Gómez-Lechón, MJ; Tolosa, L; MT, Donato
Cell-based models to predict human hepatotoxicity of drugs
Revista de Toxicología, vol. 31, núm. 2, julio-diciembre, 2014, pp. 149-156
Asociación Española de Toxicología
Pamplona, España

Available in: http://www.redalyc.org/articulo.oa?id=91932969007
Cell-based models to predict human hepatotoxicity of drugs

Gómez-Lechón MJ, Tolosa L, Donato MT
1Unidad de Hepatología Experimental. Instituto de Investigación Sanitaria La Fe (IIS La Fe). Avda. Fernando Abril Martorell, nº 106- Torre A. 46026 Valencia, Spain. 2CIBEREHD, FIS, Spain. 3Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain.

Recibido 29 de Julio de 2014 / Aceptado 20 de octubre de 2014

Abstract: Drug-induced liver injury is a significant leading cause of liver disease and post-market attrition of approved drugs. Several hepatic cell-based models have been used for early safety risk assessment during drug development. Their capacity to predict hepatotoxicity depends on cells’ functional performance. Cultured hepatocytes have contributed to increase knowledge of the metabolic patterns and mechanisms involved in drug toxicity. A major limitation of monolayer hepatocytes is that they undergo rapid loss of hepatic functionality over time, particularly drug metabolising capability. The sandwich culture model promotes polarised cell surface and stabilises hepatocyte functionality, particularly transport systems, better than monolayer cultures. As 3D spatial organisation and complex heterotypic cell interactions are essential for the functional homeostasis of the liver, hepatocyte models (3D cultures, co-cultures with NPCs and microfluidic systems) that mimic cell-cell, cell-matrix interactions and nutrient flow characteristic of the liver microenvironment have been shown to improve the metabolic competency of hepatocytes and have been proposed for better in vitro predictions of drug hepatotoxicity. In addition to hepatocytes, other cell-based models have been proposed for hepatotoxicity studies. Hepatoma cell lines are metabolically poor compared to hepatocytes, but offer key advantages, such as unlimited life span, reproducibility, high availability and easy handling, which make them useful for screening purposes. Alternatively, hepatic cell lines engineered for stable or transient expression of key drug-metabolising enzymes have also been used. Finally, stem cell-derived hepatocytes are emerging in vitro systems that would provide a stable source of hepatocytes from individuals with highly valuable particular polymorphic characteristics for preclinical drug metabolism and toxicity prediction of new drugs.

Key words: Co-culture, CYP-engineered cell line, hepatocytes, hepatoma cell line, microfluidic device, sandwich culture, spheroids, scaffold-based culture

Introduction

Drug-induced liver injury (DILI) is one of the most important issues in drug development as a leading cause of discontinuation of clinical trials and withdrawal or black box warnings of approved drugs [1]. DILI is a complex phenomenon which encompasses a spectrum of clinical disease ranging from mild biochemical abnormalities to acute liver failure. Hepatotoxicity can be induced by a drug itself or indirectly by the generation of reactive metabolites (bioactivation) (Figure 1). Toxic injury to hepatocytes is produced through multiple mechanisms involving damage to biomolecules, alteration of cell homeostasis/function and cell death [2].

Early safety assays during drug development are directed to reduce potential risk of toxicity to humans, however, preclinical testing in laboratory animals often fails to predict DILI. This poor predictivity is attributable to several reasons, including differences in drug metabolism and toxicity between human and experimental species [3,4]. In this scenario, different in vitro approaches have been explored to improve and accelerate the identification of hepatotoxicity induced by drugs. In particular, several hepatic cell-based screening protocols have been incorporated in drug...
development for early safety risk assessment [4-7]. Their capacity of predicting in vivo hepatotoxicity depends critically on the functional activities of the cell types used in each screening platform.

This paper presents the most valuable cell models for human hepatotoxicity predictions including cultures of hepatocytes in different 2D and 3D configurations as well as alternative cells to hepatocytes such as hepatoma cell lines, CYP-engineered cells and stem cell-derived hepatocytes. Major features, advantages and drawbacks of the different cell models are discussed.

2D culture models of hepatocytes

For decades, 2D-cultures of hepatocytes have been widely used for in vitro predictions of in vivo metabolic pathways and hepatotoxicity of drugs (Figure 2). Such cell models offer the advantages of being relatively inexpensive, reproducible, robust and convenient. Cultured hepatocytes from different experimental species, particularly rat and mouse, have been used. However, human hepatocytes have been considered the gold standard in vitro model for the prediction of drug metabolism and the assessment of hepatotoxicity [8-12], because qualitative and quantitative interspecies differences in drug-metabolising enzymes frequently make the extrapolation of drug metabolism and hepatotoxic effects from animal hepatocytes to man difficult.

Monolayer cultures involve plating cells on a rigid substratum pre-treated with extracellular matrix (ECM) proteins (collagen, fibronectin or Matrigel) [11,12], where they maintain key hepatic-specific functions [8-12]. However, one major drawback of monolayer cultures is that they undergo a rapid loss of hepatic functionality over time, particularly drug metabolising capability, which confers them a short, limited sensitivity to drug hepatotoxicity detection [5,7,8,10,11] (Table 1).
In an attempt to maintain liver-specific functionality over longer culture periods, a sandwich configuration was developed (Table 1). Hepatocytes are placed between two matrix layers, traditionally collagen or Matrigel. Maintaining hepatocytes in a sandwich culture prevents cell viability loss, enhances secretion of organic compounds, including urea and albumin, increases basal and induced drug-metabolising enzyme activities, and mimics in vivo biliary excretion rates [9,11,13,14]. Therefore, it has been suggested that the sandwich culture model is most useful for mechanistic studies of hepatobiliary toxicity [13,15-17]. This is important because biliary efflux activity is inhibited by various drugs that cause iatrogenic cholestasis, an important mechanism of DILI [18].

3D culture models of hepatocytes

Scaffold-based systems

3D cultures can be produced by embedding hepatocytes in scaffold-free and scaffold-based systems (for a review, see [5,19]). The former consists in suspending cells in non-adhesive hydrogels (i.e., alginate, Matrigel, collagen, self-assembling peptides) with subsequent polymerisation that aims to culture the hepatocytes encapsulated within a gel [20]. Scaffold-based systems involve seeding cells on 3D solid matrices; ., derived from natural materials (decellularised liver-derived ECM) or synthetic materials (., alginate, polystyrene) [19,21]. While naturally derived substrates offer advantages in biocompatibility terms, and mimic cell-matrix interactions, synthetic scaffolds offer reproducibility and stability. Interconnected porous networks and the pore size of 3D scaffolds are very important for ensuring spatially uniform cell distribution, cell migration and cell survival, which all affect the diffusion of physiological nutrients and gases and the removal of metabolic waste. The currently available wide range of synthetic polymers opens up many opportunities for cell-specific tailored scaffolds. For example, the specific affinity of hepatocytes to the galactose residue has led to a range of synthetic scaffolds that present galactose on the surface for improved hepatocyte adhesion and function [5,22].

Multicellular spheroids

Hepatocytes can be re-aggregated by cellular self-assembly and by re-establishing cellular contacts to reform a 3D configuration. The fundamental concept is that suspended isolated hepatocytes are capable of reforming 3D tissue or spheroids if adhesion to a substrate...
is prevented. Sustained cellular contacts are key for maintaining hepatic differentiation and functionality in spheroids [23] (for a review see [5]). In general, an intact actin cytoskeleton is required for the self-assembly and differentiation of liver cell spheroids [23]. The size of spheroids is critical since spheroids larger than 200-300 μm at risk of having necrotic cores since oxygen diffusion is the most limiting parameter [5]. Spheroids can be created by various methods [5]: (1) spontaneous self-assembly in non-adhesive wells/dishes under static conditions; (2) agitation or microcavities; and (3) in a hanging drop. Several reports indicate an excellent long-term viability of human hepatocyte spheroids to preserve liver-specific polarity, the expression and activity of phase I and phase II drug-metabolising enzymes and induction. Thus, they appear to be a suitable model for discovering drug metabolites and long-term drug hepatotoxicity testing, such as the repeated-dose format and high-throughput systems [24].

3D co-cultures of hepatocytes and non-parenchymal cells
The liver comprises two major cell populations, hepatocytes and non-parenchymal cells (NPCs), including endothelial, stellate and Kupffer cells, among others. The cell-cell communication between hepatocytes, and between hepatocytes and NPCs, and also with the ECM, is a prerequisite for maintaining a differentiated phenotype and required for the in vivo functional homeostasis of the liver. Moreover, NPCs are considered important modulators of idiosyncratic hepatotoxicity. Thus, the use of co-cultures of hepatocytes and NPCs could further enhance the in vivo–like characteristics of a 3D culture device and provide more predictive results.

Spheroid systems that co-culture rat hepatocytes with hepatic stellate cells, the HSC-T6 cell line, HUVEC cells or Kupffer cells have been developed, and it has been underlined the relevance of these complex and long-lasting hepatic cell culture models [57]. More recently, a 3D scaffold co-culture of human hepatocytes, stellate, Kupffer and endothelial cells has been reported to maintain well-preserved composition and liver function for up to 3 months [25]. Therefore, presence of NPCs not only contribute to prolong the survival and to improve the function of hepatocytes in culture, but can also increase their sensitivity for DILI detection involving inflammatory mediators [25].

Microfluidic devices
In vitro microfluidic systems have been more recently developed to better mimic the in vivo situation due to better hepatocyte functionality [26]. Incorporating fluid flow into 3D culture systems is an important step for combating poor oxygen and nutrient diffusion issues through spheroids and aggregates of cells and ECM. The overall goal of many such efforts is to form a fully functional liver culture model that mimics the complex in vivo architecture of a liver lobule, and which can be used for toxicological and pharmacological research or can be modified in a bio-artificial liver for clinical use (for a review, see [5,19]). One real advantage is the possibility of precisely adjusting flow rates and metabolite or drug concentrations in the medium to mimic various physiologic conditions of blood, such as postprandial and starvations states or circadian cycles of hormone and metabolite concentrations. These devices preserve cell viability and the metabolic competency of human hepatocytes at higher levels than under static culture conditions [26-28]. The utility of these models for toxicity testing has been explored through the prediction of in vivo clearance rates. It has been demonstrated that the data from these systems are more correlative with in vivo data than those deriving from static hepatocyte cultures, and that this correlation improved further when co-cultures were used [28,29].

Hepatoma cell lines
Although human hepatocytes are the preferred cells for drug metabolism and hepatotoxicity studies, their scarce availability, inter-donor variability, short life span, and decreased metabolic capacity along culture time limit their routine use for screening purposes. Several human hepatoma cell lines (e.g., HepG2, Hep3B, Huh7, HepaRG) have been proposed as alternative cell models to hepatocytes [30]. These cells offer key advantages over hepatocytes such as their high availability, unlimited life span, stable phenotype, reproducibility, and easy handling (Table 2), which make them useful in vitro systems for drug safety assessment [30,31].

Table 2. Alternative cell sources to hepatocytes for hepatotoxicity testing

<table>
<thead>
<tr>
<th>Models</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatoma cell lines</td>
<td>Highly proliferative, unlimited available cells</td>
<td>Undifferentiated phenotype characteristic of proliferative tumor cells</td>
</tr>
<tr>
<td></td>
<td>Easy handling and relative low cost</td>
<td>Poor expression of some functions of adult human liver</td>
</tr>
<tr>
<td></td>
<td>Standardized culture conditions</td>
<td>Altered expression of key transcription factors</td>
</tr>
<tr>
<td></td>
<td>Relative stable gene expression pattern</td>
<td>Scarce levels of certain CYP enzymes (depending on cell line)</td>
</tr>
<tr>
<td></td>
<td>Robustness and good experimental reproducibility</td>
<td>Absence on non-parenchymal cells</td>
</tr>
<tr>
<td></td>
<td>Some cell lines retain certain liver-specific functions and</td>
<td>Difficult transferability of data to normal (non-malignant) human liver</td>
</tr>
<tr>
<td></td>
<td>drug-metabolizing capacity (i.e., HepaRG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suitable to high throughput screenings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possibility of culturing in 3D configuration (enhanced functionality)</td>
<td></td>
</tr>
<tr>
<td>CYP-transfected cell lines</td>
<td>High activity levels of transfected enzymes</td>
<td>Unbalanced drug metabolism (cells over-expressing a single CYP)</td>
</tr>
<tr>
<td></td>
<td>Useful for metabolism-based toxicity studies</td>
<td>Potential altered expression of other hepatic functions</td>
</tr>
<tr>
<td></td>
<td>High reproducibility and phenotypic stability (stably transfected cell lines)</td>
<td>More correlation studies to in vivo hepatotoxicity are required</td>
</tr>
<tr>
<td></td>
<td>Identification of CYPs involved in the generation of toxic metabolites</td>
<td>Uncontrollable risk of mutagenic effects (stably transfected cell lines)</td>
</tr>
<tr>
<td></td>
<td>Controllable expression of functional CYPs (adenovirus-transfected cells)</td>
<td>Transient expression systems require the generation of a new cell lot for each study (potential variability, time-consuming)</td>
</tr>
<tr>
<td></td>
<td>Tailored reproduction of metabolic phenotypes (multiple adenoviral co-transfection)</td>
<td></td>
</tr>
<tr>
<td>Induced pluripotent stem cells-derived hepatocytes</td>
<td>Stable genetic background</td>
<td>Complex reprogramming steps</td>
</tr>
<tr>
<td></td>
<td>High availability</td>
<td>Limited expression of liver-specific genes</td>
</tr>
<tr>
<td></td>
<td>Defined phenotype</td>
<td>Variability in phenotype among preparations</td>
</tr>
<tr>
<td></td>
<td>Allow studies of inter-individual variability</td>
<td>Few studies in toxicology yet</td>
</tr>
<tr>
<td></td>
<td>Possibility of culturing in 3D configuration (enhanced functionality)</td>
<td></td>
</tr>
</tbody>
</table>
Most hepatoma cell lines express many liver differentiated functions; however, in general, they show a poor expression of drug metabolising enzymes (CYPs, conjugating enzymes) and transport proteins compared to primary hepatocytes [31-33]. Despite these shortcomings, hepatoma cells have been extensively used for cytotoxicity evaluations and to examine specific mechanisms of toxicity. In particular, HepG2, the best characterised human hepatoma, is one of the most currently used human cell models for hepatotoxicity screenings. As a result of this widespread use, exhaustive data on the effects of a huge number of compounds (model hepatotoxins, drugs, chemicals) on many parameters indicative of toxicity to HepG2 cells (viability, membrane integrity, cell proliferation, ATP level, etc.) are available in the literature [6,34,35]. Recently, multiplexed high content screening and automated assays adapted to HepG2 miniaturised culture formats (e.g., 96- or 384-well plates) have been proposed as valuable prioritisation tools during preclinical drug development [36,37]. These multiparametric assays have been applied to screen large series of compounds and have shown acceptable specificity and sensitivity to discriminate between hepatotoxic and non-hepatotoxic drugs.

HepaRG is a recently derived hepatoma cell line that is now considered the most promising cell model as a surrogate for human hepatocytes in in vitro assessments. Proliferating HepaRG are bipotent progenitor cells capable of differentiating into hepatocyte-like and biliary-like cells [38]. After several weeks of culture in the presence of DMSO, confluent monolayers of HepaRG cells differentiate towards a hepatocyte-like phenotype with bile canaliculi structures formation [38]. Differentiated HepaRG are now increasingly used in hepatotoxicity studies as they show important advantages over HepG2 and other hepatoma cells: 1) greater levels of phase I and phase II drug-metabolising enzymes, which enables the detection of toxic effects of reactive metabolites; 2) a polarised expression of the hepatobiliary membrane transporters required to identify toxicity due to the alteration of the normal function of hepatic uptake or efflux transporters; and 3) a stable metabolic competence for several weeks, which opens up the possibility of performing long-term repeated-dose studies for chronic toxicity assessment [32,39,40]. However, the demanding culture requirements, long-term differentiation protocols and high DMSO concentrations required to maintain differentiated HepaRG cultures are major drawbacks for their widespread use in hepatotoxicity testing [39,40].

Research efforts have been made to improve the functional capacity of hepatoma cell lines and to promote their performance for drug safety evaluation. Different 3D culture techniques (e.g., microencapsulation, cell spheroids or micro-space cell culture systems) have been explored to improve differentiation and the hepatic phenotype of HepG2 or HepaRG cells. Similarly to hepatocytes, hepatoma cells grown in 3D systems have exhibited better viability and functionality than in conventional 2D cultures [41-43]. Therefore, these 3D organotypic cultures have been proposed as relevant alternative systems for the more accurate assessment of hepatotoxicity and for metabolism-mediated drug toxicity screenings [41-43].

CYP-transfected hepatic cell lines

Hepatotoxicity can be produced after bioactivation of the drug by biotransformation enzymes (mainly CYPs) into reactive metabolite(s) (Figure 1). The identification of bioactivable molecules requires the use of metabolic competent systems capable of generating toxic metabolites. Several cell systems based on liver-derived cell lines engineered to express high levels of CYPs (and other drug-metabolising enzymes) have been developed as in vitro tools for drug metabolism and hepatotoxicity studies [30]. These metabolically competent cells are generated by transection with vectors encoding for human CYPs resulting in stable or transient expression of the transgene [5,30]. In contrast to primary hepatocyte cultures, transfected cell lines show high levels of CYP activities along time in culture and offer the advantages of robustness and good experimental reproducibility; however important limitations of these cells is that transection strategies can potentially alter the expression of other hepatic functions and overexpression of a particular enzyme may result in unbalanced metabolism and (Table 2).

Among cell lines manipulated for stable expression of drug-metabolising transgenes, those generated by the transfection of SV40 large T-antigen-immortalised human liver epithelial (THLE) cells or HepG2 cell line are the most widely used for hepatotoxicity assessment of bioactivable drugs [44,45]. Each CYP-transfected THLE or HepG2 cell line stably express high levels of an individual human CYP [45]. A study strategy based on the comparison of the effects of a particular drug to CYP-transfected cells and to parental non-CYP expressing cells has enabled the contribution of CYP-mediated metabolism to toxicity to be explored [44-46]. However, no more than one or two enzymes can be satisfactorily transfected into cells, and expression levels are often too high or low when compared to human liver/hepatocytes [46].

As an alternative, upgraded HepG2 cells generated by adenoviral-mediated CYP expression have been proposed for hepatotoxicity studies [30,47-49]. Adenoviral transduction has allowed the easily modulated and controlled expression of multiple transgenes (up to five CYPs) in host cells [5,48,49]. Then by selecting appropriate mixtures of adenoviral constructs, cells customised with a particular CYP profile (metabolic phenotype) can be produced [30]. The versatility of these cell-based assays opens up the possibility of making in vitro hepatotoxicity predictions to different population groups (e.g., extensive vs poor metabolisers). However, one limitation of this strategy is that transgene expression is transient and a new transfection must be performed for each experiment.

Pluripotent stem cells-derived hepatocytes

Human pluripotent stem cells-derived hepatocytes are emerging as cell-based systems that will potentially provide a stable source of hepatocytes for reliable and high-throughput screening for the metabolism and toxicity of candidate compounds. Different groups have developed protocols to isolate embryonic stem cells (ESCs) and induce them to form hepatocyte-like cells by mimicking the developmental pathway of the liver during embryogenesis [7,50]. However, the broad variability reported by distinct laboratories of the key enzymes implicated in drug metabolism in differentiated ESCs implies that the application of these cells in toxicity studies is still premature. Recent studies have focused on the 3D culture of ESCs for toxicity testing [51].

Human induced-pluripotent stem cells (iPSCs) are an attractive source of normal human cells because they possess self-renewing potency and pluripotency, and can differentiate into virtually any somatic cell type, like hepatocytes. They may provide a limitless supply of hepatocytes for high-throughput screening with minor batch variability from multiple individuals to improve reproducibility and to enable testing of individual-specific toxicity [7,52,53]. Hepatocyte-like cells differentiated from iPSCs recapitulate many hepatic functional properties. However, current hepatic differentiation protocols result in cells with lower levels of...
enzyme activity and hepatic gene expression profiles than intact human liver or human isolated hepatocytes [54,55]. Perhaps in the future, iPSC-hepatocytes generated from individuals with different CYP polymorphisms would be of great value for the drug metabolism and toxicity prediction of new drugs in pre-clinical stages to enable more successful clinical trials [53,55,56].

References

34. Schoonen WG, Westerink WM, de Roos JA, Debiton E (2005) Cytotoxic effects of 100 reference compounds on Hep G2 and HeLa cells and of 60 compounds on ECC-1 and CHO cells. I mechanistic assays on ROS, glutathione depletion and calcein uptake. Toxicol In Vitro 19: 505-516.

