

Matemáticas: Enseñanza Universitaria

ISSN: 0120-6788

reviserm@univalle.edu.co

Escuela Regional de Matemáticas Colombia

Bhatt, Balswaroop; Shirley, Angela
Plane viscous flows in a porous medium
Matemáticas: Enseñanza Universitaria, vol. XVI, núm. 1, junio, 2008, pp. 51-62
Escuela Regional de Matemáticas
Cali, Colombia

Available in: http://www.redalyc.org/articulo.oa?id=46816106

Complete issue

More information about this article

Journal's homepage in redalyc.org

Scientific Information System

Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative

Universidad del Valle - Colombia

Plane viscous flows in a porous medium

Balswaroop Bhatt University of the West Indies Angela Shirley University of the West Indies

Received Aug. 23, 2006 Accepted Mar. 12, 2007

Abstract

The methods employed by Martin [1971] and Chandna et al. [1982] to steady plane flows have been applied to the plane viscous flows in a porous medium using the Darcy - Brinkman - Lapwood equation. Various flows and corresponding geometries have been investigated.

Keywords: Plane flows, viscous flows, porous medium, Darcy - Brinkman - Lapood Equation. **MSC(2000):** Primary 76S05, Secondary 76F10.

1 Introduction

We can divide the study of plane viscous flows in to two categories. Basically both follow Martin's [1] approach. The first set of problems are studied using curvilinear co-ordinates (ϕ, ψ) , where $\psi = \text{constant}$, are taken to be the streamlines and $\phi = \text{constant}$, are taken to be the isobars or the orthogonal trajectories of the streamlines, as used by Martin [1] whereas the second set of problems are studied using (u, v) - the velocity components as the independent variables, as used by Chandna et al. [2].

One can refer to Govindaraju [3], Nath and Chandna [4], Chandna and Kaloni [5] and Kaloni and Siddiqui [6] for the first set of problems whereas Barron and Chandna [7], Siddiqui et al. [8] and Bhatt [9] for the second set of problems. Recently Labropulu and Chandna [10, 11] have found some more exact solutions using the similar technique.

In the present paper we have extended the analysis Martin [1] and Chandna et al. [2] to plane viscous flows in a porous medium. Firstly we study the plane viscous flows in a porous medium by writing the equations of motion and continuity in terms of curvilinear coordinates (ϕ, ψ) and then establish interesting results corresponding to

$$\phi = \phi(\xi), \quad \psi = \psi(\eta), \tag{1}$$

$$\phi = \phi(\eta), \quad \psi = \psi(\xi), \tag{2}$$

for particular choice of coordinate lines. Secondly we write the equations of motion in terms of a vorticity function $\omega(x,y) = \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)$. We transform these

equations into an equivalent system in any region in which $0 < \left| \frac{\partial(u,v)}{\partial(x,y)} \right| < \infty$,

so that x,y and ω are dependent variables of u,v (i.e. we use the region of a hodograph plane as our domain). From the transformed equation of continuity, we define L(u,v) - the Legendre transform related to the stream function $\psi(x,y)$ as

$$L(u,v) = vx - uy + \psi(x,y). \tag{3}$$

As an application we discuss some forms of L(u, v) and $L^*(q, \theta)$ in polar coordinates of (u, v) and find the flows and corresponding geometries in the physical plane.

2 The Equations of Motion

We consider steady plane flows of an incompressible viscous fluid in porous media. The flows are governed by Darcy - Brinkman - Lapwood equation, namely

$$\rho \left[\frac{\partial V}{\partial t} + V \cdot \nabla V \right] = -\nabla p - \frac{B\mu}{k} v + \tilde{\mu} \nabla^2 v \; , \qquad v = \varepsilon V \; \; , \tag{4}$$

where

 ρ - density of fluid,

 ε - the porosity,

k - permeability,

 $\tilde{\mu}$ - effective viscosity,

 μ - dynamic viscosity and

B - binary number, B=0 in the fluid and B=1 in the porous media.

We have taken $\mu = \tilde{\mu}$. For steady two dimensional motion the equations of continuity and motion are:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 , \qquad (5)$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\varepsilon^2 \frac{\partial p}{\partial x} + \frac{\varepsilon^2}{R_e} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{\varepsilon^2 B}{D_a R_e} u \tag{6}$$

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\varepsilon^2 \frac{\partial p}{\partial y} + \frac{\varepsilon^2}{R_e} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - \frac{\varepsilon^2 B}{D_a R_e} v \tag{7}$$

where we have non-dimensionalized the velocity by U (characteristic velocity), pressure by ρU^2 , length by L (the characteristic length), $R_e = \frac{\rho L U}{\mu}$ is the

Reynolds number, $D_a = \frac{k}{L^2}$ (k is the permeability of the porous medium) is the Darcy number.

We introduce the vorticity function

$$\omega = \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right). \tag{8}$$

Eliminating p between equations (6) and (7) we obtain:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 , \qquad u \frac{\partial \omega}{\partial x} + v \frac{\partial \omega}{\partial y} = \eta_1 \nabla^2 \omega - \eta_1 \eta_2 \omega , \qquad (9)$$

where
$$\eta_1 = \frac{\varepsilon^2}{R_e}$$
 and $\eta_2 = \frac{B}{D_a}$.

3 Hodograph transformation (in terms of ψ, ϕ)

Equation of continuity implies the existence of the stream function $\psi(x,y)$ such that

$$u = \frac{\partial \psi}{\partial u} , v = -\frac{\partial \psi}{\partial x} \tag{10}$$

We introduce a curvilinear coordinate system (ϕ, ψ) in place of x, y where $\phi(x, y) = \text{constant}$, be the arbitrary family of curves which generates with the streamlines $\psi(x, y) = \text{constant}$, a curvilinear net such that :

$$x = x(\phi, \psi)$$
 , $y = y(\phi, \psi)$ (11)

which defines a curvilinear net in the (x, y) plane with the squared element of arc length given by the well known equation

$$ds^2 = Ed\phi^2 + 2Fd\phi d\psi + Gd\psi^2 \tag{12}$$

where

$$E = \left(\frac{\partial x}{\partial \phi}\right)^2 + \left(\frac{\partial y}{\partial \phi}\right)^2, \quad F = \frac{\partial x}{\partial \phi} \frac{\partial x}{\partial \psi} + \frac{\partial y}{\partial \phi} \frac{\partial y}{\partial \psi}, \quad G = \left(\frac{\partial x}{\partial \psi}\right)^2 + \left(\frac{\partial y}{\partial \psi}\right)^2. \tag{13}$$

Equation (11) can be solved to determine ϕ, ψ as functions of x and y so that

$$\frac{\partial x}{\partial \phi} = J \frac{\partial \psi}{\partial y}, \quad \frac{\partial x}{\partial \psi} = -J \frac{\partial \phi}{\partial y}, \quad \frac{\partial y}{\partial \phi} = -J \frac{\partial \psi}{\partial x}, \quad \frac{\partial y}{\partial \psi} = J \frac{\partial \phi}{\partial x}, \tag{14}$$

where the Jacobian J is such that

$$J = \frac{\partial(x,y)}{\partial(\phi,\psi)} = \pm\sqrt{EG - F^2} = \pm W \text{ (say)}.$$

We assume $0 < |J| < \infty$. Denoting by γ , the local angle of inclination of the tangent to the coordinate line $\psi = \text{constant}$, directed in the sense of increasing ϕ , we have from the differential geometry (using Martin [1]) the following:

$$\begin{split} \frac{\partial x}{\partial \phi} &= E \cos \gamma \ , \quad \frac{\partial y}{\partial \phi} = E \sin \gamma , \\ \frac{\partial x}{\partial \psi} &= \frac{F}{\sqrt{E}} \cos \gamma - \frac{J}{\sqrt{E}} \sin \gamma \ , \quad \frac{\partial y}{\partial \psi} = \frac{F}{\sqrt{E}} \sin \gamma + \frac{J}{\sqrt{E}} \cos \gamma \ , \end{split}$$

$$\frac{\partial \gamma}{\partial \phi} = \frac{J}{E} \Gamma_{11}^{2}, \quad \frac{\partial \gamma}{\partial \psi} = \frac{J}{E} \Gamma_{12}^{2},$$

$$K = \frac{1}{W} \left[\frac{\partial}{\partial \psi} \left(\frac{W}{E} \Gamma_{11}^{2} \right) - \frac{\partial}{\partial \phi} \left(\frac{W}{E} \Gamma_{12}^{2} \right) \right] = 0 ,$$
(15)

where

$$\Gamma_{11}^{2} = \frac{-F(\partial E/\partial \phi) + 2E(\partial F/\partial \phi) - E(\partial E/\partial \psi)}{2W^{2}} ,$$

$$\Gamma_{12}{}^2 = \frac{E(\partial G/\partial \phi) - F(\partial E/\partial \psi)}{2W^2} \ ,$$

and K is the Gaussian curvature. The vorticity function ω is such that (Martin [1]):

$$\omega = \frac{1}{J} \left[\frac{\partial}{\partial \phi} \left(\frac{F}{J} \right) - \frac{\partial}{\partial \psi} \left(\frac{E}{J} \right) \right]$$

$$\nabla^2 \omega = \frac{1}{J} \left[\frac{\partial}{\partial \phi} \left(\frac{G(\partial \omega / \partial \phi) - F(\partial \omega / \partial \psi)}{J} \right) + \frac{\partial}{\partial \psi} \left(\frac{E(\partial \omega / \partial \psi) - F(\partial \omega / \partial \phi)}{J} \right) \right]. \tag{16}$$

Using the equations (9), (10) and (14), the vorticity equation can be written as

$$\frac{\partial \omega}{\partial \phi} = \eta_1 J \ \nabla^2 \ \omega - \eta_1 \eta_2 J \omega. \tag{17}$$

Applications

(a) Straight streamlines:

We study now plane flows with straight streamlines and assume the streamlines are not parallel but envelope a curve C. We assume that the tangent lines to C and their orthogonal trajectories (involutes) determine an orthogonal curvilinear net as in Chandna and Kaloni [5]. Letting χ denote the arc length of C, η the angle subtend by the tangent line to C with x axis, ξ the parameter constant along each involute, we have

$$ds^{2} = d\xi^{2} + \{\xi - \chi(\eta)\}^{2} d\eta^{2}.$$
 (18)

The curves $\xi = \text{constant}$ are the involutes of C and the curves $\eta = \text{constant}$ its tangent lines. We proceed to determine flows for which

$$\phi = \phi(\xi) , \ \psi = \psi(\eta), \tag{19}$$

so that

$$ds^{2} = E\phi'^{2}d\xi^{2} + 2F\phi'\psi'd\xi d\eta + G\psi'^{2}d\eta^{2}.$$
 (20)

Comparing equations (20) with (18) we have

$$E = \frac{1}{\phi'^2(\xi)}, \quad F = 0, \quad G = \left[\frac{\xi - \chi(\eta)}{\psi'(\eta)}\right]^2, \quad J = \frac{\xi - \chi}{\phi'\psi'} \quad \text{and}$$

$$\omega = -\left[\frac{\{\xi - \chi(\eta)\}\psi'' + \psi'\chi'}{\{\xi - \chi(\eta)\}^3}\right]. \tag{21}$$

Therefore we write

$$\omega_{\xi} = \frac{2\psi''}{(\xi - \chi)^3} + \frac{3\psi'\chi'}{(\xi - \chi)^4} , \ \omega_{\xi\xi} = -\frac{6\psi''}{(\xi - \chi)^4} - \frac{12\psi'\chi'}{(\xi - \chi)^5} ,$$
$$\omega_{\eta} = -\frac{\psi'''}{(\xi - \chi)^2} - \frac{2\psi''\chi'}{(\xi - \chi)^3} - \frac{(\psi''\chi' + \psi'\chi'')}{(\xi - \chi)^3} - \frac{3\psi'\chi'^2}{(\xi - \chi)^4} ,$$

$$\omega_{\eta\eta} = -\frac{\psi^{iv}}{(\xi - \chi)^2} - \frac{4\psi'''\chi'}{(\xi - \chi)^3} - \frac{2\psi''\chi''}{(\xi - \chi)^3} - \frac{6\psi''\chi'^2}{(\xi - \chi)^4} - \frac{(\psi'''\chi' + 2\psi''\chi'' + \psi'\chi''')}{(\xi - \chi)^3} - \frac{3(\psi''\chi' + \psi'\chi'')\chi'}{(\xi - \chi)^4} - \frac{3(\psi''\chi'^2 + 2\psi'\chi'\chi'')}{(\xi - \chi)^4} - \frac{12\psi'\chi'^3}{(\xi - \chi)^5} . \quad (22)$$

Using equations (21) and (22) in (16) and (17) we obtain
$$\frac{\psi'}{\eta_1} \left[2\psi''(\xi - \chi)^3 + 3\psi'\chi'(\xi - \chi)^2 \right] + (4\psi'' + \psi^{iv})(\xi - \chi)^3 +$$

$$(\xi - \chi)^{2} [9\psi'\chi' + 6\chi'\psi''' + 4\psi''\chi'' + \psi'\chi'''] + (\xi - \chi)[15\psi''\chi'^{2} + 10\psi'\chi'\chi''] + 15\psi'\chi'^{3} - \eta_{2}[(\xi - \chi)^{5}\psi'' + \psi'\chi'(\xi - \chi)^{4}] = 0.$$
(23)

For $\xi = \chi(\eta)$ the equation (23) is satisfied provided $\chi' = 0$, which means that C has zero radius of curvature. Therefore we have the following theorem:

Theorem 1: In a steady plane flows in porous media the streamlines are straight lines, then these are concurrent or parallel.

(b) Streamlines are involute of a curve:

Here we consider the involute of curve C as the streamlines and the tangents to curve C as the orthogonal trajectories. As in (a) we have

$$E = \left[\frac{\xi - \chi(\eta)}{\phi'}\right]^2, \ G = \frac{1}{\psi'^2}, \ J = \frac{\xi - \chi}{\phi'\psi'} \text{ and } \omega = -\psi'' - \frac{\psi'}{\xi - \chi}.$$

Therefore we write
$$\omega_{\xi} = -\psi''' - \frac{\psi''}{\xi - \chi} + \frac{\psi'}{(\xi - \chi)^2} ,$$

$$\omega_{\eta} = -\frac{\psi' \chi'}{(\xi - \chi)^2} ,$$

$$\omega_{\xi\xi} = -\psi^{iv} - \frac{\psi'''}{\xi - \chi} + \frac{2\psi''}{(\xi - \chi)^2} - \frac{2\psi'}{(\xi - \chi)^3} \text{ and}$$

$$\omega_{\eta\eta} = -\frac{\psi'\chi''}{(\xi - \chi)^2} - \frac{2\psi'\chi'^2}{(\xi - \chi)^3}.$$

Then the vorticity equation becomes

$$(\xi - \chi)^5 \psi^{iv} + (\xi - \chi)^4 \psi''' - (\xi - \chi)^3 \psi'' + (\xi - \chi)^2 \left[\psi' - \frac{{\psi'}^2 \chi'}{\eta_1} \right]$$
$$(\xi - \chi) \psi' \chi'' + 3 \psi' {\chi'}^2 - \eta_2 [(\xi - \chi)^5 \psi'' + (\xi - \chi)^4 \psi'] = 0. \quad (24)$$

Since equation (24) holds identically, it should hold along the curve $\xi = \chi(\eta)$, therefore

$$3\psi'\chi'^2=0.$$

Since ψ' can not vanish identically, we have $\chi' = 0$. Thus we have the following theorem:

Theorem2: The streamlines in two dimensional plane flows in porous media can be involutes of a curve C only if C reduces to a point and the streamlines are circles concentric at this point.

4 Hodograph transformation (in terms of u, v)

We take the functions u=u(x,y), v=v(x,y) to be such that in the region of the flow, the Jacobian

$$J = \frac{\partial(u, v)}{\partial(x, y)} = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} \neq 0, |J| < \infty.$$

We may consider x and y as functions of u and v. By means of x = x(u, v) and y = y(u, v), we have the following relations.

$$\frac{\partial u}{\partial x} = J \frac{\partial y}{\partial v}, \quad \frac{\partial u}{\partial y} = -J \frac{\partial x}{\partial v}, \quad \frac{\partial v}{\partial x} = -J \frac{\partial y}{\partial u}, \quad \frac{\partial v}{\partial y} = J \frac{\partial x}{\partial u}$$
 (25)

and

$$\frac{\partial f}{\partial x} = \frac{\partial (f, y)}{\partial (x, y)} = J \frac{\partial (f, y)}{\partial (u, v)}, \quad \frac{\partial f}{\partial y} = \frac{\partial (f, x)}{\partial (x, y)} = J \frac{\partial (x, f)}{\partial (u, v)}, \tag{26}$$

where f = f(x, y) is any continuously differential function and

$$J = J(x,y) = \frac{\partial(u,v)}{\partial(x,y)} = \left[\frac{\partial(x,y)}{\partial(u,v)}\right]^{-1} = j(u,v). \tag{27}$$

With the help of equations (25)-(27) and the transformation equation for the vorticity function defined by

$$\omega(x,y) = \omega(x(u,v), y(u,v)) = \bar{\omega}(u,v),$$

the system (8) - (9) becomes:

$$\frac{\partial x}{\partial u} + \frac{\partial y}{\partial v} = 0, (28)$$

$$j\left(\frac{\partial x}{\partial v} - \frac{\partial y}{\partial u}\right) = \bar{\omega} \tag{29}$$

and

$$\eta_1 \left[\frac{\partial (jQ_2, y)}{\partial (u, v)} + \frac{\partial (x, jQ_1)}{\partial (u, v)} \right] - \eta_1 \eta_2 \frac{\bar{\omega}}{j} = uQ_2 + vQ_1.$$
 (30)

where

$$Q_1 = \frac{\partial(x,\bar{\omega})}{\partial(u,v)} \text{ and } Q_2 = \frac{\partial(\bar{\omega},y)}{\partial(u,v)}.$$
 (31)

5 Equation for Legendre transform function

The equation of continuity implies the existence of a stream function $\psi(x,y)$ such that

$$d\psi = -v \, dx + u \, dy \text{ or } \frac{\partial \psi}{\partial x} = -v \, , \, \frac{\partial \psi}{\partial y} = u.$$
 (32)

Likewise (28) implies the existence of a function L(u, v) called the Legendre transform function of stream function $\psi(x, y)$, such that

$$dL = -y \ du + x \ dv$$
 or $\frac{\partial L}{\partial u} = -y, \frac{\partial L}{\partial v} = x,$ (33)

and the two functions $\psi(x,y)$, L(u,v) are related by

$$L(u, v) = v \ x - u \ y + \psi(x, y). \tag{34}$$

Introducing L(u, v) in (28) - (31), we see that (28) is identically satisfied and the remaining equations are:

$$j\left(\frac{\partial^2 L}{\partial u^2} + \frac{\partial^2 L}{\partial v^2}\right) = \bar{\omega},\tag{35}$$

and

$$\eta_1 \left[\frac{\partial \left(\frac{\partial L}{\partial u}, jQ_2 \right)}{\partial (u, v)} + \frac{\partial \left(\frac{\partial L}{\partial v}, jQ_1 \right)}{\partial (u, v)} \right] - \eta_1 \eta_2 \frac{\bar{\omega}}{j} = uQ_2 + vQ_1, \tag{36}$$

where

$$Q_1(u,v) = \frac{\partial \left(\frac{\partial L}{\partial v}, \bar{\omega}\right)}{\partial (u,v)}, \quad Q_2(u,v) = \frac{\partial \left(\frac{\partial L}{\partial u}, \bar{\omega}\right)}{\partial (u,v)}, \quad (37)$$

and

$$j = \left[\frac{\partial^2 L}{\partial u^2} \frac{\partial^2 L}{\partial v^2} - \left(\frac{\partial^2 L}{\partial u \partial v} \right)^2 \right]^{-1}.$$
 (38)

Summing up we have the following theorem:

Theorem 3: If L(u, v) is the Legendre transform of a stream function of the equations of motion (4)-(7) governing the plane steady flow of a viscous incompressible fluid then L(u, v) must satisfy (36).

We now define the polar coordinates (q, θ) in (u, v) plane given by

$$q = \sqrt{(u^2 + v^2)}$$
, $\theta = \tan^{-1}\left(\frac{v}{u}\right)$, or $u = q\cos\theta$, $v = q\sin\theta$ (39)

so that we have

$$\frac{\partial}{\partial u} = \cos\theta \frac{\partial}{\partial q} - \frac{\sin\theta}{q} \frac{\partial}{\partial \theta} , \quad \frac{\partial}{\partial v} = \sin\theta \frac{\partial}{\partial q} + \frac{\cos\theta}{q} \frac{\partial}{\partial \theta}. \tag{40}$$

Define $L^*(q, \theta), \omega^*(q, \theta), j^*(q, \theta)$ to be the Legendre transform, vorticity function, Jacobian function in (q, θ) of (u, v) coordinates and using

$$\frac{\partial(F,G)}{\partial(u,v)} = \frac{\partial(F^*,G^*)}{\partial(q,\theta)} \frac{\partial(q,\theta)}{\partial(u,v)} = \frac{1}{q} \frac{\partial(F^*,G^*)}{\partial(q,\theta)}$$
(41)

where $F(u,v) = F^*(q,\theta)$ and $G(u,v) = G^*(q,\theta)$ are continuously differential functions, we get the following corollary from theorem 1:

Corollary: If $L^*(q, \theta)$ is the Legendre transform function of a stream function of the equations of motion (4) - (7) governing the plane steady viscous flow then $L^*(q, \theta)$ must satisfy

$$\eta_{1} \left[\frac{\partial \left(\sin \theta \frac{\partial L^{\star}}{\partial q} + \frac{\cos \theta}{q} \frac{\partial L^{\star}}{\partial \theta}, j^{\star} Q_{2}^{\star} \right)}{\partial (q, \theta)} + \frac{\partial \left(\cos \theta \frac{\partial L^{\star}}{\partial q} - \frac{\sin \theta}{q} \frac{\partial L^{\star}}{\partial \theta}, j^{\star} Q_{2}^{\star} \right)}{\partial (q, \theta)} \right] - \eta_{1} \eta_{2} \frac{\omega^{\star} q}{j^{\star}} = q^{2} (\sin \theta Q_{1}^{\star} + \cos \theta Q_{2}^{\star}) \quad (42)$$

where Q_1^*, Q_2^*, j^* and ω^* are same as obtained by Chandna et al. (2). Once $L^*(q, \theta)$ of (41) is obtained, we employ

$$x = \sin \theta \frac{\partial L^*}{\partial q} + \frac{\cos \theta}{q} \frac{\partial L^*}{\partial \theta} , \quad y = \frac{\sin \theta}{q} \frac{\partial L^*}{\partial \theta} - \cos \theta \frac{\partial L^*}{\partial q}$$
 (43)

and (39) to get u(x, y), v(x, y) in the physical plane.

Applications

Application 1. Let

$$L(u,v) = F(u) + G(v) , \qquad (44)$$

such that first and second derivatives of F(u) and G(v) are not zero. Then (29) to (31) give

$$\bar{\omega} = \frac{1}{F''(u)} + \frac{1}{G''(v)} , \ j = \frac{1}{F''(u)G''(v)} , \ Q_1 = \frac{F'''(u)G''(v)}{F''^2(u)}$$

$$Q_2 = \frac{F''(u)G'''(v)}{G''^2(v)} .$$
(45)

Also (36) with the help of (43) and (44) give

$$\eta_1 \left[\frac{1}{G''} \left(\frac{G'''}{G''^2} \right)' + \frac{1}{F''} \left(\frac{F'''}{F''^2} \right)' \right] + \eta_1 \eta_2 \frac{(G'' + F'')}{F''G''} + v \frac{F'''}{F''^3} - u \frac{G'''}{G''^3} = 0. \quad (46)$$

If (44) defines the Legendre transformation such that F'''(u) = 0 or G'''(v) = 0, then (46) is satisfied only when $\eta_2 = 0$ or when G''(v) + F''(u) = 0. The case $\eta_2 = 0$ is considered in Chandna et al. [2]. F'''(u) = G'''(v) = 0 requires that $F''(u) = K_1$ and $G''(v) = K_2$ for arbitrary constants K_1 and K_2 . Then G''(v) + F''(u) = 0 implies $K_1 = -K_2$. In this case we can take

$$L(u,v) = C_1 u^2 + C_2 u + C_3 + D_1 v^2 + D_2 v + D_3$$

for arbitrary constants $C_1, C_2, C_3, D_1, D_2, D_3$ with $D_1 = -C_1$. Then (33) gives

$$u = -\frac{1}{2C_1}(y + C_2) , v = -\frac{1}{2C_1}(x - D_2).$$
 (47)

Now (32) implies

$$\psi = \frac{(x - D_2)^2}{4C_1} - \frac{(y + C_2)^2}{4C_1} = \text{constant or}$$
 (48)

$$(x - D_2)^2 - (y + C_2)^2 = \text{constant}$$
(49)

We then calculate pressure and vorticity.

$$p = \frac{1}{2C_1} \left[\frac{B}{D_a R_e} (xy + C_2 x - D_2 y) - \frac{1}{2C_1 \varepsilon^2} \left(\frac{1}{2} (x^2 + y^2) - D_2 x + C_2 y \right) \right] + N_1, \quad (50)$$

$$\omega = 0 \tag{51}$$

The above result can be summed up in the next theorem:

Theorem 4: If L(u,v) = F(u) + G(v) is the Legendre transform of a stream function of the equations of motion (4)-(7) such that F''(u) = 0 = G''(v) (which is satisfied only if $\eta_2 = 0$ or F''(u) + G''(v) = 0) gives u and v which are given by (47) where as pressure and vorticity are given by (50) and (51) respectively and the streamlines are the curves given by (49).

Application 2. Let

$$L(u,v) = u^m v^n (52)$$

be the Legendre transform function such that $m \neq 0$, $n \neq 0$ and $m + n \neq 1$. Substituting (52) in (35)-(38) yields

$$j = \frac{u^{2-2m}v^{2-2n}}{mn(1-m-n)}, \quad \bar{\omega} = \left[\frac{(m-1)}{n(1-m-n)}v^2 + \frac{(n-1)}{m(1-m-n)}u^2\right]u^{-m}v^{-n},$$

$$Q_1 = \frac{m(m-1)}{1-m-n}u^{-1} - \frac{n(n-1)(2n-2+m)}{m(1-m-n)}uv^{-2} \quad \text{and}$$

$$Q_2 = \frac{m(m-1)(2m-2+n)}{n(1-m-n)}vu^{-2} - \frac{n(n-1)}{1-m-n}v^{-1}.$$
(53)

Employing (52) and (53) in (36) shows that m and n must satisfy the equation

$$\eta_{1} \left[\frac{2(m-1)(1-n)}{(1-m-n)^{2}} u^{2}v^{2} + \frac{n(n-1)(2n+m-2)(3n+2m-3)}{m^{2}(1-m-n)^{2}} u^{4} + \frac{m(m-1)(2m+n-2)(3m+2n-3)}{n^{2}(1-m-n)^{2}} v^{4} \right] - \frac{n^{2}(1-m-n)^{2}}{\eta_{1}\eta_{2}[m(m-1)u^{2m}v^{2n+2} + n(n-1)v^{2m+2}u^{2n}] + \frac{2n(1-n)}{m}u^{m+3}v^{n+1} + \frac{2m(m-1)}{n}u^{m+1}v^{n+3} = 0 \quad (54)$$

The above equation is satisfied for m = n = 1, which gives

$$u = x$$
, $v = -y$, $\bar{\omega} = 0$, $p = -\frac{1}{\varepsilon^2} (x^2 + y^2) + \frac{B}{2D_a R_e} (x^2 - y^2) + N_2$ (55)

Theorem 5: If the Legendre transformation of a stream function for the equations of motion (4) -(7) has the form $L(u,v) = u^m n^n, m \neq 0, n \neq 0, m + n \neq 1$, then the velocity components, vorticity and pressure are given by (55), respectively and the stream lines are the curves xy = M, M is constant.

Application 3: Let

$$L^*(q,\theta) = F(q)$$
 such that $F'(q) \neq 0$ and $F''(q) \neq 0$. (56)

Using (56) in (42) and (43), we evaluate $j^*, \omega^*, Q_1^*, Q_2^*, x, y$ to obtain

$$j^* = \frac{q}{F'(q)F''(q)}, \ \omega^* = \frac{q}{F'(q)} + \frac{1}{F''(q)}, \ x = F'(q)\sin\theta, \ y = -F'(q)\cos\theta,$$

$$Q_1^* = -\frac{F'(q)}{q}\omega^*(q)\cos\theta \ , \ Q_2^* = -\frac{F'(q)}{q}\omega^*(q)\sin\theta \ ,$$
 (57)

Eliminating $j^{\star}, \omega^{\star}, Q_1^{\star}, Q_2^{\star}$ and L^{\star} from (42) by using (56) and (57) we obtain

$$\eta_{1} \left\{ \frac{F'(q)}{F''(q)} \left[\frac{q}{F'(q)} + \frac{1}{F''(q)} \right]'' + \left(1 - \frac{F'(q)F''(q)}{F''^{2}(q)} \right) \left[\frac{q}{F'(q)} + \frac{1}{F''(q)} \right]' \right\} - \eta_{1} \eta_{2} F'(q) F''(q) \left(\frac{q}{F'(q)} + \frac{1}{F''(q)} \right) = 0. \quad (58)$$

This will be satisfied when $\omega^* = \frac{q}{F'(q)} + \frac{1}{F''(q)} = 0$. Which implies that

$$\frac{F''(q)}{F'(q)} = -\frac{1}{q}, \quad \ln|F'(q)| = -\ln|q| + \ln S_1, \quad F'(q) = \frac{S_1}{q} \text{ and } F(q) = -\frac{S_1}{q^2} + S_2$$

where S_1 and S_2 are constants. Therefore $L^* = -\frac{S_1}{q^2} + S_2$ gives

$$u = -\frac{S_1 y}{x^2 + y^2}, \ v = \frac{S_1 x}{x^2 + y^2}, \ \omega = 0,$$
 (59)

$$p = \frac{S_1}{\varepsilon^2} \left[-\frac{S_1}{2(x^2 + y^2)} + \frac{\varepsilon^2 B}{D_a R_e} \tan^{-1} \left(\frac{x}{y}\right) \right] + N_3.$$
 (60)

Theorem 6: Let the Legendre transformation of a stream function for the equations of motion (4) - (7) has the form $L^*(q,\theta) = F(q)$ such that $F'(q) \neq 0$ and $F''(q) \neq 0$. Then the velocity components, vorticity and pressure are given by (59) and (60) respectively.

Application 4: Let

$$L^{\star} = q^2 G(\theta). \tag{61}$$

Then following Chandna et al. [2], we have

$$j^{*} = \left[4G^{2} + 2GG'' - {G'}^{2}\right]^{-1}, \ \omega^{*} = \frac{4G + G''}{8G^{3}G'' - {G'}^{2}},$$
$$Q_{1}^{*} = \frac{\omega^{*'}}{a} \left(2G\sin\theta + G'\cos\theta\right) \text{ and } Q_{2}^{*} = \frac{\omega^{*'}}{a} \left(2G\cos\theta - G'\sin\theta\right)$$
(62)

where the prime denotes differentiation with respect to θ . Substituting (61) and (62) into (42) we obtain

$$\eta_1 \left[(4G^2 + G'^2)j^* \omega^{\star'} \right]' - 2G\omega^{\star'} q^2 - \eta_1 \eta_2 q \omega^{\star} = 0.$$
 (63)

The above equation (63) is satisfied when $\omega^* = 0$. Therefore 4G + G' = 0, and the general solution of this equation is

$$G(\theta) = A_1 \cos 2\theta + A_2 \sin 2\theta , \qquad (64)$$

where A_1 and A_2 are arbitrary constants. Equations (61) and (57) give

$$u = \frac{A_2x - A_1y}{2(A_1^2 + A_2^2)}, \ v = \frac{(-A_1x - A_2y)}{2(A_1^2 + A_2^2)}, \ \omega^* = 0, \ p = N_5 - \frac{(x^2 + y^2)}{8\varepsilon^2(A_1^2 + A_2^2)}$$
(65)

$$\psi = M_1 x y + M_2 (x^2 - y^2) + M_3 , \qquad (66)$$

where M_1, M_2 and M_3 are arbitrary constants.

Theorem 7: Let the Legendre transformation of a stream function for the equations of motion (4) - (7) has the form $L^*(q,\theta) = q^2G(\theta)$. Then the velocity components, vorticity and pressure are given by (65), respectively and the stream lines are given by (66).

Acknowledgements The authors are thankful to the referee for helpful suggestions.

References

- [1] Martin, M.N. Arch. Rat. Mech. Anal. 41, p266 (1971).
- [2] Chandna, O. P., Baron, R. M. and Smith A. C. SIAM (Soc. Ind. Appl. Math.) 42, p1323 (1982).
- [3] Govindaraju, K.V. Arch. Rat. Mech. Anal. 45, p66 (1972).
- [4] Nath, V.I. and Chandna, Qart. Appl. Math. 31, p351 (1973).
- [5] Chandna, O.P. and Kaloni, P.N. SIAM (Soc. Ind. Appl. Math.) 31, p686 (1976).
- [6] Kaloni, P.N. and Siddiqui, A.M. Int. J. Eng. Sci. 21, p1157 (1983).
- [7] Barron, R.M. and Chandna, O.P. J. Eng. Math. 15, p211 (1981).
- [8] Siddiqui, A.M., Kaloni, P.N. and Chandna, O.P. J. Eng. Math. 19, p201 (1985).
- [9] Bhatt, IL Nuvo Cimento, 92, p177 (1986).
- [10] Labropulu, F. and Chandna, O.P. Int. J. Math. & Math. Sci. 20, p165 (1997).
- [11] Labropulu, F. and Chandna, O.P. Int. J. Math. & Math. Sci. 23, p449 (2000).

$Authors'\ address$

Balswaroop Bhatt — University of the West Indies, Department of Mathematics and Computer Science, St. Augustine, Trinidad, W.I.,

e-mail: Bal.Bhatt@sta.uwi.edu

Angela Shirley — University of the West Indies, Department of Mathematics and Computer Science, St. Augustine, Trinidad, W. I.

e-mail: angela.shirley@sta.uwi.edu