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We study the simulation of a single qubit rotation and Controlled-Not gate in a solid state one-dimensional chain of nuclear spins system
interacting weakly through an Ising type of interaction with a modular component of the magnetic field in the z-direction, characterized
by Bz(z, t) = Bo(z) cos δt. These qubits are subjected to electromagnetic pulses which determine the transition in the one or two qubits
system. We use the fidelity parameter to determine the performance of the Not (N) gate and Controlled-Not (CNOT) gate as a function of the
frequency parameter δ. We found that for |δ| ≤ 10−3 MHz, these gates still have good fidelity.

Keywords: Modular magnetic field; quantum gates; chain of nuclear spins.

Estudiamos la simulación de una rotación de un sólo qubit y una compuerta Control-Not en un sistema uni-dimensional compuesto por
una cadena de espı́nes nucleares interactuando débilmente a través de una interacción tipo Ising con una componente modular del campo
magnético en la dirección z, caracterizada por Bz(z, t) = B0(z) cos δt. Estos qubits están sujetos a pulsos electromagnéticos los cuáles
determinan la transición en los sistemas de uno y dos qubits. Usamos el parámetro fidelidad para determinar la actuación de la compuerta
NOT (N) y Contol-not (CNOT) cómo una función del parametro frecuencia δ. Hallamos que para | δ |≤ 10−3 MHz, estas compuertas
tienen buena fidelidad.

Descriptores: Campo magnético modular; compuertas cuánticas; cadena de espines nucleares.

PACS: 03.65.-w; 03.67.-a; 03.67.Ac; 03.67.Hk

1. Introduction

Almost any quantum system with at least two quantum lev-
els may be used, in principle, for quantum computation. This
one uses qubits (quantum bits) instead of bits to process in-
formation. A qubit is the superposition of any two levels of
the system, called |0〉 and |1〉 states, Ψ = C0|0〉 + C1|1〉
with |C0|2 + |C1|2 = 1. The tensorial product of L-qubits
makes up a register of length L, say |x〉 = |iL−1, ..., i0〉,
with ij = 0, 1, and a quantum computer with L-qubits works
in a 2L dimensional Hilbert space, where an element of this
space is of the form Ψ =

∑
Cx|x〉, with

∑ |Cx|2 = 1. Any
operation with registers is done through a unitary transfor-
mation which defines a quantum gate, and one of the most
important result about quantum gates and quantum logical
operation is that any quantum computation can be done in
terms of a single qubit unitary operation and a Controlled-
Not (CNOT) gate or a single qubit unitary operation and a
Controlled-Controlled-Not (CCNOT) gate since CNOT and
CCNOT are universal gates [1,2].

Although quantum computers of few qubits [3-9] have
been done in operations for some time and they have been
used successfully so far, to make serious computer calcu-
lations one may requires a quantum computer with at least
of 100-qubits registers, and hopefully this will be achieved

in a future not so far away. One solid state quantum com-
puter model that has been explored for physical realization
and which allows to make analytical and numerical studies
of quantum gates and protocols [10] is the one made of one-
dimensional chain of nuclear spins systems [11,12] inside
a strong magnetic field in the z-direction (with very strong
gradient in that direction) and an RF-field in the transverse
direction. Such a model physically is unlikely to be con-
structed, however this represents a good approximation for
simulation of quantum algorithms and gates whose respec-
tive results could be applied in more realistic quantum com-
puters. Furthermore, the approach relies in the universal char-
acter of Quantum Mechanics. In this model, the Ising inter-
action is considered among first and second neighbor spins
which allows to implement ideally this type of computer up
to 1000-qubits or more [13,14]. Among other gates and algo-
rithms [15], one qubit rotation and CNOT gates were study
with this quantum computer model [16]. One of the impor-
tant statement of this model is that one keeps constant the
magnetic field in the z-direction at the location of each qubit.
However, this statement may be not so realistic in practice
for this model or other solid state quantum computer based
on spin system with very strong axial magnetic field. The
main reason is that the strong magnetic field must be done
with superconducting magnets which, in turns, are made of
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superconducting cables, and on the wires of these cables eddy
currents are induced which can last for some time [21] and
can produce modulation on the magnetic field, and then we
wonder: if there is a magnetic field modulation where this
field change slowly with time, how these basic elements,
one qubit rotation and CNOT gates, would be affected. Of
course, in this case, the usual analytical approximation with-
out field modulation is not valid anymore, and a full numer-
ical calculation is required to see the possible effect of this
modulation on 1-qubit rotations and CNOT gates. In our
study we will assume that the system is completely insulated
from the environment, such that the important decoherence
effects [24,22,25] which normally would appear in this quan-
tum system is not considered.

In this paper, we want to study this modulation effect of
the magnetic field on the Not (particular case of 1-qubit rota-
tion, or unitary operation) and CNOT quantum gates. To do
this, we will assume an additional cosine time dependence
on the normal z-direction of the magnetic field and will de-
termine, using the fidelity [5,18,23] parameter, the minimum
variation in the frequency of this modulation to keep these
quantum gates elements still well defined. The paper is struc-
tured as follows: In Sec. 2 the Quantum-not gate in presence
of the modular magnetic field is studied. The modularity ef-
fects on the CNOT gate are determined in Sec. 3. The paper
is concluded with a discussion of the obtained results.

2. Quantum Not-gate

Consider a single paramagnetic particle with spin one-half in
a magnetic field given by

B = (Ba cos(ωt), Ba sin(ωt), B0(z) cos δt) (1)

where the first two components represent the RF-field, and
the third component represents the strong magnetic field in
this direction. The interaction between this particle and the
magnetic field is given by the Hamiltonian H = −�μ · B,
where �μ is the magnetic moment of the particle which is re-
lated with the nuclear spin Ŝ = �Î as �μ = γ�Î, with γ the
gyromagnetic ratio of the particle. So, the Hamiltonian is

Ĥ=−�μ · B=−�ωo cos δt Îz − �Ω
2

(Î+e−iωt+Î−eiωt), (2)

where ωo = γB0(zo) (zo is the location of the particle) is the
Larmor frequency, Ω = γBa is the Rabi frequency, and Î±
represents the ascent (descent) operator, Î± = Îx±iÎy . If |0〉
and |1〉 are the two states of the spin one-half, one has that

Îz|i〉 =
(−1)i

2
|i〉 , Î+|0〉 = |1〉 , Î−|1〉 = |0〉 . (3)

The ground state of the system is represented by |0〉, which
represents the spin of the particle in the direction of the third
component of the magnetic field. To solve the Schrödinger
equation,

i�
∂|Ψ〉
∂t

= Ĥ|Ψ〉 , (4)

one proposes a solution of the form

|Ψ〉 = co(t)|0〉 + c1(t)|1〉 (5)

such that |co|2 + |c1|2 = 1 at any time. Doing this, one gets
the following ordinary differential equations

iċo = −ωo cos δt

2
co − Ω

2
c1e

iωt (6a)

and
iċ1 = +

ωo cos δt

2
c1 − Ω

2
coe

−iωt . (6b)

Choosing c0(t) = eiωt/2d0(t) and c1(t) = e−iωt/2d1(t) in
above equations, one has

iḋ0 = +
ω − ωo cos δt

2
d0 − Ω

2
d1 (7a)

and
iḋ1 = −ω − ωo cos δt

2
d1 − Ω

2
d0 (7b)

which, in turns, can be written as the following uncoupled
similar Mathieu equation [19],

d̈0 + α(t)d0 = 0 (8a)

where the complex function α(t) is given by

α(t)=
1
4

[
Ω2+ω2

(
1−ωo

ω
cos δt

)2
]

+i
ωoδ

2
sin δt , (8b)

and d1 is obtained from (7a),

d1 =
ω − ωo cos δt

Ω
d0 − i

2
Ω

ḋ0 . (9)

For δ = 0 and on resonance (ω = ωo), one has that
α = Ω2/4, and the system oscillates between the states |0〉
and |1〉 with and angular frequency corresponding to the Rabi
frequency Ω, as one expected [16]. For δ �= 0 the solution
of this equation is far to be trivial, and instead of solving
the Eq. (8a), we will find directly the numerical solution of
the system (7) with the given initial conditions. By taking
ω = ωo (resonant case), one expects to obtain the transition
|0〉 ←→ |1〉 and to get the quantum Not-gate with a phase.

To study the performance of the quantum Not-gate as a
function of the modulation frequency δ , we will calculate the
fidelity parameter at the end of a π-pulse and make the com-
parison of the ideal wave function, Ψexpected, with the wave
function resulting from our simulation, Ψsim.

F = 〈Ψsim|Ψexpected〉 , (10)

where |Ψsim〉 is the state obtained from numerical simula-
tions, and |Ψexpected〉 is the ideal expected state. for the initial
condition |Ψo〉 = |0〉, of course, the fidelity coincide with the
coefficient |c1|2. At this point we want to stress that we de-
fine |F |2 in this way due that any quantum gate or algorithm
is represented by the final wave function of the quantum sys-
tem. Ideally, if the quantum gate is fully realizable this wave
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FIGURE 1. Quantum Not-gate: (a) Global behavior (b) Local be-
havior with respect to δ.

function is represented by |Ψexpected〉. However, the non res-
onant transitions and the error systems (modulation) make
that the resulting wave function of the complete simulation
is given by |Ψsim〉. In this way, the fidelity is a measure of
the good operation of gates and algorithms. On the other
hand, there is another measurement for the calculation of
the the distance between two states and this is the so called
Uhlmann-Josza fidelity [17]. However, in Ref. 18 it has been
shown that Eq. (10) is a lower bound for the Uhlmann-Josza
fidelity. Such a result favors the present results. on the other
hand, it is worth to point out that in Refs. 20 and 23, a dis-
cussion on the effects of the noise on the fidelity associated
to the quantum gates is given.

Figure 1a and 1b show the behavior of the fidelity and
the probabilities as a function of the parameter δ at the end
of a π-pulse, τ = π/Ω. We have used the parameters (units
2π MHz) Ω = 0.1 and ωo = 200. The RF-frequency has
been chosen equal to the resonant frequency ω = ωo. As one
can see, for δ ≤ 0.2 × 10−3 MHz we can have a very well
defined quantum Not-gate.

3. Two qubits model and quantum CNOT gate

Figure 2 shows two paramagnetic nuclear particles of spin
one-half (qubits) subjected to a magnetic field of Eq. (1),
making and angle cos θ =

√
3/2 to eliminate the dipole-

dipole interaction between them. The interaction of the mag-
netic field with the qubits is carried out through the coupling
with their dipole magnetic moment �μi = γSi(i = 1, 2),
where γ is the gyromagnetic ratio and Ŝi is the spin of the
ith-nucleon (Ŝ = �Î). The interaction energy is given by

Ĥ = −�μ1 · B1 − �μ2 · B2 + �JÎ(1)
z Î(2)

z = Ĥ0 − �Ω
2

×
(
Î
(1)
+ e−iωt + Î

(1)
− eiωt + Î

(2)
+ e−iωt + Î

(2)
− eiωt

)
, (11)

where J is the coupling constant of interaction between near-
est neighboring spins, Ω = γBa is the Rabi frequency, Ĥ0

is the part of Hamiltonian which is diagonal in the basis
{|i1io〉}ij=0,1 and is given by

Ĥ0 = −�

(
ω1Î

(1)
z + ω2Î

(2)
z

)
cos δt + �JÎ(1)

z Î(2)
z . (12)

where ωi are the Larmor’s frequencies which are defined as

ωi = γB0(zi) i = 1, 2 (13)

with zi being the z-location of the ith-qubit. The eigenvalues
of Ĥ0 on the above basis for δ = 0 are

E00 = −1
2

{
ω1 + ω2 − 1

2
J

}

E01 = −1
2

{
ω1 − ω2 +

1
2
J

}

E10 = −1
2

{
−ω1 + ω2 +

1
2
J

}

E11 = −1
2

{
−ω1 − ω2 − 1

2
J

}
(14)

The ground state of the system is denoted by |00〉 which
corresponds to the case of having both spins parallel in the
direction of the third component of the magnetic field. By
doing ω = (E11−E10)/� = ω2−J/2, one gets the resonant
transition which defines the CNOT operation |10〉 ←→ |11〉
with a phase involved (eiπ/2), where the left qubits is the con-
trol and the right one is the target. To solve the Schrödinger
equation,

i�
∂|Ψ〉
∂t

= Ĥ|Ψ〉 , (15)

we can assume that the wave function can be written as

Ψ=C00(t)|00〉+C01(t)|01〉+C10(t)|10〉+C11(t)|11〉 (16)

FIGURE 2. Two qubits configuration.
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such that
∑ |Cij |2 = 1. Thus, we arrive to the following

system of complex-couple ordinary differential equations

iĊ00 = −1
2

(
(ω1 + ω2) cos δt − 1

2
J

)
C00

− Ω
2

(C01 + C10) eiωt (17a)

iĊ01 = −1
2

(
(ω1 − ω2) cos δt +

1
2
J

)
C01

− Ω
2

(
C00e

−iωt + C11e
iωt

)
(17b)

iĊ10 = −1
2

(
(ω2 − ω1) cos δt +

1
2
J

)
C10

− Ω
2

(
C00e

−iωt + C11e
iωt

)
(17c)

iĊ11 = −1
2

(
−(ω1 + ω2) cos δt − 1

2
J

)
C11

− Ω
2

(C01 + C10) e−iωt. (17d)

Doing the transformation

C00 = eiωt/2D00, C01 = e−iωt/2D01,

C10 = e−iωt/2D10, and C11 = e−i3ωt/2D11,

one gets rid of the fast oscillations and gets the following
equations for the coefficients D′s:

iḊ00 = −1
2

(
(ω1 + ω2) cos δt − 1

2
J − ω

)
D00

− Ω
2

(D01 + D10) (18a)

iḊ01 = −1
2

(
(ω1 − ω2) cos δt +

1
2
J + ω

)
D01

− Ω
2

(D00 + D11) (18b)

iḊ10 = −1
2

(
(ω2 − ω1) cos δt +

1
2
J + ω

)
D10

− Ω
2

(D00 + D11) (18c)

iḊ11 = −1
2

(
−(ω1 + ω2) cos δt − 1

2
J + 3ω

)
D11

− Ω
2

(D01 + D10) . (18d)

We solve numerically these equation, and for δ = 0 and
ω = ω2 − J/2, a full transition will occur between the
states |10〉 and |11〉. Note that one has Cij(0) = Dij(0) and
|Cij(t)|2 = |Dij(t)|2. For δ �= 0, we consider two initially
conditions cases: Digital case, where the initial condition is
given by

|Ψo〉 = |10〉 , (19a)

FIGURE 3. CNOT behavior, digital case.

FIGURE 4. CNOT behavior, superposition case.

that is C00(0) = 0, C01(0) = 0, C10(0) = 1, C11(0) = 0.
Superposition case, where the initial condition is

|Ψo〉=
√

2
10

|00〉+ 1√
10

|01〉+
√

6
10

|10〉+ 1√
10

|11〉 . (19b)

These two initial states can be gotten from our ground state
|00〉 by applying it Hadamard and/or CNOT gates which is
not the point in our study. So, we are assuming that these ini-
tial states are given, and we use a simple state and a superpo-
sition state to cover a general situation. For our simulation,
we use the following parameters (units 2π MHz) Ω = 0.1,
ω1 = 100, ω2 = 110, and J = 10. The RF-frequency cho-
sen is the resonant frequency ω = ω2 − J/2, and applying
a π-pulse, τ = π/Ω, we should get the respective CNOT
transition |10〉 ←→ |11〉. Figure 3 shows the behavior of the
probabilities and the fidelity as a function of the parameter δ
at the end of the π-pulse and for the digital case. Figure 4
shows the same as before but for the superposition case. This
case is more stable (the fidelity decays more slowly than the
digital case) due to non zero contribution to the terms C00 and
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C01 which always contribute with the same constant proba-
bility 3/10.

4. Conclusions

For a quantum computer model of a chain of qubits in a mag-
netic field where its z-component varies with respect the time,
we have studied the Not and Controlled-Not gate behavior as
a function of the frequency δ of variation of this component.
In general, one can say that for δ ≤ 10−3 MHz these quan-
tum gates remain well defined with a fidelity very close to
one. This small value in δ means that it is enough to consider

up to the next to leading order term in Taylor expansion of the
cosine function in Eq. (1). We have seen that the fidelity for
the superposition case is more stable than the digital case due
to the contribution to the fidelity parameter of the other no
zero states involved in the dynamics. Of course, this safety
region, defined by δ, for these quantum gates does not mean
safety for a full quantum algorithm, which is under studied.

Acknowledgments

We want to thank UAEMex for the grant 2594/2008U.

1. D. Deutsch, A. Barenco, and A. Ekert, Proc. R. Soc. London A
449 (1995) 669.

2. S. Loyd, Phys. Rev. Lett. 75 (1995) 346.

3. D. Boshi, S. Branca, F.D. Martini, L. Hardy, and S. Popescu,
Phys. Rev. Lett. 80 (1998) 1121.

4. C.H. Bennett and G. Brassard, Proc. IEEE international Con-
ference on Computers, Systems, and Signal Processing, N.Y.
(1984) 175.

5. I.L. Chuang, N.Gershenfeld, M.G. Kubinec, and D.W. Lung,
Proc. R. Soc. London A 454 (1998) 447.

6. I.L. Chuang, N. Gershenfeld, and M.G. Kubinec, Phys. Rev.
Lett. 18 (1998) 3408.

7. I.L. Chuang, L.M.K. Vandersypen, X.L. Zhou, D.W. Leung,
and S. Lloyd, Nature 393 (1998) 143.

8. P.Domokos, J.M. Raimond, M. Brune, and S. Haroche, Phys.
Rev. Lett. 52 (1995) 3554.

9. J.Q. You, Y. Nakamura, F.Nori, Phys. Rev. Lett. 91 (2002)
197902.

10. G.P. Berman, D.I. Kamenev, G.D. Doolen, G.v. López, and V.I.
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