Ponge Ferreira Ponte, Cláudia Regina; Koskinas Fallone, Marina; Dias da Silva, Mauro
Standardization of Ca-45 Radioactive Solution by Tracing Method
Sociedade Brasileira de Física
São Paulo, Brasil

Available in: http://www.redalyc.org/articulo.oa?id=46434561
Standardization of Ca-45 Radioactive Solution by Tracing Method

Cláudia Regina Ponte Ponge-Ferreira, Marina Fallone Koskinas, and Mauro da Silva Dias

Instituto de Pesquisas Energéticas e Nucleares, Caixa Postal 11049, 05422-970, São Paulo, SP, Brazil

Received on 8 October, 2003

The procedure followed by the Laboratório de Metrologia Nuclear (LMN) at the IPEN, in São Paulo, for the standardization of the 45Ca is described. The activity measurement was carried out in a 4π-β-γ coincidence system, by the tracing method. The radionuclide chosen as the β-γ emitting tracer nuclide was 60Co because of its end-point beta-ray energy which is close to 45Ca. Six sources were prepared using a 1:1 ratio (45Ca-pure and 60Co) dropped directly on the Collodion film, and other two solutions of 45Ca + 60Co were mixed previously using a 1:1 and 1:2 ratio before making the radioactive sources. The activity of the solution was determined by the extrapolation technique. The events were registered using a Time to Amplitude Converter (TAC) associated with a Multi-channel Analyzer.

1 Introduction

This paper describes the procedure followed by the Laboratório de Metrologia Nuclear (LMN) at the IPEN-CNEN/SP, in São Paulo, for the standardization of 45Ca radioactive solution by tracing method.

This method consists of using 4π-β-γ coincidence method [1,2] for the standardization of a pure β-emitter mixed with another radionuclide which decays by simultaneous emission of two radiations such as β-γ, α-γ to be used as tracer. The tracer is standardized separately by means of conventional 4π-β-γ coincidence method.

In the tracing method [3,4] a series of sources containing aliquots of the pure β-emitter and a suitable β-γ emitter are prepared. The observed disintegration rate of β-emitter and the tracer β-efficiency ϵ_{β_t} are measured within a range of ϵ_{β_t} by using external absorbers.

The results are plotted against (1-ϵ_{β_t}) and the intercept corresponds to the disintegration rate of the pure β-emitter.

Radionuclide 45Ca decays with half-life of (163 ± 1) days [8] by beta transition, 0.0017% populating the excited state of 45Sc and 99.9983% to the ground state with maximum beta energy of 256 keV. Due to the low gamma ray emission probability per decay it may be considered a pure beta emitter radionuclide. 45Ca decay is presented in Fig. 1.

Radionuclide 60Co was chosen as tracer because of its end-point β-ray energy (317.89 keV) which is close to 45Ca. It decays with half-life of (5.271 ± 0.002) years, by β^- emission populating the excited levels of 60Ni and proceeds to ground state by emission of two main gamma rays (1173.24 and 1332.51 keV)[8].

2 Experimental Method

2.1 Source Preparation

45Ca solution was obtained by means of 44Ca (n,γ) 45Ca reaction in a thermal neutron fluux at the IPEN 2 MW research reactor. The sources were prepared by dropping known aliquots of the solutions on a 20 μg/cm2 thick Collodion film. Six sources were prepared using a 1:1 ratio (45Ca-pure and 60Co) dropped directly on the Collodion film and other two solutions of 45Ca + 60Co were mixed previously using a 1:1 and 1:2 ratio before making the radioactive sources.

The Collodion film was previously coated with a 10 μg/cm2 gold layer in order to turn the film conductive. A seeding agent (Cystat SM) was used to improve the deposit uniformity and the sources were dried in a warm (45 degrees Celsius) nitrogen jet. The accurate source mass determination was performed using the picnometer technique.[5] The β-γ tracer was standardized previously by measuring several sources prepared by the same procedure.

2.2 4π-β-γ coincidence measurement

A conventional 4π-β-γ coincidence system was used, consisting of a 4π proportional counter filled with 0.1 MPa P-10 gas mixture, coupled to a pair of 3” x 3” NaI(Tl) crystals. The events were registered by a method developed at LMN which makes use of a Time to Amplitude Converter (TAC) associated with a Multi-channel Analyzer.[7] The gamma
window was set by gating the gamma-rays of tracer (1173 keV + 1332 keV).

The number of detected events in the proportional counter is given by:

$$N_{\beta(Ca+Co)} = N_{0(Ca+Co)} \epsilon_{\beta Co} + N_{0Ca} \epsilon_{\beta Ca}$$

(1)

where:

$$\epsilon_{\beta Co}$$ is the tracer efficiency in the mixed source;

$$N_{0(Ca+Co)}$$ is the counting rate of proportional counter due to the mixed source;

$$N_{0Co}$$ is the activity of 60Co tracer of the mixed source;

$$N_{0Ca}$$ is the 45Ca beta-branch disintegration rate;

$$\epsilon_{\beta Ca}$$ is the 45Ca beta efficiency.

When the β-emitter and the β-γ tracer are combined in a single source, a functional relationship exists between the detection efficiencies. This relation can be defined by a polynomial function G where:

$$(1 - \epsilon_{\beta Ca})/\epsilon_{\beta Ca} = G((1 - \epsilon_{\beta Co})/\epsilon_{\beta Co})$$

(2)

Since the tracer efficiency, $\epsilon_{\beta Co}$ may not always be accurately obtainable from coincidence counting data, is convenient to use the expression involving only observed β-γ and coincidence counting rates.

The expression can be rewritten as:

$$\frac{N_{\beta(Ca+Co)} N_{\gamma Co}}{N_{c Co}} - N_{0Co}$$

$$= N_{0Ca} \left[1 + G'((1 - \frac{N_{c Co}}{N_{\gamma Co}})/\frac{N_{c Co}}{N_{\gamma Co}}) \right]$$

(3)

The function G' was fitted by weighted least squares using code LINFIT [9] and the extrapolation $(1 - N_{c}/N_{\gamma})/N_{c}/N_{\gamma} = 0$ gave the expected N_{0Ca} value. Suitable corrections for background, decay, dead time and accidental coincidences were included in calculation.

3 Results and Discussion

Figure 2 shows the extrapolation curves obtained for the three different methods of preparing sources: mixing solutions with ratios 1:1 and 1:2 and by drops with 1:1 ratio. The β efficiency was varied using external absorbers.

The extrapolated value for the two mixing solutions were in agreement with each other, namely (154.3 ± 1.9) kBq/g and (154.3 ± 2.5) kBq/g, respectively. However, for the other preparation method (drops 1:1), the extrapolated value was (150.3 ± 1.3) kBq/g, 3% lower. The possible causes for this difference are being investigated.

References

