Batista, Ronan; García, Pablo A.; Castro, María Ángeles; Del Corral, José M. Miguel; Feliciano, Arturo S.; Oliveira, Alaíde B. de

iso-Kaurenoic acid from Wedelia paludosa D.C.

Anais da Academia Brasileira de Ciências, vol. 82, núm. 4, 2010, pp. 823-831

Academia Brasileira de Ciências
Rio de Janeiro, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=32717686004
iso-Kaurenoic acid from *Wedelia paludosa* D.C.

RONAN BATISTA 1, PABLO A. GARCÍA 2, MARÍA ÁNGELES CASTRO 2, JOSÉ M. MIGUEL DEL CORRAL 2, ARTURO S. FELICIANO 2 and ALAÍDE B. DE OLIVEIRA 3

1Departamento de Estudos Básicos e Instrumentais, Universidade Estadual do Sudoeste da Bahia
BR-415, km 03, s/n, 45700-000 Itapetinga, BA, Brasil
2Departamento de Química Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, 37007 Salamanca, Spain
3Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais
Av. Antônio Carlos, 6.627, 31270-901 Belo Horizonte, MG, Brasil

Manuscript received on April 23, 2008; accepted for publication on June 7, 2010

ABSTRACT

A recent reinvestigation of aerial parts of *Wedelia paludosa* D.C. is described and reports, for the first time, the isolation of *iso*-kaurenoic acid from this species.

Key words: Asteraceae, *iso*-kaurenoic acid, silica gel impregnated with silver nitrate, *Wedelia paludosa* D.C.

INTRODUCTION

The genus *Wedelia* (Asteraceae, tribe Heliantheae, sub-tribe Ecliptinae) consists of about 60 species spread in tropical and warm temperate regions, including Brazil, India, Burma, Ceylon, China and Japan. Many plants of this genus, which are used as traditional herbal medicines throughout the world, have been reported to possess hepatoprotective, antipyretic-analgesic, bactericidal and molluscicidal activities (Li et al. 2007, García et al. 2007).

W. paludosa D.C. is a creeping plant frequently used as ornamental and is found in many regions of Brazil, especially in the states of Pernambuco, Bahia, Minas Gerais, São Paulo and Santa Catarina, where it is known as “pseudo-arnica”, “pingo-de-ouro” or “margaridão” (Bresciani et al. 2000). The ethanol extract of its aerial parts was shown to exhibit *in vitro* trypanosomicidal activity against trypomastigote forms of *Trypanosoma cruzi*, which is the aetiological agent of Chagas Disease (Chiari et al. 1996). Bioassay-directed fractionation of this extract afforded the trypanosomicidal diterpenes *ent*-kaur-16-en-19-oic acid (1, kaurenolic acid) and *ent*-kaur-9(11),16-dien-19-oic acid (2, grandifloronic acid) (Batista et al. 1999). Both of these diterpenes are major constituents of *W. paludosa* and occur with other related diterpenes, triterpenes and eudesmanolide lactones (Roque et al. 1987, Ferreira et al. 1994, Block et al. 1998a, b, Batista et al. 1999, 2005, Carvalho et al. 2001).

The present paper describes a recent reinvestigation of aerial parts of *W. paludosa* D.C. and reports, for the first time, the occurrence in this species of *ent*-kaur-15-en-19-oic acid (*iso*-kaurenoic acid) (3). The isolation of the methyl ester of 3, from a mixture of 1+2+3, is also reported.

MATERIALS AND METHODS

GENERAL EXPERIMENTAL PROCEDURES

Uncorrected melting point was measured with an APF-301 apparatus. IR spectrum was obtained using a Shimadzu IR-400 and Nicolet Impact 410 spectrophotometer.
Perkin-Elmer 241 digital polarimeter. NMR spectra were recorded at 200 MHz for 1H and 50 MHz for 13C in deuterochloroform, added of TMS as internal reference, on a Bruker AC 200. Chemical shift values are expressed in ppm. Column chromatography (CC) and flash column chromatography (FCC) were performed on silica gel Merck 60 (0.063-0.200 and 0.040-0.063 mm, respectively). TLC was carried out on silica gel Merck 60 F254 (0.25 mm thick). Solvents and reagents were purified by standard procedures as necessary.

PLANT MATERIAL

Aerial parts of W. paludosa D.C. were collected in October 2001 around the Federal University of Minas Gerais – UFMG, in Belo Horizonte, Minas Gerais, Brazil. This plant material has been previously identified by Dr. Telma S.M. Grandi (Chiari et al. 1996) and housed as a voucher specimen at the UFMG herbarium (BHC 19033).

EXTRACTION AND ISOLATION OF KAURANE DITERPENES

Air-dried aerial parts of W. paludosa D.C. (1.3 kg) were pulverized and extracted by percolation firstly with a 1:1 mixture of hexane-dichloromethane (10 L) and, then, with ethanol (20 L). The solvents of these extractions were removed under reduced pressure yielding a brown resinous oil (hexane-dichloromethane extract, HDE; 67.0 g) and a viscous greenish residue (ethanol extract, EE; 134.0 g) (Scheme 1).

EE (134.0 g) was coarsely fractionated on a silica gel column (8.0 × 25.0 cm) by elution with hexane (fractions from 1 to 3), hexane-dichloromethane 1:1 (fractions from 4 to 10) and dichloromethane (fractions from 11 to 15), collecting fractions of 500 mL that were concentrated in a rotavapor and combined according to their similarity on TLC. Fractions 5-12 were combined (22.9 g) and rechromatographed on a silica gel column (3.5 × 33 cm; 100 mL per fraction), eluting with mixtures of hexane/ethyl acetate of increasing polarities (100:0, 95:5, 90:10, 80:20) to give 34 final fractions, which were grouped together according to TLC analysis. A mixture of kaurenoic (1), grandiflorenic (2) and iso-kaurenoic (506 mg; 14:17:8) by FCC led to just 52 mg of grandiflorenic acid (2), which was eluted with hexane-diethyl ether 97:3.

Thus, this mixture of diterpenes 1+2+3 (1.14 g; 3.77 mmol, 14:17:8) was esterified by usual procedure with an ethereal solution (200 mL) of diazomethane, giving the mixture of methyl esters 4+5+6 (1.20 g; 3.77 mmol, 14:17:8) in quantitative yield, which was further submitted to column chromatography on silica gel (80 g) impregnated with 20% of silver nitrate, eluting with hexane-diethyl ether 97:3 (100 mL per fraction) to afford methyl iso-kaurenoate (6) (123 mg; 0.39 mmol; 50% yield) from combined fractions 21-46.

Methyl ent-kaur-15-en-19-oate (methyl iso-kaurenate, 6). mp 73-74°C (n-hexane as solvent for crystallization); [α]$_{D}^{22}$ = -48.9°, CHCl$_3$, c 0.90; IR (film/CHCl$_3$ solution, ν_max/cm$^{-1}$): 3020, 2928, 2848, 1728, 1646, 1443, 1231, 1158, 814. 1H NMR (200 MHz, CDCl$_3$) δ: 5.06 (s, 1H, H-15), 3.64 (s, 3H, H-1'), 2.30 (bs, 1H, H-13), 1.69 (s, 3H, H-17), 1.16 (s, 3H, H-18), 0.84 (s, 3H, H-20). 13C NMR (50 MHz, CDCl$_3$) data, see Table I. HRMS (FAB-POSI, M+1) calcd 317.2481, found 317.2441.

PREPARATION OF SILICA GEL IMPREGNATED WITH SILVER NITRATE (20%)

Column chromatography silica gel (64 g) was added to a solution of silver nitrate (16 g) in deionized water (100 mL). The aqueous mixture was concentrated in a rotary evaporator and dried in an oven at 150°C for 12 hr. The resulting grey powder was stored in vacuo in the dark for further use.

RESULTS AND DISCUSSION

ISOLATION AND IDENTIFICATION OF ISO-KAURENOIC ACID

After extraction with a hexane-dichloromethane mixture (1:1), the aerial parts of W. paludosa were extracted with ethanol to give the ethanol extract (EE) that, after successive CC over silica gel, has yielded a mixture of diterpenes 1, 2 and 3, as described in the experimental section and depicted in Scheme 1. Attempts to sepa...
ISO-KAURENOIC ACID FROM *Wedelia Paludosa* D.C.

Scheme 1 – Isolation of diterpenes 2 and 6 from *W. paludosa* D.C.

Plant material (1.4 Kg)

- Percolation with hexane-dichloromethane (1:1)
 - HDE (67.0 g)
 - Marc

 - EE (134.0 g)
 - Successives CC

1. \(\text{CO}_2\text{H}\)
2. \(\text{CO}_2\text{H}\)
3. \(\text{CO}_2\text{H}\)

\((14 : 17 : 8)\)

4. \(\text{CO}_2\text{CH}_3\)
5. \(\text{CO}_2\text{CH}_3\)
6. \(\text{CO}_2\text{CH}_3\)

\((14 : 17 : 8)\)

EE with CH\(_2\text{N}_2\)

FCC

CC with AgNO\(_3\) (20%)
TABLE I

<table>
<thead>
<tr>
<th>Carbon</th>
<th>4 (4^a)</th>
<th>5 (5^b)</th>
<th>6 (6^c)</th>
<th>Literature (5^b)</th>
<th>Present work (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.8</td>
<td>40.8</td>
<td>40.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>19.1</td>
<td>19.2</td>
<td>18.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>38.1</td>
<td>38.2</td>
<td>38.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>43.8</td>
<td>43.9</td>
<td>43.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>57.1</td>
<td>56.9</td>
<td>56.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21.9</td>
<td>21.0</td>
<td>20.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>41.3</td>
<td>43.9</td>
<td>43.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>44.2</td>
<td>49.2</td>
<td>49.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>55.1</td>
<td>48.1</td>
<td>48.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>39.4</td>
<td>39.6</td>
<td>39.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>18.4</td>
<td>19.0</td>
<td>19.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>33.1</td>
<td>24.9</td>
<td>24.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>43.8</td>
<td>44.8</td>
<td>44.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>39.7</td>
<td>39.6</td>
<td>39.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>48.9</td>
<td>135.1</td>
<td>135.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>155.9</td>
<td>142.4</td>
<td>142.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>102.9</td>
<td>15.2</td>
<td>15.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>28.7</td>
<td>28.7</td>
<td>28.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>178.1</td>
<td>178.0</td>
<td>178.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>15.4</td>
<td>15.2</td>
<td>15.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1'</td>
<td>51.1</td>
<td>51.1</td>
<td>51.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aBatista et al. 2007. \(4^a\) 50 MHz. \(5^b\) Yamasaki et al. 1976. \(6^c\) 25 MHz.

Diterpenoids represent a vast class of isoprenoid natural products, which is biosynthesized from \(2E, 6E, 10E\)-geranylgeranyl pyrophosphate (GGPP) (Dewick 1999). They are classified in acyclic (phytanes), bicyclic (labdanes, clerodanes), tricyclic (pimaranes, abietanes, casanes, rosanes, vouacapanes, podocarpanes), tetracyclic (trachylobanes, kauranes, aphidicolanes, stemodanes, stemaranes, beyeranes, atisanes, giberellanes), macrocyclic diterpenes (taxanes, embranes, daphnanes, ti- glanes, ingenanes) and mixed compounds, in accordance with the number and the pattern of cyclizations shown by their skeleton (García et al. 2007).

Biogenetic Aspects

It has been assumed until recently that all isoprenoids are exclusively formed from the C-5 compounds isopentenyl (IPP) and dimethylallyl (DMAPP) pyrophosphates, both of them derived from mevalonic acid (MVA) (Chappell 1995). In the cytosol, MVA is phosphorylated via two steps into MVA-5-diphosphate, which, after decarboxylation, yields IPP. However, new results indicate...
ISO-KAURENOIC ACID FROM *Wedelia Paludosa* D.C.

Fig. 1 – 1H NMR spectrum (200 MHz, α/ppm, CDCl$_3$) for the mixture of methyl esters 4+5+6.

Vate yields 1-deoxy-D-xylulose 5-phosphate, which is converted into IPP. The mevalonate pathway gives rise to sterols, sesquiterpenes, and triterpenoids, whereas the pathway involving 1-deoxy-D-xylulose 5-phosphate yields carotenoids, phytol, plastoquinone-9, mono- and diterpenoids. Some interchanges among the pathways seem to exist (Rademacher 2000).

IPP is transformed via an isomerase-catalyzed reaction into dimethylallyl-PP. In head-to-tail condensations, three molecules of IPP are sequentially added to this compound to form geranyl diphosphate (GPP, C$_{10}$), farnesyl diphosphate (FPP, C$_{15}$), and, finally, the C$_{20}$ compound geranylgeranyl diphosphate (GGPP).

GGPP is cyclized via copalyl diphosphate (CPP) to ent-kaurene (Dewick 1999). This type of cyclization (Scheme 2) occurs in a very similar way to the cyclization that produces cyclic triterpenes. However, there is no previous epoxidation step as occurs in triterpene cyclization, but the double bond protonation on the isopropylidene unit of the GGPP chain leads to two hydronaphtalene bicyclical intermediates [Scheme: palyl diphosphate (CPP, I) and *ent*-copalyl diphosphate (ent-CPP, II), resulting in the two enantiomeric series that differ from each other in their inverted configurations of the carbons C-5, C-9 and C-10. Namely, the “normal” series are the structures whose fusion between A and B rings occurs in the same way as in steroids, while the “enantiomeric” series (denoted as “ent”) are the corresponding structures of the specular images of the normal series (García et al. 2007).
Kaurene synthase (KS) catalyzes the cyclization of ent-copalyl diphosphate (ent-CPP, II) to ent-kaur-16-ene (ent-kaurene, 11) through a multiple-step reaction mechanism that is depicted in Scheme 3. According to this scheme, diphosphate ionization-initiated cyclization of ent-CPP (II) to a pimaren-8-yl$^+$ (7) intermediate may be followed by secondary cyclization to a beyeran-16-yl$^+$ (8) intermediate that can either undergo ring rearrangement to the kauranyl ring structure, or, by a 1,3-hydride shift, to a beyeran-12-yl$^+$ (9) intermediate that undergoes ring rearrangement to the atiseranyl ring structure. In each case, the final carbocation intermediate is quenched by deprotonation [dotted bonds indicate alternate double-bond placement in ent-kaurene (ent-kaurene, 11) versus ent-kaur-15-ene (iso-kaurene, 12)] (Xu et al. 2007).
KS is found in all higher plants because kaurene is an intermediate in the route to the diterpenoid gibberellin phytohormones required for normal growth and development. Hence, this enzyme participates in primary metabolism (Xu et al. 2007).

Occurrence and Biological Activities of Kaurenoic (1) and iso-Kaurenoic (3) Acids

Kaurane diterpenes are widely found in different plant species belonging to several families such as Asteraceae, Annonnaceae, Euphorbiaceae, Celastraceae, Apiaceae, Velloziaceae, Lamiaceae (= Labiatae), Fabaceae, Rutaceae, Chrysobalanaceae, Jungermanniaceae, Erythroxylaceae and Rhizophoraceae, among others (García et al. 2007). A general survey and some taxonomic implications of the occurrence of kaurane and other classes of diterpenes in the Asteraceae family are discussed by Alvarenga et al. (2005).

Kaurenoic acid (1), an ent-kaurane diterpene, discloses a wide spectrum of bioactivities such as antiinflammatory, antibacterial, antifungal and molluscicide quantification in these plant species in order to enable them to be used as natural sources of this diterpene (García et al. 2007). It is one of the intermediate compounds in the biosynthesis of diverse kaurane diterpenes, including gibberellins, a group of growth phytohormones (Rademacher 2000). Therefore, it is not surprising that many naturally occurring kauranes act as growth regulators in plants (García et al. 2007).

On the other hand, ent-kaur-15-en-19-oic acid, an isomer of kaurenoic acid, also named “iso-kaurenoic acid” (3), is of very restricted occurrence in the plant kingdom. It has been found in a few number of Asteraceae and Annonnaceae species, including Annona (Hsieh et al. 2004), Smallanthus maculatus (Rios and Leon 2006), Wedelia biflora (Miles et al. 1990, Li et al. 2007) and some species belonging to the subtribe Espeletiinae (Asteraceae, tribe Heliantheae), such as peletia semiglobulata, Ccoepeletia spicata and D. thamus humbertii (Viloria et al. 1997, Usubillaga et al. 2003). This is the first report on the occurrence of kaurenoic acid (3) in *W. paludosa* D.C.
centration of 2.9 μg/ml, and potent antifungal activity against the soil-borne plant pathogenic fungi *Pythium ultimum* and *Rhizoctonia solani* (Miles et al. 1990). Antifeedant and antifungal activities have been extensively reported for kaurenoic acid (I) and related ent-kaurane diterpenes against several storage pest insects, such as *Homeosoma electellum*, *Trilobium confusum*, *Trogoderma granarium*, *Sitophilus granarius*, and *Reticulitermes speratus*, as well as against some pathogenic fungi of agricultural importance, such as *Verticillium dahliae* and *Sclerotium sclerotiorum* (Ghisalberti 1997).

CONCLUSION

W. paludosa is an abundant source of ent-kaurenoic acid (1), which is a bioactive diterpene showing a wide spectrum of biological effects and of interest as a starting compound for the production of bioactive derivatives. The presence in this species of iso-kaurenoic acid (3), which is a diterpene of very restricted occurrence, along with its effect as total feeding inhibitor of boll weevils and very potent antifungal compound against soil-borne fungi, brings naturally occurring kauranes to an important position as starting materials for the synthesis of new derivatives of promising agrochemical application as pesticides.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Universidade Estadual do Sudoeste da Bahia (UESB), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Programa Ibero Americano de Ciencia y Tecnologia (CYTED) (sub-program X) for fellowships and financial support.

REFERENCES

ISO-KAURENOIC ACID FROM *Wedelia paludosa* D.C.

