Pereira, Aline C.; Oliveira, Denílson F.; Silva, Geraldo H.; Figueiredo, Henrique C.P.; Cavalheiro, Albero J.; Carvalho, Douglas A.; Souza, Luciana P.; Chalfoun, Sára M.

Identification of the antimicrobial substances produced by Solanum palinacanthum (Solanaceae)

Academia Brasileira de Ciências
Rio de Janeiro, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=32713466004
Identification of the antimicrobial substances produced by
Solanum palinacanthum (Solanaceae)

ALINE C. PEREIRA1, DENILSON F. OLIVEIRA1, GERALDO H. SILVA2, HENRIQUE C.P. FIGUEIREDO3, ALBERTO J. CAVALheiro2, DOUGLAS A. CARVALHO4, LUCIANA P. SOUZA1 and SÁRA M. CHALFOUN5

1Departamento de Química, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000 Lavras, MG, Brasil
2Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista “Júlio de Mesquita Filho” R. Francisco Degnis s/n, 14800-900 Araraquara, SP, Brasil
3Departamento de Medicina Veterinária, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000 Lavras, MG, Brasil
4Departamento de Biologia, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000 Lavras, MG, Brasil
5Centro Tecnológico do Sul de Minas, Empresa de Pesquisa Agropecuária de Minas Gerais Caixa Postal 176, 37200-000 Lavras, MG, Brasil

Manuscript received on September 9, 2007; accepted for publication on April 14, 2008; presented by FERNANDO GALEMBECK

ABSTRACT

To find out natural antimicrobial agents as alternative in therapeutics and to preserve food, the methanol extract of *Solanum palinacanthum* aerial parts was submitted to purification steps guided by antibacterial and antifungal assays. As a consequence, the flavonoid rutin and 3,5-dicaffeoylquinic acid were isolated by column chromatography and high performance liquid chromatography, and identified by mass and nuclear magnetic resonance spectrometry. Minimal inhibitory concentrations (MIC) of the quinic acid derivative against *Aeromonas hydrophila*, *Bacillus subtilis*, *Staphylococcus aureus* and the fungus *Aspergillus ochraceus* were 250, 1000, 1000 and >568 μg/mL, respectively. Against the same microorganisms, MIC for rutin were 1000, >1000, >1000 and 35 μg/mL, respectively. Rutin was very promising for *A. ochraceus* control, since its MIC against such fungus was close to the one observed for benzalkonium chloride, which is used as a fungicide in Brazil.

Key words: *Solanum palinacanthum*, 3,5-dicaffeoylquinic acid, rutin, antimicrobial activity.

INTRODUCTION

Food-borne diseases correspond to a world problem that can be caused by microorganisms or their toxic metabolites. An example is ochratoxin A, a nephrotoxic, hepatotoxic and carcinogenic substance produced by some fungi of the *Aspergillus* genus that have been found in stored food such as coffee beans. It is also possible to mention enterotoxins produced by *Staphylococcus aureus*, which cause headache, diarrhea and vomit (Jay 2000). As a consequence, the use of additives to protect food against microorganisms is of great interest to the food industry. However, consumers are increasingly avoiding products prepared with preservatives of chemical origin due to their undesirable effects on human health. A promising alternative to achieve quality improvement in food commodities and a high degree of safety with respect to pathogenic microorganisms resides on the use of natural products (Rauha 2000). As plants have been important sources of new antimicrobial agents (Rios and Recio 2005), a preliminary evaluation of local plant extracts to identify those with antibacterial and antifungal properties was carried out. One of the best results was observed for the aerial parts of *Solanum palinacanthum* Dunal (Solanaceae), which presented ac-
tivity against *Aeromonas hydrophila*, *Bacillus subtilis*, *Staphylococcus aureus* and *Aspergillus ochraceus*. *S. palinacanthum* is a perennial herb or subshrub which spreads by means of slender, horizontal rhizomes. It is common in pastures, roadsides and similarly disturbed areas in Brazil (Coleman and Coleman 1982), where it has been used to treat skin diseases (Alves et al. 2006). Although its *in vitro* antimicrobial activity has already been briefly described in the literature by another research group (Alves et al. 2006), to the best of the authors’ knowledge no work has ever been done to identify the antimicrobial metabolites produced by *S. palinacanthum*. Thus, the methanolic extract of such plant leaves was submitted to purification steps guided by antimicrobial assays in order to isolate and identify those substances.

MATERIALS AND METHODS

GENERAL EXPERIMENTAL PROCEDURES

All reagents used were of recognized analytical grade. Acetic acid and methanol were HPLC-grade. During purification steps, solvent concentrations were carried out in a rotary evaporator at 35°C followed by 24 h in a freeze-drier. Except when mentioned otherwise, all fractions were submitted to antibacterial diffusion assays and antifungal assays to direct fractionation. Column chromatography (CC) was carried out on silica gel 60 (230-400 mesh, Merck) or Amberlite XAD-16 (Sigma). Mass spectrometry (MS) analyses were performed on an Agilent 1100 LC/MS Trap equipped with an electrospray interface. Samples (1.0 mg) were dissolved in water:methanol (1:1, 1.0 mL) and 20 μL were directly injected into the interface. Deuterated dimethyl sulphoxide (DMSO-d6) was used as solvent for nuclear magnetic resonance (NMR) analyses, performed on a Varian instrument (1H NMR: 500 MHz and 13C NMR: 125 MHz) using solvent peak as reference. Two dimensional NMR techniques (COSY, HMOC, HMBC and NOESY) were performed using standard Varian programs.

EXTRACTION AND ISOLATION PROCEDURE

Fresh leaves of *Solanum palinacanthum* Dunal (Solanaceae), collected in Lavras city, Minas Gerais State (Brazil), and identified at Herbarium ESAL (ESAL 06644), at Universidade Federal de Lavras, were submitted to exhaustive methanol extraction at room temperature. Part of the crude extract was submitted to the antibacterial (10 mg/mL) and antifungal (4 mg/mL) assays. Then, 10 g of the *S. palinacanthum* crude extract were extracted exhaustively with hexane, ethyl acetate and methanol. A 3.5 g aliquot of the fraction soluble in methanol was submitted to CC on silica gel. As eluents were used methanol, water and 0.1% HCl. Part of the active material eluted with methanol (400 mg) was submitted to CC on Amberlite, using water and methanol as mobile phases. Part of the fraction eluted through the resin with methanol (176 mg) was purified on a HPLC system (Varian equipped with a 9050 UV detector at 254 nm, 9012 ternary pump and 9300 automated injector) using a Phenomenex Gemini silica C18 column (5μm, 250 × 10 mm). Gradient of water:methanol (80:20 to 32:68 in 16 min, 32:68 to 0:100 during 10 min) at 4.5 mL/min was used to elute substances, yielding seven fractions. Fraction six (F6, 27 mg, eluted between 14.5-15.0 min) and fraction seven (F7, 68.2 mg, eluted between 15.0-25.0 min) presented antimicrobial activity. F6 (20 mg) was purified on the same HPLC column using a 0.1% acetic acid:methanol (50:50) solution at 4.5 mL/min as mobile phase, which resulted in only one active fraction (rutin, 5.0 mg, elution at 8.0-8.6 min). For the purification of F7 (20 mg), a 0.1% acetic acid: methanol (45:55) solution at 4.5 mL/min was used as mobile phase, resulting in one active fraction (3,5-dicaffeoylquinic acid, 7.4 mg, 7.7-8.5 min). NMR and MS analysis were employed to identify both substances.

ANTIBACTERIAL ASSAYS

Antibacterial activity was evaluated in duplicates, with four standard bacterial strains acquired from the American Type of Culture Collection (ATCC, USA): *Aeromonas hydrophila* ATCC 7966, *Bacillus subtilis* ATCC 6633, *Pseudomonas aeruginosa* ATCC 27853 and *Staphylococcus aureus* ATCC 25923. Bacteria were grown in tryptic soy agar (TSA, Acumedia, USA), during 24 h at 37°C. From each culture, a cell suspension was prepared with an aqueous 0.85% NaCl solution and adjusted to 0.5 MacFarland turbidity. In the next step, a swab was used to inoculate bacteria on the surface of Müeller-Hinton agar (Merck, Germany) plates (95 × 15 mm). Subsequently, 40 μL from each sample
nal concentrations ranging from 5,000 to 9 μg/mL. Ten twofold serial dilutions were prepared to evaluate at approximately 4.0 mg/mL. Czapek yeast extract agar (CY A) (Kulwant et al. 1991) was sterilized and the plate was kept at 25°C, with a 12 h photoperiod, during 48 h. Assays were carried out with three repetitions, employing benzalkonium chloride and DMSO as positive and negative controls, respectively. Those samples which did not allow fungal growth were considered active.

Minimal inhibitory concentrations were obtained by a broth microdilution assay, using Czapek yeast extract without agar (CYB) and standard fungal inoculums (1 × 10⁶ spores). The crude extract and the isolated substances were dissolved in DMSO (96.0 mg/mL and 12.5 mg/mL, respectively) and diluted with CYB (16 mg/mL and 1.14 mg/mL, respectively). Ten twofold serial dilutions were prepared to final concentrations ranging from 8,012.0 to 1 μg/mL (crude extract) and 568.0 to 1.1 μg/mL (isolated substances). After 48 h at 25°C, with a 12 h photoperiod, MIC was the lowest concentration of the tested substance that prevented fungal growth.

RESULTS AND DISCUSSION

Up to now only a very brief report on the S. palinacanthum antimicrobial activity has been published (Alves et al. 2006). According to the authors, such plant extract could inhibit in vitro the growth of Staphylococcus aureus and Candida albicans. Some studies were also found in the literature on the antibacterial properties of other species of the Solanum genus. For example, S. torvum showed activity against Bacillus subtilis, B. cereus, Pseudomonas aeruginosa and S. aureus (Wiart et al. 2004), while S. nigrum was active against Salmonella typhi (Rani and Khullar 2004). S. trilobatum was able to reduce bacterial load in an aquaculture system (Citarasu et al. 2003) and S. incaum could inhibit the growth of B. subtilis, B. cereus, B. pumilus, Enterobacter aerogenes, E. cloacae, Micrococcus kristinae and S. aureus (Kambizi and Afolayan 2001). Similarly, in this study it was observed that S. palinacanthum prevented the growth of A. aeruginosa, B. subtilis, S. aureus and the fungus A. ochraceus, but P. aeruginosa, a resistant bacterium to several antimicrobial agents, was not affected by the methanol extract of that plant (Table I).

The fractionation of such extract guided by antimicrobial assays yielded two substances. One of them, isolated as a pale yellow residue, presented NMR spectra in perfect agreement with data previously reported.
TABLE I

Inhibition zone diameter (IZD), minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) for the crude methanol extract of Solanum palinacanthum aerial part.

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>IZD (mm)</th>
<th>MIC (μg/mL)</th>
<th>MBC (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeromonas hydrophila</td>
<td>12.5</td>
<td>1250</td>
<td>1250</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>9.5</td>
<td>5000</td>
<td>> 5000</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>– a</td>
<td>– a</td>
<td>– a</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>9.5</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>Aspergillus ochraceus</td>
<td>– b</td>
<td>8012</td>
<td>– b</td>
</tr>
</tbody>
</table>

a no inhibition. b not performed.

Fig. 1 – Antimicrobial substances isolated from Solanum palinacanthum.

for quercetin 3-O-α-L-rhamnopyranosyl-(1-6)-β-D-glucopyranoside (rutin, Fig. 1) (Lee et al. 2004, Niassy et al. 2004, Dubber et al. 2005). The identification of rutin was corroborated by MS analysis, since in the negative mode two peaks at m/z 609 [M−H]− and 645 [M+Cl]− could be observed. In the positive mode a peak at m/z 633 [M+Na]++ was detected.

Rutin, a flavonoid widely distributed in the plant kingdom, presents several biological activities. It has already been isolated from some species of the Solanum genus, like S. tuberosum (Lewis et al. 1998), S. lycopersicum (Van der Rest et al. 2006). However, to the best of author’s knowledge, this is the first report on the isolation of such substance from S. palinacanthum. When submitted to broth microdilution assays (Table II), it presented low antibacterial activity. Nevertheless, MIC value against A. ochraceus was close to the one observed for benzalkonium chloride, the only fungicide used in Brazil to control such fungus in coffee beans (Ministério da Agricultura, Pecuária e Abastecimento. Sistema de Agrotóxicos Fitossanitários 2006). Although the antimicrobial properties of rutin have already been described (Cushnie and Lamb 2005, Van der Watt and Pretorius 2001), its potential to control A. ochraceus, a food-borne pathogen in stored food, especially coffee beans, has not been previously reported.

The second active substance was isolated as a light yellow residue whose NMR spectra were in perfect agreement with data (Carnat et al. 2000, Beninger et al. 2004, Clifford et al. 2005) registered in the literature for 3,5-dicaffeoylquinic acid (Fig. 1). In the positive mode, MS spectra presented peaks at m/z 555 [M+K]++, 539 [M+Na]++ and 517 [M+H]++, while in the negative mode a peak at m/z 515 [M−H]− was observed. Although caffeoylquinic acid derivatives are known as coffee components, they are widespread in plants (Guerrero et al. 2001), including those of the Solanum genus. Concerning 3,5-dicaffeoylquinic acid specifically, it has been isolated from S. melongena (Whitaker and Stommel 2003),...
but the literature reveals no information on the presence of such caffeic acid derivative in *S. palinacanthum*. Other researchers reported the antibacterial and antifungal activity of this substance (Zhu et al. 2004) as well as its potent antiviral activity (Li et al. 2005). Antiproliferative, tirosinase inhibitory and antihypertensive activity were also attributed to this compound (Iwai et al. 2004, Mishima et al. 2005).

Summarizing, the substances responsible for the antimicrobial properties of the *S. palinacanthum* leaves extract have been isolated and identified as rutin and 3,5-dicaffeoylquinic acid. Although their in vitro antibacterial activities were not as pronounced as expected, rutin was very promising to control the fungus *A. ochraceus*.

ACKNOWLEDGMENTS

This work was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

REFERENCES

An Acad Bras Cienc (2008) 80 (3)

