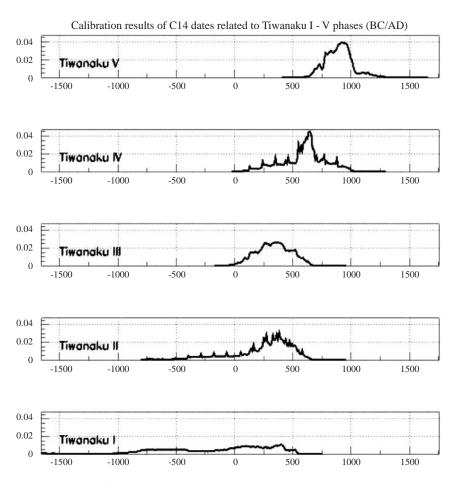


Figure 3. Results of calibration of ¹⁴C date sets compared to Carlos Ponce Sangines' cultural phases.

Resultados de calibraciones de datos de ¹⁴C comparados con las fases culturales de Carlos Ponce Sangines.

Table 5. Calibration results - highest probability intervals for the subsets of dates compared to Carlos Ponce Sangines' cultural phases.

Resultados de calibraciones con las más altas probabilidades de intervalos para el subgrupo de datos comparado con las fases culturales de Carlos Ponce Sangines.

Calibration subset	Probability interval of calendar	age (A.D.) after calibration
	1 sigma	2 sigma
1- Tiwanaku I (6 dates)	B.C. 800 - 400 (.298)	B.C. 940 - A.D. 540 (.846)
	or B.C. 120 - A.D. 470 (.657)	
2- Tiwanaku II (4 dates)	130 - A.D. 540 (.896)	B.C. 370 - A.D. 630
3- Tiwanaku Early (4 dates)	220 - A.D. 470 (.860)	70 - 620
4- Tiwanaku IV (6 dates)		
or (5 dates without P-533)*	340 - A.D. 880	
	(510 - A.D. 780)*	210 - 980 (.840)
	(220 - A.D. 970)	
5- Tiwanaku V (27 dates)	770 - A.D. 1010	600-1060 (.966)

- cient support for the hypothesis of a distinct epoch II (Mathews 1995). Phases IV and V are also dubious in nature, though they have been represented by rather stylistically different materials, however, the cumulative calibration results did not support such temporal distinction.
- II. Regarding geographic approaches, the time interval of Tiwanaku culture dissemination can be divided into the following main periods: (1) the period before dissemination, which lasts from the beginning of the first millennium until ca. A.D. 400, which is supported by absolute dating evidence from the Titicaca basin, or what is called the 'matrix' of Tiwanaku; (2) the period of spread of Tiwanaku influence outside the Titicaca basin in the second half of first millennium (ca. A.D. 400 - 1200) over the areas of: (a) Moquegua during the Omo phase and Northern Chile (probably to San Pedro de Atacama) between A.D. 400 and ca. 750, and, (b) again later including Moquegua during the Chen Chen phase, Northern Chile, and Cochabamba.

Thus, the most important periods of Tiwanaku cultural dissemination may be divided into overlapping phases that related to the region at which the main Tiwanaku activities concentrate. Between ca. A.D. 600 and 900, the valleys of Northern Chile, and Moquegua (at least according to one date related to the Omo phase of prehistory of the valley) were under Tiwanaku influence. Later, during the Chen Chen phase of colonization of the valley, the main area of Tiwanaku interest was Moquegua, where the traces of provincial character have been

documented. The last phase, connected with Tiwanaku or post Tiwanaku traces, was represented in Cochabamba, and Moquegua (by the Tumilaca or post-Tiwanaku phase, during and after the fall of the Moqueguan provincial center).

This hypothesis is not well documented, since there is a significant lack of data for Tiwanaku areas of influence. In some cases, new dates exist, for example for sites in the Moquegua valley, San Pedro de Atacama (personal communication Conklin 2000), but they have not yet been published. There are also some interesting possibilities for direct dating of organic artifacts, i.e. wooden snuff tablets (*tabletas de rape*), or textiles using AMS techniques which require little material.

Dating and cumulatively calibrating sets of dates from different provinces of the Tiwanaku area of influence would sharped our view of the processes of the territorial development and changes in strategy of the Tiwanaku state. Combining archaeological evidence and direct dating in this way is effective only when more radiocarbon dates, of well described samples from known cultural contexts are produced and published.

Acknowledgement: I would like to thank Prof. Mariusz Ziółkowski for giving me the opportunity and idea to write this paper and for helping in its preparation. I thank Dr. Adam Michczyński and Prof. Krzysztof Makowski for his kind advise and interest. I also deeply appreciate help and information obtained from Prof. Patrick R.Williams, Dr. Matthew Seddon, Dr. JoEllen Burkholder, Dr. Alexei Vranich, Prof. Michael Moseley, Prof. William Isbell and Prof. Clark Erickson.

References

Albarracin-Jordan, J.

1996 Tiwanaku: Arqueología Regional y Dinámica Segmentaria, Plural Editores, La Paz.

Bennett, W.

1934 Excavations at Tiahuanaco. Anthropological Papers of the American Museum of Natural History 34:359-494.Berenguer, J.

1978 La problemática Tiwanaku en Chile: visión retrospectiva. *Revista Chilena de Antropología* 1:17-40.

Binford, M. W., A. L. Kolata, M. Brenner, J. W. Janusek, M. T. Seddon, M. Abbot, and J. Curtis

1997 Climate Variation and the Rise and Fall of an Andean Civilization. *Quaternary Research* 47:235-248.

Browman, D. L.

1978 Toward the development if the Tiahuanaco (Tiwanaku) State.In *Advances in Andean Archaeology*, edited by D. L., Browman, pp. 327-349. Mouton, The Hague.

Browman, D. L.

1981 New light on Andean Tiwanaku. New Scientist 69:408-419.

Byrne de Caballero, G.

1984 El Tiwanaku en Cochabamba. *Arqueología Boliviana* 1:67-71.

Burkholder, J.

1997 Tiwanaku and the anatomy of Time: A New Ceramic Chronology from the Iwawe Site, Department of La Paz, Bolivia. Doctoral Dissertation, Anthropology Department, State University of New York, Birmington.

Erickson, C.

1988 An Archaeological Investigation of Raised Field Agriculture in the Lake Titicaca Basin of Peru. Doctoral Dissertation, University of Illinois in Urbana.

Goldstein, P.

1989 Omo, a Tiwanaku Provincial Center in Moquegua. Unpublished Ph.D. Dissertation, Department of Anthropology, University of Chicago.

Graffam, G.

1992 Beyond state collapse: rural history, raised fields, and pastoralism in the south central Andes. *American Anthro*pologist 94: 882-904.

Higueras, A.

1996 The territorial Expansion of the Tiwanaku Polity in the South Central Andes: a Study of Human - Land relationships in the Cochabamba Valleys, Bolivia. Paper presented at the 61st Annual Meeting of the Society for American Archaeology, New Orleans.

Janusek, J. W.

1999 Craft and Local Power: Embedded Specialization in Tiwanaku Cities. *Latin American Antiquity* 10:107-131.

2003 Vessels. Time, and Society: Toward a Ceramic Chronology in the Tiwanaku Heartland. In *Tiwanaku and Its Hinterland. Archaeology and Paleoecology of an Andean Civilization. Part II: Urban and Rural Archaeology*, edited by Alan Kolata pp. 30-91.

Kolata, A.

1986 The Agricultural Foundations of the Tiwanaku State: aView from the Heartland. *American Antiquity* 51:748-762.1991 The Technology and Organization of Agricultural Pro-

duction in the Tiwanaku State. Latin American Antiquity 2:99-125

1993a *Tiwanaku. Portrait of an Andean Civilization.*Blackwell, Cambridge.

1993b Understanding Tiwanaku Conquest, Colonization and Clientage in the South Central Andes. In *Latin American Horizons*, edited by Don Rice, pp. 193-224. Dumbarton Oaks, Washington D.C.

Kolata, A. L., C. Ortloff

1996 Decline of the Tiwanaku State. In *Tiwanaku and Its Hinterland. Archaeology and Paleoecology of an Andean Civilization. Part I: Agroecology*, edited by Alan Kolata pp. 171-201.

Mathews, J. E.

1995 A Re-evaluation of the Formative Period in the Southeast Titicaca Basin. *Journal of the Steward Anthropologi*cal Society 23(1-2):83-110.

Núñez A., L.

1965 Desarrollo cultural prehispánico del Norte de Chile. *Estudios Arqueológicos* 1:37-115.

Owen, B.

1992 Coastal Colonies and the Collapse of Tiwanaku: The Coastal Osmore Valley, Peru. Paper presented at the 57th Annual Meeting of the Society for American Archaeology. Pittsburgh.

1994 Were Wari and Tiwanaku in Conflict, Competition, or Complementary Coexistence? Survey Evidence from the Upper Osmore Drainage, Peru. Paper presented at the Society for American Archaeology 59th Annual Meeting, Los Angeles, California.

1999 Recent discoveries in Moquegua. http://www.angelfire.com/pe/constituyo/DiscoveriesE.html

Ponce Sangines, C.

1969 Descripción Sumaria del Templete Semisubterráneo de Tiwanaku. Academia nacional de ciencias de Bolivia: 20. La Paz.

1981 *Tiwanaku: Espacio, tiempo y cultura*. Editorial Los Amigos del Libro, La Paz y Cochabamba.

RADIOCARBON. La Jolla Laboratory Results VII. 1979:21:2, 195-6.

Seddon, M. T.

1998 Ritual, Power, and the Development of a Complex Society: The Island of the Sun and the Tiwanaku State. Doctoral Dissertation, Department of Anthropology, University of Chicago.

Stanish, C.

1992 Ancient Andean Political Economy. University of Texas. Austin.

1997 Nonmarket Imperialism in the Prehispanic Americas: the Inca Occupation of the Titicaca Basin. *Latin American Antiquity* 8:195-215.

Stuiver, M. and G. W. Pearson

1993 High Precision Bidecadal Calibration of the Radiocarbon Time Scale, A.D. 1950 - 500 B.C. and 2500-6000 B.C. Radiocarbon 35:1-23.

Stuiver, M., P. J. Reimer, E. Bard, J. W. Beck, G. S. Burr, K. A. Hughen, B. Kromer, F. G. Mc Cormac, J. Plicht, and M. Spurk.

1998 INTCAL98 Radiocarbon Age Calibration, 24000-0 cal BP *Radiocarbon* 40 (3):1041-1083.

Torres, C. M

1987 The Iconography of the Prehispanic Snuff Trays from San Pedro de Atacama, Northern Chile. *Andean Past*: 1:191-245. Uhle, M.

1903 Pachacamac. Report of the William Pepper, M. D., LL. D., Peruvian Expedition of 1896. Philadelphia: University of Pensylvania Press.

Wassen, H. S.

1972 A Medicine-Man 's Implements and Plants in a

Tihuanacoid Tomb in Highland Bolivia. *Ethologiska Studier* 32:7-114, Goeteborg.

Williams, P. R.

2001 Cerro Baúl: A Wari Center on the Tiwanaku Frontier. Latin American Antiquity. 12(1):67-83

Ziółkowski, M., M. Pazdur, A. Krzanowski, and A. Michczyński 1994 Andes. Radiocarbon database for Bolivia, Ecuador and Peru. Andean Archaeological Mission of the Institute of Archaeology, Warsaw University & Gliwice Radiocarbon Laboratory of the Institute of Physics, Silesian Technical University. Warszawa-Gliwice.

Notes

- This article bases on my Master's thesis written under supervision of Professor Mariusz S. Ziółkowski at the Institute of Archaeology of Warsaw University and paper presented at 50 ICA, Warsaw, 12th July 2000.
- ² Computer programs used for the calibration were the Gliwice Calibration Program GdCalib (Pazdur and Michczyński 1989) and the Calib 4.3 of University of Wash-

ington Quaternary Isotop Lab. Both programs used calibration curve from 1998 (Stuiver et al. 1998 Radiocarbon 40:1041-1083). I used GdCalib software DOS system version for huge sets of dates to provide data for pictures realised in PAW (Physics Analysis Workstation package) and Calib 4.3 to obtain calibrated ranges from probability distribution (calibration method B) presented in tables.