Bergue, Cristianini T.; Govindan, Abiraman
Eocene-Pliocene deep sea ostracodes from ODP site 744A, Southern Indian Ocean
Academia Brasileira de Ciências
Rio de Janeiro, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=32717619021
Eocene-Pliocene deep sea ostracodes from ODP site 744A, Southern Indian Ocean

CRISTIANINI T. BERGUE1 and ABIRAMAN GOVINDAN2

1Universidade do Vale do Rio dos Sinos, Laboratório de Micropaleontologia
Av. Unisinos, 950, 93022-000 São Leopoldo, RS, Brasil
2Asian Biostratigraphic Service, H-53, Central Avenue, Korattur, Chennai, 600080, India

Manuscript received on June 10, 2008; accepted for publication on April 14, 2010

ABSTRACT
The Eocene-Pliocene deep sea ostracodes from the ODP site 744A (Kerguelen Plateau) are herein studied under the taxonomic and paleoecologic aspects. 28 species are identified, being the genera Krithe, Cytherella and Dutoitella the most diversified. A faunal threshold was recorded in the Early Oligocene, which is tentatively explained under the knowledge of the paleoceanographical studies carried out not only in the Kerguelen Plateau but also in adjacent areas. The faunal turnover and variations in both richness and abundance possibly reflect the inception of psychrosphere and the influence of hydrological changes in the preservation of carapaces. Moreover, the influence of those changes on carbonate preservation is discussed as the cause of faunal impoverishment in the upper portion of the core.

Key words: Cenozoic, ostracodes, paleoceanography, paleozoogeography.

INTRODUCTION
Deep sea ostracode research has developed significantly in the last few decades, with improved taxonomic, ecologic and zoogeographic information. Studies carried out from 1970 onwards (see Benson 1988 and Cronin et al. 2002 revisions) brought evidence that continental slopes and oceanic basins are inhabited by well-diversified and distinct faunas. The distribution, diversity and abundance of slope and abyssal plain assemblages are strongly influenced by the local hydrologic structure as well as climatic driven oceanographic events, even over short timescales (Ayress et al. 1997, Yasuhara et al. 2008).

The Cenozoic deep sea ostracodes have their origin from Late Cretaceous shallow water stocks (Benson 1975). According to this author, a worldwide faunal change at approximately 40 Ma established an oceanic psychrosphere adapted to an environment that was deep, cold and poor in carbonate. However, Majoran and Dingle (2002) suggested that this model does not hold for all oceanic basins. In fact, ostracode research has lagged behind the paleoceanographic community’s advances in understanding deep-sea circulations, bottom water temperatures and its relationship to Cenozoic climate evolution. This results in part from the limitations imposed by the ecologic characteristics of ostracodes and the research lines usually developed.

The Eocene-Oligocene Period experienced accelerated global cooling that influenced ocean circulation, productivity and sedimentation of oceanic basins (Zachos et al. 2001a, Pälike et al. 2006). Climatic events in this interval record mainly the establishment of oceanic gateways and the beginning of the Antarctic Circumpolar Current (Diekmann et al. 2004). For the excellent record of these events, the Southern Indian Ocean is one of the most studied oceans for paleoceanographic purposes. The ODP site 744A, placed at the Kerguelen Plateau, is part of that record.
Kerguelen Plateau, is uniquely positioned to record the climatic evolution of the Southern Ocean region and its hydrologic changes. Studies on the cored material of this site include Huber (1999) on planktonic foraminiferal biozonation, Schröder-Adams (1991) on benthic foraminifera, Caulet (1991) on radiolarian biostratigraphy, and Baldauf and Barron (1991) on diatom correlation. Details of the lithostratigraphy of this site are outlined in Barron et al. (1991). However, the Paleogene and Neogene ostracodes from this site have not been studied so far.

Recent ostracodes from the Southern Ocean have been fairly well documented since the pioneering study of Brady (1880) as reviewed by Ayress et al. (2004). Some studies on Paleogene and Neogene assemblages have also been published, such as Guernet (1985), Guernet and Galbrun (1992) and Steineck and Thomas (1996). The main objective of this article is to present a preliminary study on the ostracode fauna of Late Eocene to Pliocene from site 744A as a contribution to the knowledge of the fossil ostracodes of the Southern Ocean.

STUDY AREA
The Kerguelen Plateau is located in the Indian Ocean between 45°S and 64°S, north of the Antarctic Convergence. It lies in water depths between 1500 m and 2000 m, and about 2-3 km above the adjacent ocean basins Australian-Antarctica in the east, and African-Antarctic in the west (Fig. 1). Across the Kerguelen Plateau and along a latitudinal transect, six sites have been drilled at Ocean Drilling Program (ODP) Leg 199. Two of these (sites 738 and 744) were drilled in the southern part close to east Antarctica for documenting climatic changes imprinted in the sedimentary record.

MATERIALS AND METHODS
This study is based on the observation of 34 core samples of 10 cm³ taken from Paleogene and Neogene sections of site 744A. The samples were disaggregated with water and diluted 100 vol. H₂O₂ for a day, washed and wet sieved through a 63 μm screen and, then, dried than five in some samples from Miocene and Pliocene section (Fig. 2).

The specimens figured in this article are housed at Museum of Paleontology of Universidade do Vale do Rio dos Sinos, under the curatorial numbers 7105 to 7135. In the taxonomy section, the following abbreviations are used: V (valve), LV (left valve), RV (right valve), h (height), l (length) and mbsf (meters below sea floor).

TAXONOMY
Order Platycopida Sars 1866
Superfamily Cytherelloidea Sars 1866
Family Cytherellidae Sars 1866
Genus Cytherella Jones 1849
Type species Cytherina ovata Roemer 1840
Cytherella sp. 1
Fig. 3.1
1993 Cytherella cf. serrata Brady-Guernet, p. 349, pl. 1, fig. 4.
Figured specimen: U-7105, LV, l: 0.92 mm, h: 0.55 mm.
Age: Late Eocene.
Material: three V.
Distribution: Eocene: ODP site 744A, DSDP site 214 and ODP site 762 (Indian Ocean).

Cytherella sp. 2
Fig. 3.2
Figured specimen: U-7106, LV, l: 0.82 mm, h: 0.55 mm.
Age: Late Eocene.
Material: one V.
Distribution: Eocene: ODP site 744A and DSDP site 214 (Indian Ocean).

Cytherella sp. 3
Fig. 3.3
Figured specimen: U-7107, RV, l: 1.08 mm, h: 0.74 mm.
Origin: 119-744A-20H-1W-6 (166.668 mbsf).
Age: Late Eocene.
Genus *Cytherelloidea* Alexander 1929
Type species *Cythere (Cytherella) williamsoniana*
Jones 1849
Cytherelloidea sp.
Fig. 3.4
Figured specimen: U-7108, LV, l: 0.95 mm, h: 0.55 mm.
Age: Late Eocene.
Material: one V.

Order Podocopida Sars 1866
Superfamily Cypridoidea Baird 1845
Family Pontocyprididae Müller 1894
Genus *Australoecia* McKenzie 1967
Australoecia sp.
Fig. 3.5
Figured specimen: U-7109, LV, l: 0.58 mm, h: 0.37 mm.
Age: Early Oligocene.
Material: one juvenile V.

Superfamily Bairdioidae Sars 1887
Family Bairdiidae Sars 1887
Genus *Bairdoppilata* Coryell, Sample and Jennings 1935
Type species *Bairdoppilata martini* Coryell, Sample and Jennings 1935
Bairdoppilata hirsuta (Brady 1880)
Fig. 3.6
1880 *Bairdia hirsuta* Brady, p. 51, pl. 8, figs. 3a-b.
1896 *Bairdoppilata (Bairdoppilata?) hirsuta* (Brady) – Maddocks, p. 81, fig. 43; pl. 2, figs. 1, 2.
1976 *Bairdia hirsuta* Brady-Puri and Hulings, pl. 4, 5.
1983 *Bairdoppilata hirsuta* (Brady) – Crane, pl. I, figs. A-C.
1996 *Bairdoppilata hirsuta* (Brady) – Whatley, pl. 71, fig. 4.
Fig. 2 – Occurrence and abundance of species in the samples studied. The shadowed column refers to the faunal threshold.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>LATE EOCENE</th>
<th>EARLY OLIGOCENE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAMPLE</td>
<td></td>
</tr>
<tr>
<td>Dutoitella suhni</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cythereilla sp. 1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cythereilla sp. 2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cythereilla sp. 3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Anebocytherea hostilea</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Bradleya johnsoni</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tarsicytherea sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bairdoptilata hirsuta</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bradleya thomasi</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Krithia sp. 3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Krithia sp. 6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cythereilloidea sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Krithia sp. 7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Krithia sp. 8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Legitimocytherea presequenta</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pennella praedorsoserrata</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Krithia sp. 4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Henryhowella sp. 2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Australochea sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Henryhowella asperima</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Henryhowella sp. 1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Krithia sp. 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Krithia sp. 5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pseudobosquetina nobilis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dutoitella sp. 2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Agrenocythere hazelae</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dutoitella sp. 3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Krithia sp. 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Age: Late Eocene.
Material: one V.

Discussion: Maddocks (1969), in the revision on Bairdidiidae, states that this is a widespread deep sea species with some degree of variability in the length and position of the posterior caudate extension, which could even correspond to more than one species or subspecies. The present specimen has both the hinge and duplicature poorly developed, being characterized as a juvenile.

Distribution: Eocene: ODP site 744A (Indian Ocean). Recent: Kerguelen Island (Pacific Ocean), Gulf of Mexico, Forida-Hatteras slope (Atlantic Ocean), Strait of Magellan (South America), Brazilian Southeast slope (Atlantic Ocean).

Superfamily Trachyleberidoidea Liebau 2005
Family Trachyleberidiidae Sylvester-Bradley 1948
Genus Agrenocythere Benson 1972
Type species Agrenocythere spinosa Benson 1972
Agrenocythere hazelae (Bald 1946)

1946 Cythereis hazeli (sic) Bold, p. 92, pl. 10, figs. 4a-c.
1972 Agrenocythere hazelae (Bold) – Benson, p. 66-72, figs. 31-38.
1978 Agrenocythere hazelae (Bold) – Benson, p. 785, pl. 1, figs. 7-8.
1987 Agrenocythere hazelae (Bold) – Whatley and Coles.
2003 *Agrenocythere hazelae* (Bold) – Dall’Antonia, p. 36, pl. 2, fig. 18.
Figured specimen: U-7111, LV, l: 1.45 mm, h: 0.79 mm.
Origin: 119-744A-11H-1W-7 (89.770 mbsf).
Age: Early Miocene.
Material: one adult and one juvenile V.
Distribution: Miocene: ODP site 744A (Indian Ocean), DSDP III 14 (South Atlantic) Hyblean Plateau (Mediterranean), East Oriente Province (Cuba), Cipero Formation (Trinidad), ODP Site 960 (Gulf of Guinea), DSDP site 372 (Mediterranean). Pliocene: DSDP site 608 (North Atlantic). Recent: Malpelo Rise (Pacific Ocean).

Genus Anebocythereis Bate 1972

Type species *Anebocythereis amoena* Bate 1972

Figs. 3.8-12

1952 *Cythereis hostizea* Hornibrook, pl. 5, figs. 72, 75, 78.

1993 *Henryhowella melobesioides* Brady-Guernet, p. 354, pl. 3, figs. 8, 11, 12, 14.

Non 1869 *Henryhowella melobesioides* Brady, p. 162, pl. 12, figs. 10-12.

1995 *Anebocythereis hostizea* (Hornibrook) – Ayress, p. 910, pl. 9, fig. 9.

Figured specimens and origin: U-7112 (RV, l: 1.13 mm, h: 0.66 mm, 119-744A-16H-5W-4); U-7113 (RV, l: 1.05 mm, h: 0.63 mm, 119-744A-18H-1W-4); U-7114 (LV, l: 1.02 mm, h: 0.63 mm, 119-744A-19H-2W-5); U-7115 (LV, l: 1.16 mm, h: 0.66 mm, 119-744A-15H-1W-6).

Age: Early Oligocene.
Material: seven adults and 65 juveniles V.

Discussion: Bate (1972) proposed the genus *Anebocythereis* for the Cretaceous of Australia stressing the similarity between the type species *A. amoena* and *Cythereis hostizea* Hornibrook. Although they are indisputably different species, *C. hostizea* seems to fit better into the diagnosis of *Anebocythereis* than into the one of *Cythereis* Jones. Whatley and Millson (1992) proposed the genus *Marwickycythereis* for Eocene/Oligocene species from New Zealand, electing *Cythereis marwicki* Hornibrook the type species. In our opinion, however, the diagnosis of normal pore canals in the tubercles, clearly seen in Figure 11, plate 3 of Guernet (1993), led us to identify the species *Henryhowella melobesioides* (Brady) retained by him as *Anebocythereis hostizea* (Hornibrook).

Genus Pseudobosquetina Guernet and Moullade 1994

Type species *Cythereopteron mucronalatum* Brady 1880

Pseudobosquetina nobilis Jellinek et al. 2006

Fig. 3.13

2006 *Pseudobosquetina nobilis* Jellinek, Swanson and Mazzini, p. 42, fig. 6a-h (see this for a complete synonymic list).

Figured specimen: U-7116, RV, l: 1.12 mm, h: 0.67 mm.
Age: Early Oligocene.
Material: one V.

Discussion: The only specimen found in this study is broken; however, the morphological elements of the carapace allowed a specific identification.

Genus Henryhowella Puri 1957

Type species *Cythere evax* Ulrich and Bassler 1904

Henryhowella asperrima (Reuss 1850)

Fig. 3.14

1850 *Cypridina asperrima* Reuss, p. 74, pl. 10, 5a-b.

1898 *Henryhowella evax* Ulrich and Bassler-Guernet and Fourcade, p. 148, pl. 3, figs. 18-20.

2005 *Henryhowella asperrima* Reuss-Mazzini, figs. 26a-d (see this for a more complete synonymy).

Figured specimen: U-7117, LV, l: 0.79 mm, h: 0.66 mm.
Age: Early Oligocene.
Material: three adults V.
for instance, is hardly achieved in many studies, due to either the poorly precise descriptions of the type material or the inadequacy of their original illustrations. The widespread use of the taxonomic terms aff., cf. or gr. is a testimony of this problem. The present material is considered cospecific to the toptotypic material figured by Mazzini (2005).

Henryhowella sp. 1

Figured specimen: U-7118, RV, 1: 0.81 mm, h: 0.42 mm. Origin: 119-744A-14H-3W-6 (127.260 mbsf). Age: Early Oligocene. Material: four V.

Henryhowella sp. 2

Figured specimen: U-7119, LV, 1: 0.92 mm, h: 0.61 mm. Origin: 119-744A-16H-2W-4 (138.740 mbsf). Age: Early Oligocene. Material: one juvenile V.

Genus *Pennyella* Neale 1974

Pennyella praedorsoserrata Coles and Whatley 1989

Figured specimen: U-7120, LV, 1: 0.73 mm, h: 0.44 mm. Origin: 119-744A-18H-1W-4 (147.640 mbsf). Age: Late Eocene. Material: one juvenile V.

Discussion: The specimen here studied differs a little from the holotype. However, its size and internal features reflect its juvenile condition, which explains these differences.

Genus *Legitimocythere* Coles and Whatley 1989

Legitimocythere presequestenta (Benson) – Coles and Whatley, p. 116, pl. 4, figs. 10, 11.

Legitimocythere presequestenta (Benson) – Majoran and Dingle, p. 146, fig. 3.21.

Legitimocythere presequestenta (Benson) – Dall’Antonia et al., p. 98, fig. 3.1.

Figured specimen: U-7121, LV, 1: 0.79 mm, h: 0.47 mm. Origin: 119-744A-16H-4W-5 (141.756 mbsf). Age: Early Oligocene. Material: three V.

Discussion: *Legitimocythere presequestenta* is a widespread deep-sea species with some degree of morphological variation. Coles and Whatley (1989) argue that this species became bigger, more spinose and less robust from the Miocene onwards.

Genus *Taracythere* Ayress 1995

Type species *Trachyleberis proterva* Hornibrook 1953

Taracythere sp.

Figured specimen: U-7122, RV, 1: 0.97 mm, h: 0.52 mm. Origin: 119-744A-19H-2W-5 (158.560 mbsf). Age: Late Eocene. Material: one adult and one juvenile V.

Discussion: Jellinek and Swanson (2003) sustain that the subdivision of trachyleberids into natural groups might be possible only through a detailed study of soft parts. The spinosity, reticulation and a ventro-lateral spinose ridge in the present species would allow its inclusion in *Legitimocythere* Coles and Whatley. However, based on the discussion presented by Jellinek and Swanson op. cit. about the age of the genotype elected for this genus, we prefer not to adopt it for the present species. According to the age and geographic distribution, the genus *Taracythere* Ayress seems to be a more suitable option.

Genus *Dutoitella* Dingle 1981

Dutoitella dutoiti Dingle 1981

Dutoitella suhmi (Brady 1880)

An Acad Bras Cienc (2010) 82 (3)
1880 *Cythere suhmi* Brady, p. 106, pl. 26, fig. 3a-h.
1976 *Cythere suhmi* Brady-Puri and Hulings, pl. 17, figs. 7-12.
1985 “Cythereis” *crassinodosa* Guernet, p. 291, pl. III, figs. 8, 9, 11, 12.
1987 “Sumhmicythere” *suhmi* (Brady) – Whatley and Coles, p. 96, pl. 6, figs. 18-21.
1990 *Dutoitella suhmi* (Brady) – Dingle et al., p. 290, fig. 27e-f.
2003 *Dutoitella suhmi* (Brady) – Dingle, p. 149, pl. 5, fig. 1.
Figured specimen: U-7123, RV, l: 0.95 mm, h: 0.55 mm.
Origin: 19-744A-20H-1W-6 (166.668 mbsf).
Age: Late Eocene.
Material: two adults and one juvenile V.
Distribution: Eocene: DSDP Site 214 (Indian Ocean).
Recent: Prince Edward Island (Indian Ocean), Southwest Africa, DSDP site 609 (Atlantic Ocean).

Dutoitella sp. 1
Fig. 3.21

Figured specimen: U-7124, RV, l: 0.95 mm, h: 0.5 mm.
Origin: 19-744A-20H-1W-6 (166.668 mbsf).
Age: Late Eocene.
Material: one V.

Dutoitella sp. 2
Fig. 4.1

Figured specimen: U-7125, LV, l: 1.08 mm, h: 0.61 mm.
Age: Late Oligocene.
Material: one V.

1993 *Bradleya johnsoni* Benson and Peypouquet – Guernet, p. 351, pl. 2, fig. 10.
Figured specimen: U-7126, LV, l: 0.97 mm, h: 0.55 mm.
Age: Early Oligocene.
Material: two V.
Discussion: The specimen here figured is slightly different from the holotype (Lower Miocene, South Atlantic), which has a more robust reticulation. However, it is more similar to the specimen recorded by Steineck and Yozzo (1988) in the Equatorial Pacific.

Bradleya thomasi Steineck and Yozzo 1988
Fig. 4.3

1983 *Bradleya* cf. *B. dictyon* Cronin, p. 109, pl. III, fig. D.
1988 *Bradleya thomasi* Steineck and Yozzo, p. 197, pl. 3, figs. 1-11.
Figured specimen: U-7127, RV, l: 0.92 mm, h: 0.51 mm.
Age: Miocene
Material: one V.

Superfamily Cytherdeoidea Liebau 2005
Family Krithidae Mandelstam 1960
Genus *Krithe* Brady, Crosskey and Robertson 1874
Type species *Cythere (Cytherideis) barthonensis* Jones 1857

Krithe sp. 1
Figs. 4.4-5

Figured specimen: U-7128, RV, l: 0.87 mm, h: 0.44 mm.
Age: Early Oligocene.
Material: one V.
EOCENE-PLIOCENE OSTRACODES FROM ODP SITE 744A

CRISTIANINI T. BERGUE and ABIRAMAN GOVINDAN

Origin: 119-744A-6H-2W-6 (43.670 mbsf).
Age: Late Miocene.
Material: one V.
Discussion: This species has an unusual set of anterior radial pore canals that could not be matched with any of the types figured either by Peypouquet (1979) or Coles et al. (1994).

Krithe sp. 3
Figs. 4.8-9

Figured specimen: U-7130, LV, l: 0.79 mm, h: 0.47 mm
Age: Late Eocene.
Material: five V.

Krithe sp. 4
Figs. 4.10-11

Figured specimen: U-7131, LV, l: 0.60 mm, h: 0.39 mm.
Age: Early Oligocene.
Material: four V.

Krithe sp. 5
Figs. 4.12-13

Figured specimen: U-7132, LV, l: 0.71 mm, h: 0.39 mm.
Age: Late Eocene.
Material: three V.

Krithe sp. 6
Figs. 4.14-15

Figured specimen: U-7133, RV, l: 0.60 mm, h: 0.31 mm.
Age: Late Eocene.
Material: four V.

Krithe sp. 7
Figs. 4.16

Figured specimen: U-7134, RV, l: 0.76 mm, h: 0.36 mm.
Age: Late Eocene.

Figured specimen: U-7135, RV, l: 0.79 mm, h: 0.44 mm.
Age: Late Eocene.
Material: one V.

RESULTS

In this study, 28 species belonging to 14 genera and six families were identified. Krithe is the most diversified genus (eight spp.), followed by Cytherella and Dutoitella (three spp. for each). The ostracode incidence decreases from the bottom to the top of the section, being the peak of abundance and richness between the Late Eocene and the Early Oligocene. From the sample 119-744A-16H-4W5 of Early Oligocene age and younger ones there is a significant reduction in the richness and abundance. In most of these samples, the richness oscillates between one and two species, and the total abundance of this section is only 36 specimens (Fig. 2).

The Early Oligocene threshold also depicts a faunal turnover, where 16 species only occur before this age, and six after it. Anebocythereis hostizea (Hornibrook) is the most abundant species and, with Bradleya johnsoni Benson, Legitimocythere presequenta (Benson), Krithe sp. 4, Krithe sp. 5, Henryhowella asperrima and Henryhowella sp., constitute the only species occurring both before and after the threshold. Some juvenile specimens of Krithe which were found in the majority of the studied samples, were not identified in the eight groups here presented, and their occurrences were not included in Figure 2.

The assemblages studied at this site present some similarity with the other faunal record of DSDP/ODP sites, in particular with the site 214, from Indian Ocean, studied by Guernet (1985). Three species are common to these two regions: Cytherella sp. 1, Cytherella sp. 2, and Dutoitella suhmi (Brady). Krithe sp. 2 is possibly conspecific with Krithe sp. 1 of Guernet (op. cit., p. 287, pl. 1, fig. 16) but, due to the complex morphology of this genus, it is hard to sustain this assumption based only on Guernet’s SEM pictures. Some slight variation in size was noticed in the species Bradleya johnsoni Ben-
EOCENE-PLIOCENE OSTRACODES FROM ODP SITE 744A

DISCUSSION AND CONCLUSIONS

OCEANOGRAPHIC EVENTS RECORDED AT ODP SITE 744A AND ADJACENT AREAS

In the Cenozoic, several climatic changes driven by orbital oscillations and their influences in the carbon cycle and glaciations have been recorded, which correspond to the transition from the Cretaceous greenhouse to the Cenozoic icehouse (Barker and Thomas 2004, Zachos et al. 2001a). The Oligocene experienced a long glacial interval, except close to the Oligocene/Miocene boundary. Considering both geochemical and orbital data, Zachos et al. (2001b) divided the Oligocene into four phases; the interval corresponding to the second and third ones (31 to 27 Ma) shows more positive 18O signals, a factor that could explain at least in part the faunal thresholds seen in the site 744A.

Positive peaks of 18O in sea water are caused either by ice formation or cooling. Both have had different weight during Cenozoic events, and to find out which one was the most influent is not always straightforward (Lear et al. 2000). Considering that the ostracode faunal composition results from historic and oceanographic events, the cooling of the water and circulation changes in periods marked by 18O peaks may influence both the evolution and migration of taxa prompting faunal turnovers.

Similar faunal trends have been found in the ostracodes from other ODP sites. Majoran and Dingle’s (2002) study at the site 689 (Antarctica) recorded high values of richness and abundance in the Eocene-Oligocene interval, which they attributed to either taphonomic or hydrologic processes that resulted from the progressive cooling of Antarctica during that time. Guernet and Galbrun (1992) recorded at site 762 a high diversity and abundance of ostracodes from the Eocene to the Lower Miocene, and a sharp reduction from the Upper Miocene and younger ages. They did not propose any plausible explanation for this trend, but supposed that it could be a result of fluctuations of sedimentation rate linked to variations in the surface productivity.

The reduction in abundance seen in the upper portion of the studied section might be explained either by a preservational bias or a faunal impoverishment. Both have had different weight during Cenozoic events, and to find out which one was the most influent is not always straightforward (Lear et al. 2000). Considering that climatic changes exert influence on deep sea ostracodes diversity (mainly Krithe) with a variable degree of dissolution, the presence of species such as Krithe dolichodeira (Benson) and Agrenocythere presequenta (Benson) actually have near global distribution in the deep ocean. In these species, slight morphological variations are present especially on the ornamentation, as can be seen even in this study. However, species such as Krithe dolichodeira, Legitimocythere presequenta (Benson) and Agrenocythere hazelae (Bold), actually have near global distributions in the deep ocean. In these species, slight morphological variations are present especially on the ornamentation, as can be seen even in this study.

Intraspecific variation in deep sea ostracodes The discussion on the intraspecific variation in deep sea ostracodes pervades the fields of ecology and systematics. Considering their discussion on deep sea ostracodes diversity, Diester-Hass (1996) noticed a strong covariance between carbonates preservation and productivity in the Eocene-Miocene. The reduction in abundance seen in the upper portion of the studied section might be explained either by a preservational bias or a faunal impoverishment. Both have had different weight during Cenozoic events, and to find out which one was the most influent is not always straightforward (Lear et al. 2000). Considering that climatic changes exert influence on deep sea ostracodes diversity (mainly Krithe) with a variable degree of dissolution, the presence of species such as Krithe dolichodeira (Benson) and Agrenocythere presequenta (Benson). The refinement of taxonomic knowledge on deep sea ostracodes is essential for their paleoceanographical use, and recent studies show that much has to be done in this field. Schornikov and Swanson (2003) state that a precise taxonomic approach would not be achieved based exclusively on the carapace morphology, at least in some ostracod families (Trachyleberididae, for instance). The refinement of taxonomic knowledge on deep sea ostracodes is essential for their paleoceanographical use, and recent studies show that much has to be done in this field. Schornikov and Swanson (2003) state that a precise taxonomic approach would not be achieved based exclusively on the carapace morphology, at least in some ostracod families (Trachyleberididae, for instance). The refinement of taxonomic knowledge on deep sea ostracodes is essential for their paleoceanographical use, and recent studies show that much has to be done in this field.
variants of a species in these environments. This can be achieved only through an accurate taxonomic knowledge and the understanding of the intraspecific variation processes, reinforcing the use of ostracode diversity as a proxy for hydrological changes.

ACKNOWLEDGMENTS
The authors wish to thank Gerson Fauth and Carlos Eduardo Lucas Vieira for the assistance with the SEM and optical microscopy, respectively. Thomas M. Cronin and Julio Rodriguez Lazaro are thanked for the constructive criticism which improved considerably this article. We are also grateful to the Ocean Drilling Project for providing the samples of the site 744A.

REFERENCES
AyreSS MA, De Decker P and Cooke G. 2001. A
Bold WA van Den. 1946. Contribution to the study of
EOCENE-PLIOCENE OSTRACODES FROM ODP SITE 744A

