ABHAS, Asghar; IQBAL, Zafar; ABBAS, Rao Zahid; KHAN, Muhammad Kasib; KHAN, Junaid Ali
In-vitro anticoccidial potential of Saccharum officinarum extract against Eimeria oocysts
Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 14, núm. 6, noviembre, 2015, pp. 456-461
Universidad de Santiago de Chile
Santiago, Chile

Available in: http://www.redalyc.org/articulo.oa?id=85642430003
In-vitro anticoccidial potential of *Saccharum officinarum* extract against *Eimeria* oocysts

[Potencial in vitro anti coccidial de un extracto de *Saccharum officinarum* contra oocistos de Eimeria]

Asghar ABBAS1, Zafar IQBAL1, Rao Zahid ABBAS1,2, Muhammad Kasib KHAN1 & Junaid Ali KHAN3

1Department of Parasitology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Pakistan
2College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Pakistan
3Institute of pharmacy, Pharmacology and Physiology, University of Agriculture Faisalabad, Pakistan

Contactos | Contacts: Asghar ABBAS - E-mail address: abassaghar255@gmail.com

Abstract: Present study was conducted to evaluate the effect of aqueous methanolic extract from *Saccharum officinarum* on the sporulation and morphology of oocysts of four *Eimeria* species (*Eimeria tenella, E. necatrix, E. mitis, E. brunetti*) of poultry. Sporulation inhibition bioassay was used to evaluate the activity of *Saccharum officinarum* extract (SOE) on the sporulation of coccidian oocysts. In this assay, unsporulated oocysts were exposed to six concentrations of *S. officinarum* in 10% dimethyl sulphoxide solution (w/v; 10, 5, 2.5, 1.25, 0.625 and 0.31%) while DMSO and potassium dichromate solution (K2Cr2O7) served as control groups. The Petri dishes were partially covered to allow the passage of oxygen and incubated at 25-29°C for 48 h, providing 60-80% humidity. The sporulation of the oocyst was confirmed by examining sporozoites under inverted microscope at 40x. Results showed anticoccidial activity of SOE against all *Eimeria* species as proved by its ability to inhibit the sporulation of the oocysts under laboratory conditions. Inhibition of sporulation was observed in dose dependent manner. *S. officinarum* extract at higher dose also damaged the normal morphology and shape of oocysts of *Eimeria* species.

Keywords: *Saccharum officinarum, in vitro, sporulation, Eimeria, oocysts*

Resumen: El presente estudio se llevó a cabo para evaluar el efecto del extracto metanólico acuoso a partir de *Saccharum officinarum* en la esporulación y la morfología de cuatro especies de *Eimeria* tenella (*Eimeria, E. necatrix, E. mitis, E. brunetti*) de aves de corral. Los ensayos de inhibición de la esporulación se utilizaron para evaluar la actividad de extracto de *Saccharum officinarum* (SOE) en la esporulación de oocistos de *Eimeria*. En este ensayo, los oocistos no esporulados se expusieron a seis concentraciones de *S. officinarum* en solución de dimetil sulfóxido 10% (w/v; 10, 5, 2.5, 1.25, 0.625 y 0.31%) mientras DMSO y una solución de dicromato de potasio (K2Cr2O7) sirvieron como grupos de control. Las placas de Petri se cubrieran parcialmente para permitir el paso de oxígeno y se incubaron a 25-29°C durante 48 h, proporcionando la humedad del 60-80%. La esporulación de los oocistos fue confirmada mediante el examen de los sporozoites bajo microscopio invertido a 40x. Los resultados mostraron actividad anticoccidial de SOE contra todas las especies de *Eimeria* como se ha demostrado por su capacidad para inhibir la esporulación de los oocistos en condiciones de laboratorio. Se observó una inhibición de la esporulación de manera dependiente de la dosis. Extracto de *S. officinarum* en dosis más alta también dañó la morfología normal y la forma de oocistos de las especies de *Eimeria*.

Palabras clave: *Saccharum officinarum, in vitro, esporulación, Eimeria, oocistos.*
INTRODUCTION
Avian coccidiosis, is probably the most expensive parasitic disease of poultry. Its causative agent is single-celled protozoan belonging to genus *Eimeria* having different species (Blake & Tomley, 2014; Chapman, 2014; Shivaramaiah et al., 2014). Seven species of *Eimeria* have been recognized to infect poultry and each species has its own characteristics according to site of infection, immunogenicity and pathogenicity. Coccidiosis causes heavy economic losses to commercial poultry farming and is thought to be one of the most expensive infectious diseases of poultry (Masood et al., 2013). According to an estimate (Chapman, 2009), coccidiosis causes about $127 million losses to US poultry industry annually and likewise similar losses may occur worldwide. The disease is clinically characterized by bloody diarrhea, poor feed conversion ratio, low growth rate or poor weight gain. This has also been considered a contributory factor in the pathogenesis of other diseases (Bachaya et al., 2012). Infection to bird occurs when it ingests a sporulated oocyst from litter.

Coccidiosis is generally controlled by using anticoccidial drugs which are administered in feed of chickens (Blake & Tomley, 2014; Shivaramaiah et al., 2014). Success has been achieved by using these drugs but, main problem associated with their poor response is development of resistance in *Eimeria* species to the commonly available anticoccidial drugs (Abbas et al., 2012). In external environment, farmers usually fight against this disease applying disinfectant compounds. Commonly used disinfectants include some phenolic products such as ammonia, methyl bromide and carbon disulfide. Toxic effects of these products represent a danger to the staff and health of birds and therefore their use has been restricted (Hilbrich, 1975; Williams, 1997). Because of widespread drug resistance constraint (Akhter et al., 2014), residual effects of drugs in meat of birds and toxic effects of disinfectants, scientist all over the world are shifting towards alternative approaches for the control of parasitic problems (Hamad et al., 2014).

This context, many plants and herbal products have been found to have chemotherapeutic effect against coccidiosis in poultry and are being commercialized after a series of experimental trials for their validation and economically cheaper approach for the control of coccidiosis (Abbas et al., 2012; Zaman et al., 2012).

Saccharum officinarum is commonly known as the sugar cane as it produces abundant sweet juice. Immunological and therapeutic activities of sugar cane derived constituents and extracts have been exhibited in different animal studies. These include anti-thrombotic (Molina et al., 2000), anti-inflammatory (Ledon et al., 2007), anti-oxidant (Takara et al., 2002), anti-stress and immunomodulatory activities (El-Abasy et al., 2003), protective effects against avian coccidiosis (Akhtar et al., 2008), radiation induced injury (Amer et al., 2005) and reconstituting effects on the B-cells in cyclophosphamide induced immunosuppression in chickens (El-Abasy et al., 2003).

Recently, a number of *in vitro* experiments have proved remarkable anticoccidial effects of different herbal extracts and essential oils on inhibition of sporulation of coccidian oocysts. These results suggest formulate a herbal remedy for control of coccidiosis in birds (Remmal et al., 2011; Remmal et al., 2013). Keeping in view the diverse biological activities of sugar cane extracts, present study was conducted to evaluate *in vitro* potential of *S. officinarum* extract against sporulation and morphology of oocysts of *Eimeria* species.

MATERIALS & METHODS

Plant material
Stalks of fresh sugar cane (*Saccharum officinarum*) plants were purchased from the local market of Faisalabad (Pakistan), authenticated by a botanist of University of Agriculture, Faisalabad, Pakistan. Plant material was dried under shade and extracted with methanol in a Soxhlet’s apparatus at 80°C. The crude methanolic extract was evaporated in a rotary evaporator under reduced pressure at 35°C. The extract was further dried by using freeze dryer and then stored at 4°C until used.

Collection of coccidial oocysts
Chicken guts naturally infected with coccidia were collected from outbreak cases of poultry farms and different poultry shops of Faisalabad. Contents collected from intestines were examined microscopically. The contents were placed in separate desiccators containing 25% laboratory grade sodium hypochlorite @ 4:1 for 25 minutes to discard debris. To remove the chemical, about four times more water was added to the desiccators and sediment was obtained. Coccidial oocysts were
extracted following the method described by Ryley et al. (1976).

Experimental design and sporulation inhibition assay
The experimental design used in the present study was approved by Department of Parasitology, University of Agriculture, Faisalabad review board, in accordance with approved published research ethics guidelines. An in vitro sporulation inhibition assay was used to examine the effect of *S. officinarum* on oocysts sporulation of different *Eimeria* species. In this assay, unsporulated oocysts were preserved in 2.5% potassium dichromate solution in Petri dishes obtaining a thickness of 6 mm and exposed to six concentrations (two fold serial dilutions) of *S. officinarum* in 10% DMSO solution (w/v; 10, 5, 2.5, 1.25, 0.625 and 0.31%) while, DMSO and potassium dichromate solution (K$_2$Cr$_2$O$_7$) served as control groups. The Petri dishes were partially covered to allow the passage of oxygen and incubated at 25-29º C for 48 h, providing 60-80% humidity and maintained by placing water in two Petri dishes in the incubator. The contents of the Petri dishes were stirred off and on to ensure the oxygenation. The sporulation of the oocysts was confirmed by examining sporocysts under inverted microscope at 40x.

The numbers of sporulated and non-sporulated oocysts were counted and the percent sporulation was estimated by counting the number of sporulated oocysts in a total of 40 oocysts for each *Eimeria* species (*E. tenella, E. necatrix, E. mitis* and *E. brunetti*). In addition, the number of sporocysts within each sporulated oocyst and the number of abnormal sporocysts (in terms of shape and size) were counted. Three replications were made for each concentration and the whole experiment was repeated to confirm the results. The oocysts with 4 sporocysts was considered sporulated regardless the shape and size of the sporocysts. The oocysts were slightly flattened under the pressure of a cover slip to better illustrate morphology.

Statistical Analysis
Data were analyzed by mean ± SEM or one way analysis of variance (ANOVA) followed by Duncan’s multiple range test used for detection of significance among groups. P < 0.05 was considered as statistically significant.

RESULTS
Different concentrations of SOE showed dose dependent inhibition for the sporulation of coccidial oocysts of different *Eimeria* species as compared to control groups, Control-I (DMSO) and Control-II (K$_2$Cr$_2$O$_7$), as shown in Figure 1. The statistical analysis showed that all dilutions of *S. officinarum* significantly inhibited the sporulation in all *Eimeria* species as compared to both control groups.

![Figure 1](image)

Figure 1
Effect of *S. officinarum* on percentage sporulation of oocysts of *E. tenella, E. brunetti, E. necatrix* and *E. mitis*. C-1 and C-2 served as percent groups containing DMSO (C-1) and K$_2$Cr$_2$O$_7$ (C-2). Results are the mean and standard error of means. **P < 0.0001, level of significance of the inhibitory effect was before compared with the untreated control groups.**
Figure 1 shows that different dilutions of *S. officinarum* (10, 5, 2.5, 1.25, 0.62 and 0.31%) caused the inhibition of percent sporulation in dose dependent manner. Higher dose 10% of *S. officinarum* restricted sporulation percentage by 80% as shown in figure 1. As dose of *S. officinarum* decreased sporulation inhibition percentage also decreased respectively.

Figure 2 shows that there were no damaged oocysts in both control groups. However, like that of sporulation inhibition anticoccidial effect of SOE, dose dependent response of different dilutions of *S. officinarum* (10, 5, 2.5, 1.25, 0.62 and 0.31%) was also observed in terms of oocysts damage (abnormal size and shape) of *E. tenella*, *E. necatrix*, *E. mitis* and *E. brunetti*.

DISCUSSION

In the recent years, botanicals have got great attention for the control and treatment of infectious diseases of animals (Pieri et al., 2014; Xiao et al., 2014). Many botanicals have anticoccidial potential like, *S. officinarum* (Fornazier et al., 2000), *Pinus radiata* (Wang et al., 2008; Molan et al., 2009) and *Aloe vera* (Molan et al., 2004, Narsih et al., 2012). *Saccharum officinarum* is rich in phenolic compounds like flavones (luteolin, apigenin and tricin derivatives), caffeic, hydroxycinnamic and sinapic acids (Fornazier et al., 2000). These components are known to have antioxidant, antiviral, antitumor, anti-proliferative, anti-inflammatory, anti-parasitic and antibacterial potential (Fujiki, 2005; Awais et al., 2011). Moreover, prophylactic activities of sugar cane (extracts/components) against infectious diseases may be exploited to minimize the use of antibiotics and/or anthelmintics in poultry birds.

Earlier, sugar cane extracts have been reported for various biological activities including immunostimulation (Awais et al., 2011; Akhtar et al., 2012), anti-inflammatory (Ledon et al., 2007), vaccine adjuvant (El-Abasy et al., 2003), anti-oxidant (Takara et al., 2002), anti-thrombosis (Molina et al., 2000), modulation of acetylcholine release and anti-stress activities (Barocci et al., 1999).

Molan and Thomas (2007) reported similar *in vitro* effects of aqueous extracts from green tea on the sporulation of *E. tenella*, *E. acervulina* and *E. maxima* and found that addition of 10% and 25% (v/v) of tea extracts to the incubations containing unsporulated oocysts resulted in a significant reduction in sporulation rate. In addition, up to 30% of the oocysts recovered from incubations containing antibiotics and/or anthelmintics in poultry birds.

Figure 2

Effect of *S. officinarum* on % damage of oocysts of *E. tenella*, *E. brunetti*, *E. necatrix* and *E. mitis* oocysts. C-1 and C-2 served as control groups containing DMSO (C-1) and K$_2$Cr$_2$O$_7$ (C-2). Results are the mean and standard error of means. **P < 0.0001, level of significance of the damage oocysts was before compared with the untreated control groups.**
25% of *S. officinarum* extract were with abnormal sporocysts (Molan & Thomas, 2007).

In an experiment in vitro effect of aqueous extract of *Thonningia sanguinea* on *E. tenella* and *E. necatrix* sporozoites cells invasions was evaluated and results showed that concentrations above 2.5 mg/mL inhibited invasions of sporozoites of *E. tenella* and *E. necatrix* on bovine kidney cells (Séverin et al., 2012). Similar in vitro results were reported by Molan et al. (2009), who evaluated effect of aqueous Pine bark extract on sporulation inhibition of *Eimeria* oocysts and results showed that Pine bark extract have potential to inhibit sporulation of *Eimeria* oocysts. Sugar cane (*Saccharum officinarum*) extract, a well known natural immunostimulant, is reported to have protective effects against *E. tenella* infection in chickens (El-Abasy et al., 2003; Hikosaka et al., 2007).

Present study also demonstrated the inhibitory potential of *S. officinarum* on sporulation of coccidian oocysts. Such findings demand for further investigations on sugar cane to identify the component(s) responsible for such activities. Results of present study suggests promoting further in vivo research to provide to a cheaper and less time consuming remedy for control of coccidiosis.

ACKNOWLEDGEMENT
All authors acknowledge the financial grant for this work from Punjab Agricultural Research Board, Government of Punjab, Pakistan.

REFERENCES

