REICIS. Revista Espafiola de Innovacion,
R F I C‘l I q Calidad e Ingenieria del Software

4 - E-ISSN: 1885-4486
reicis@ati.es

Asociaciéon de Técnicos de Informatica
Espafia

Lluna, Eduardo
Analisis estatico de codigo en el ciclo de desarrollo de software de seguridad critica
REICIS. Revista Espafiola de Innovacion, Calidad e Ingenieria del Software, vol. 7, nam. 3, 2011, pp.
26-38
Asociacion de Técnicos de Informatica
Madrid, Espafia

Disponible en: http://www.redalyc.org/articulo.oa?id=92222551004

Coémo citar el articulo (/g
Numero completo
Mas informacion del articulo

Pagina de la revista en redalyc.org


http://www.redalyc.org/revista.oa?id=922
http://www.redalyc.org/articulo.oa?id=92222551004
http://www.redalyc.org/comocitar.oa?id=92222551004
http://www.redalyc.org/fasciculo.oa?id=922&numero=22551
http://www.redalyc.org/articulo.oa?id=92222551004
http://www.redalyc.org/revista.oa?id=922
http://www.redalyc.org

Revista Espariola de Innovacion, Calidad e Ingenieria del Software, Vol.7, No. 3, 2011

Analisis estatico de codigo en el ciclo de desarrollo de
software de seguridad critica

Eduardo Lluna
Instituto Tecnologico de Informatica (ITT)
elluna@iti.es

Resumen

El software es un elemento clave de los actuales sistemas de control incluidos los de
seguridad critica, en los que un fallo puede causar dafios irreparables a personas o el
entorno. Puesto que el software ni envejece ni se estropea, la calidad de éste dependera
principalmente de los defectos que se introduzcan en la fase de codificacion. Por lo
tanto cualquier técnica que permita eliminar estos defectos en la fase de creacion
permitird aumentar la calidad a un coste mas reducido. Las técnicas de Analisis Estatico
realizan esa funcion permitiendo localizar defectos sin ejecutar el codigo. Existen
diversas técnicas y no siempre se pueden aplicar todas por razones de coste y tiempo.
En este articulo se presenta una seleccion de las técnicas de andlisis estatico minimas
requeridas para un sistema de seguridad critica en base a una norma y, puesto que estas
técnicas son mas eficientemente aplicadas por herramientas automaticas, se presenta un
proceso de seleccion de estas herramientas en funcion de requisitos del proyecto.

Palabras clave: Calidad del software, Seguridad critica, Analisis estatico, EN-50128.

Static code analysis in the development cycle of safety critical
software

Abstract

The software is a key element of control systems, including safety-critical, where failure
could cause irreparable damage to persons or the environment. Software does not get
aged or broken so its quality will largely depend on the number of defects introduced in
the coding phase. Therefore any technique to avoid defects in the coding phase will
increase software quality at a lower cost. Static Analysis techniques perform this
function locating defects on the code without running it. There are several techniques
but all of them cannot always be applied due to cost and time reasons. This article
presents a minimum selection of static analysis techniques required for a safety critical
system according a norm and, since these techniques are more efficiently applied by
automated tools, a tool selection process based on project requirements is presented.

Key words: Software quality, Safety critical, Static analysis, EN-50128.

Lluna, E. “Analisis estatico de codigo en el ciclo de desarrollo de software de seguridad critica”, REICIS, vol. 7, no.3, 2011, pp.
24-** Recibido: 22-11-2011; revisado:1-12-2011; aceptado: 19-12-2011.



Revista Espariola de Innovacion, Calidad e Ingenieria del Software, Vol.7, No. 3, 2011

1. Introduccién

Hoy en dia el software es un elemento clave en los sistemas de control, incluidos los de
seguridad critica, aquellos cuyo fallo puede causar dafos irreparables a personas, bienes
o medio ambiente. Esta dependencia ha hecho que el nivel de fiabilidad requerido para
este tipo de software sea muy elevado. La forma de conseguir un software de calidad
suficiente es realizando desarrollos guiados por una serie de normas y estandares que
fuercen el uso de practicas seguras y controles de forma que se minimicen las
posibilidades de error y permitan un seguimiento de la evolucion del mismo. Estas
normas dependen del area de aplicacion final y afectan tanto al hardware como el
software del sistema.

Este articulo presenta la técnica del Analisis Estatico de codigo y selecciona un
conjunto minimo de técnicas especificas que puedan ser aplicadas en el contexto de los
sistemas de seguridad critica. Esta técnica, que permite detectar defectos en el codigo
desarrollado sin necesidad de ejecutarlo, aparece recomendada en la mayoria de las
normas de desarrollo de este tipo de sistemas. El hecho de basarse en estas normas, las
cuales a su vez se basan en la experiencia y lecciones aprendidas a lo largo de muchos
afios de actividad, nos facilita el proceso de eleccion mediante la adopcion de una serie
de criterios predefinidos. El uso del Analisis Estatico de codigo es altamente
recomendable no solo en el desarrollo de sistemas de seguridad critica sino de cualquier

tipo.

2. Desarrollo de sistemas de seguridad critica

Las normas en uso para el desarrollo de software de sistemas de seguridad critica
dependen de la aplicacion final. En el campo de la aerondutica se usa en todo el mundo
principalmente la norma DO-173B de la RCSA [1]. En Europa para el software de
sistemas electronicos en general la norma base es la [IEC-61608-3 [2] a partir de la cual
se derivan algunas otras normas para sistemas especificos como la EN-50128 [3] para
sistemas ferroviarios, la norma IEC-61513 [4] para sistemas de centrales nucleares y la
IEC-26262-6 [5] para el sector de la automocion. En temas de espacio, la NASA usa la
norma propia NASA 8739.8 [6] mientras que otras agencias espaciales, incluida la ESA,
usan la norma ECSS-ST-40C [7] de la ECSS para sus sistemas criticos.

Las normas mencionadas son solo algunas de las existentes y, pese a la diversidad,

todas comparten una estructura comun forzando un ciclo de desarrollo y definiendo la



Revista Espariola de Innovacion, Calidad e Ingenieria del Software, Vol.7, No. 3, 2011

documentacion requerida asi como una serie de técnicas y buenas practicas a seguir en

cada una de las fases del desarrollo.

\

Especificacion de
Requisitos del Sistema

Verificacién\ /

Especificacion de
Requisitos del Software

Verificacion /

Integracion del
Hardware y el Software

/

Integracion del Software

Validacion del Sistema

Validacidn del Software

Disefio y Arquitectura
del Software

Verificacic’)n\ /

Disefio de Mddulos del Pruebas de Modulo de

Software Software

\ /Verificacic’)n

Codificacion del
Software

Figura 1: Ciclo de desarrollo del software definido por EN-50128.

Todos los sistemas no tienen la misma criticidad, por lo que las normas también
definen una serie de niveles que van desde la ausencia de requisitos de seguridad hasta
niveles maximos. Por ejemplo, la norma IEC-61608 define cuatro niveles de 1 a 4 de lo
que llama Safety Integrity Level (SIL), siendo 1 el nivel minimo de criticidad y 4 el
maximo. Nivel 0 equivale a la ausencia de criticidad. Estos niveles de seguridad
realmente se refieren a la seguridad del sistema como tal y se centran principalmente en
el hardware definiendo tiempos medios antes de fallo. Desde el punto de vista del
software estos niveles representan la peligrosidad o nivel de riesgo que produciria un
fallo de software. En funcion del nivel de seguridad requerido las normas aplican unas
técnicas u otras, por lo tanto un aspecto muy importante en el disefio es la eleccion
adecuada del nivel de seguridad de la aplicacion.

Vamos a centrarnos en la norma EN-50128 para aplicaciones ferroviarias la cual
se basa en un ciclo de desarrollo en V (V-model) [8]. La Figura 1 muestra de forma

esquematica este ciclo.



Revista Espariola de Innovacion, Calidad e Ingenieria del Software, Vol.7, No. 3, 2011

El ciclo de desarrollo incluye etapas habituales de especificacion, disefio,
codificacion del software, integracion de modulos, integracion con el hardware y
validacion del software y del sistema. Pero un aspecto clave de la norma es el proceso
de Verificacion que se realiza siempre al terminar una de las fases y antes de comenzar
la siguiente. Conviene tener clara la diferencia entre Validacion y Verificacion. De
acuerdo con la definicién de ambos términos que aparece en la norma ISO-9000 [9], la
validacion es la confirmacion mediante la aportacion de evidencia objetiva de que se
han cumplido los requisitos para una utilizacidon especifica prevista, mientras que la
verificacion es la confirmacion mediante la aportacion de evidencia objetiva de que se
han cumplido los requisitos especificados. Basicamente la validacion tiene que ver con
el uso final del sistema en una aplicacion especifica mientras que la verificacion
comprueba que en cada momento se ha hecho lo que se habia dicho que se iba a hacer y

los entregables de salida de una fase son los que se esperan en la siguiente.

3. Verificacion del software

El software es un elemento del sistema que ni se estropea ni envejece. Eso significa que
las posibles causas de fallo vendran o bien de un fallo del hardware (sobre el que se
ejecuta o de los periféricos que usa) o por un defecto en su desarrollo que hace que este
no se comporte como se espera en funcion de las especificaciones en una situacion
particular. Para el caso de los fallos del hardware se emplean técnicas de tolerancia a
fallos que principalmente se basan en redundancias de los componentes criticos y en las
que no entraremos. La segunda fuente de fallos es mas dificil de tratar y se basa en
reducir al maximo posible, puesto que es practicamente imposible erradicarlo al 100%,
los defectos en el software. Es importante tener en mente que estamos asumiendo que la
logica especificada es correcta y que los problemas vienen de defectos que hacen que el
software no siga la logica definida. Si tenemos problemas en cuanto a la logica del
sistema (especificaciones de lo que debe hacer) nos encontramos en un caso de errores
de disefo, los cuales deberian haberse detectado y subsanado en las etapas de disefio.

Por lo tanto es posible eliminar defectos del sistema verificando que el codigo
desarrollado hace exactamente lo que se ha especificado que debe hacer. De esa forma
en el uso real, cuando se den esas condiciones, hard lo que se espera de €l.

Existen diferentes técnicas de verificacion de software y la norma EN-50128
propone principalmente las siguientes: ensayos formales, ensayos probabilisticos,

analisis estatico y analisis dinamico. Para un nivel SIL4, el mas estricto, todas estas



Revista Espariola de Innovacion, Calidad e Ingenieria del Software, Vol.7, No. 3, 2011

técnicas aparecen como Altamente Recomendables, mientras que para un nivel SIL1
solo el analisis estatico y el dinamico tienen esa consideracion.

Aunque el uso de una unica técnica de andlisis no permite localizar todos los
defectos de un sistema [13], en las siguientes secciones vamos a centrarnos en el
analisis estatico, ya que es una técnica que por si misma es capaz de encontrar un
numero elevado de defectos en el software siendo una técnica relativamente sencilla de
aplicar, por lo cual presenta un gran valor y es recomendada independientemente del

nivel de seguridad.

4. Analisis Estatico

El Analisis Estatico es una evaluacion del codigo generado para buscar defectos con la
particularidad de que se realiza sin necesidad de ejecutar ese codigo.

Un aspecto importante para este andlisis es el lenguaje de programacion usado. La
norma EN 50128 presenta una lista de lenguajes recomendables. En general son
preferibles lenguajes altamente estructurados y muy restrictivos como el Ada, Modula-2
o Pascal, pero en la realidad, debido a la gran difusion del C/C++ en el sector industrial
la mayoria de los desarrollos se realizan en este lenguaje y en Ada. La norma
desaconseja el uso de C/C++ sin restricciones pero si que permite el uso de estos
lenguajes usando un subconjunto de los mismos y aplicando una serie de normas de
codificacion. El subconjunto mas usado es el MISRA-C o MISRA-C++ [10] definido
por la Motor Industry Software Reliability Association el cual se considera seguro para
aplicaciones de seguridad criticas.

En cuanto a las técnicas que pueden aplicarse para realizar este analisis la norma
EN 50218 define un conjunto de éstas y entre las que marca como Altamente
Recomendables para el nivel SIL4 se encuentran el analisis de valores extremos, el
analisis del flujo de control y de datos, las revisiones de disefio y la ejecucion simbolica
del coédigo. Estas técnicas tratan de revisar areas que son conocidas como fuente de
errores. Ademads hay que realizar una comprobacion de las reglas de codificacion que se
adopten.

El analisis de valores extremos busca defectos en el manejo de las variables en los
extremos de su rango de validez o en valores tipicamente propensos a error como el
cero en el caso de las divisiones o el uso de punteros. Igualmente se comprueban los
accesos a arrays 'y elementos con un limite, fuentes habituales de problemas. El analisis

del flujo de control busca problemas en la estructura ldgica del programa los cuales



Revista Espariola de Innovacion, Calidad e Ingenieria del Software, Vol.7, No. 3, 2011

pueden ser reflejo de defectos. Por ejemplo, no debe haber fragmentos de codigo
inalcanzables, los cuales se pueden deber a defectos en decisiones que impiden entrar en
ciertas partes. También hay que evitar fragmentos de codigo de complejidad innecesaria
puesto ésta puede ocultar problemas y verificar que todos los bucles tienen condicion de
salida. El analisis del flujo de datos busca errores en las estructuras de datos y en los
accesos a las mismas. Los tipos de problemas habituales que deben comprobarse son,
por ejemplo, la lectura de variables que no han sido previamente escritas, lo cual puede
llevar a comportamientos indeseados, que no haya lecturas o escrituras a una misma
variable seguidas, lo cual puede significar que falta c6digo entre accesos. En general
hay que comprobar cualquier operacion con datos que pueda ser susceptible de
enmascarar un problema. Las revisiones de disefios son procesos formales en los que un
grupo de revisores comprueban el codigo usando un conjunto de casos de ensayo que
son probados de forma manual sobre el codigo. Existen normas que definen los
procesos de revision formal y uno de los mas conocidos, y sugerido por la norma, son
las inspecciones de Fagan [11]. La ejecucion simbolica consiste en sustituir a lo largo
del software las expresiones del lado derecho e izquierdo de todas las asignaciones
manteniendo nombre de variables en lugar de valores de forma que se obtenga al final
una expresion para cada una de las variables. Esa expresion resultante se compara con la
especificacion para ver si coincide. Este proceso normalmente es largo y muy complejo
por lo que esta técnica se limita a codigo relativamente simple.

La tabla 1 muestra a modo de resumen para cada una de las técnicas mencionadas,
a excepcion de la revision formal y la ejecucion simbolica, los aspectos mas importantes
que hay que comprobar siguiendo las recomendaciones de la norma EN-50128 para un

sistema SIL4.

Técnica Actividad

Las que vengan definidas en la norma que se aplique (por ejemplo

Reglas de codificacion
MISRA-C/C++)

Division por cero

Uso de punteros nulos

Uso del mayor valor posible de una variable

Analisis de valores extremos | Uso del menor valor posible de una variable

Accesos fuera de rango en arrays

Uso correcto de listas y arrays vacios

Comprobacion de rangos de parametros en las funciones.




Revista Espariola de Innovacion, Calidad e Ingenieria del Software, Vol.7, No. 3, 2011

Codigo accesible

Analisis del flujo de control | No existe codigo anudado (simplificable)

Todos los bucles tienen condicion de salida alcanzable

No se leen variables antes de ser iniciadas (salvo volatiles)

o ) No se escriben variables méas de una vez antes de ser leidas (salvo
Analisis del flujo de datos )
volatiles)

No se escriben variables que luego no se leen (salvo volatiles)

Tabla 1. Técnicas de Andlisis Estatico recomendadas por la norma EN 50128.

5. Métricas

Las métricas son indicadores cuantitativos del grado en que un componente, en este
caso el software, posee un atributo dado. Al ser un indicador cuantitativo, un valor
numérico, permite una comprobacion facil de si el valor esta dentro de unos rangos y
por lo tanto, de definir de forma clara un criterio de aceptacion. Normalmente las
métricas no identifican directamente defectos pero, por ejemplo, las métricas de
complejidad del codigo, pueden dar una idea de las probabilidades de que haya mas o
menos defectos ocultos puesto que a mayor complejidad mayor probabilidad de que
hayan defectos ocultos. Para cada métrica hay que definir también un rango de valores
que se considera aceptables, los cuales dependeran de la aplicacion y del nivel de
seguridad requerido. Existen muchas métricas definidas y en uso pero para un sistema
de seguridad critica las mds interesantes, por los motivos mencionados, son las de

medida de la complejidad del codigo.

Métrica Descripcion Rango

DCOM Densidad de comentarios >0.2
STCYC Complejidad ciclomatica 1-5
LEVEL Nivel de anidamiento de funciones 0-4
CALLING | Namero de veces que una funcion es llamada 0-5
CALL Numero de funciones llamadas por una funcion 0-5
PARAM Numero de parametros de una funcion 0-5
RETURN | Ntumero de puntos de retorno de una funcion 0-1
STNRA Numero de funciones con recursividad 0

NGTO Numero de instrucciones goto 0

Tabla 2. Métricas aplicables.

La tabla 2 muestra un conjunto de métricas a aplicar en sistemas criticos basada

en la propuesta del Hertseller Initiative Software [12] para sistemas de automocion. Las



Revista Espariola de Innovacion, Calidad e Ingenieria del Software, Vol.7, No. 3, 2011

métricas seleccionadas miden principalmente la complejidad del codigo puesto que es el
factor principal de cara a la presencia de defectos pero también incluye algunas
relacionadas con el uso de técnicas de programacion dificiles de seguir y depurar como
la recursividad o de estructuras que incrementan la desorganizacion del codigo como el
goto. La tabla también incluye los rangos validos propuestos para cada métrica en
sistemas con nivel SIL4.

El mantenimiento de las métricas dentro de los valores aceptados, si bien no
evitan los errores, nos dan una indicacion directa del nivel de complejidad y por lo tanto

de la probabilidad de tener errores.

6. Proceso de seleccidon de herramientas

El analisis estatico puede realizarse de forma manual, de hecho, las inspecciones
formales se realizan de esa forma. Aspectos como la comprobacion de reglas de
codificacion y los andlisis de valores extremos, flujo de control y datos se comprueban
de forma mas eficiente mediante herramientas de software que evitan que se cometan
errores y aceleran el proceso.

Existen en el mercado una gran variedad de herramientas de analisis estatico,
tanto de codigo libre como comerciales pero para sistemas de seguridad critica es
necesario que estén certificadas, por lo que el numero de estas se reduce
considerablemente y por otra parte el coste de las mismas crece de forma importante.
Por lo tanto, en base al proyecto en el que se vaya a aplicar, la eleccion de la
herramienta adecuada es muy importante puesto que por una parte afectara a la cantidad
de pruebas que haya que realizar de forma manual, lo cual impacta en la duracion del
proyecto, y por otra, al tener un coste elevado pueden llegar a ser una parte importante
del presupuesto del proyecto.

Para realizar la seleccion de la herramienta de analisis se ha definido un proceso
que se muestra en la Figura 2.

Lo primero y fundamental es tener perfectamente definido el uso de la
herramienta, lo que incluye el lenguaje de programacion, el nivel de seguridad
requerido, las reglas de codificacion y el conjunto de técnicas de analisis requeridas. En
un proyecto de seguridad critica la norma de aplicacion marcara las pautas a seguir en
estas decisiones. Una vez esta clara esta informacion se prepara un plan de evaluacion el
cual incluye la definicion de unas métricas que permitiran tomar la decision final. En

nuestro caso las métricas son el porcentaje de cobertura de comprobacion de las reglas



Revista Espariola de Innovacion, Calidad e Ingenieria del Software, Vol.7, No. 3, 2011

de codificacion y el porcentaje de cobertura de las técnicas de analisis incluidas en la
tabla 1.

-

-'/ Inicio \I

—

Definicion de
requisitos de la
herramienta

v

Obtencidn de
candidatos
(Preseleccién)

v

Evaluacian de las
herramientas

v

Eleccion de una
herramienta

X

- . T

~ . - .
- . - .
- -~ " ¢Quedan ™
(\i.\qlguna pasa? >_No_w\\sandidatos? >
Si
Implantacién Mo

v

'/- Fin
=)

| Fin sin seleccian

Figura 2: Proceso de seleccion de la herramienta

Métrica Descripcion Rango

PTAE Porcentaje de técnicas de Analisis Estatico soportadas >75%
PTAD Porcentaje de técnicas de Andlisis Dindmico soportadas >75%
PRMC Porcentaje de reglas MISRA C++ comprobadas >75%
PMAE Porcentaje de métricas de Analisis Estatico calculadas >80%
PMAD Porcentaje de métricas de Analisis Dindmico calculadas >80%
MCCY Célculo de complejidad ciclomatica Si

Tabla 3. Métricas para la eleccion de la herramienta.

Para cada métrica también se definird un rango de valores aceptables y el criterio
de seleccion consistira en seleccionar aquella herramienta que obtenga mayores valores

en las métricas pero teniendo en cuenta que estas también tienen un valor minimo de



Revista Espariola de Innovacion, Calidad e Ingenieria del Software, Vol.7, No. 3, 2011

aceptacion y si no se llega a ese valor la herramienta en cuestion no puede ser tenida en
cuenta. Estas métricas y sus valores se muestran en la tabla 3.

El siguiente paso es la seleccion de las herramientas que aparentemente pueden
cumplir los requisitos basicos (preseleccion) y sobre las que se realizara la evaluacion.
Por ejemplo, solo por el lenguaje de programacion o por la certificacion de seguridad
requerida hay herramientas que se descartaran directamente. Por motivos de coste,
principalmente en tiempo, lo normal es que no sea posible evaluar todas las
herramientas que podrian servir al pasar la preseleccion, por lo que algunos candidatos
potenciales pueden quedar sin evaluar. En esta preseleccion, cuando hay muchos
candidatos y claramente hemos de quedarnos so6lo con unos pocos, pueden aplicarse
criterios de seleccion mas o menos subjetivos en base a prestigio de marcas o
experiencia previa. Es importante poder realizar la evaluacion sobre una version real de
la herramienta puesto que hay una serie de factores ‘no medibles’ que pueden influir,
principalmente ligados a la usabilidad de esta, por lo que es necesario en las
herramientas comerciales obtener una licencia de evaluacion. Puesto que el coste de las
herramientas suele ser alto, es habitual que los fabricantes accedan a proporcionar
versiones de evaluacion de duracion limitada.

Una vez conseguidas las herramientas se efectia el proceso de evaluacion
mediante la ejecucion del plan de pruebas definido con cada una de las herramientas
preseleccionadas y se calculan las métricas. Esta etapa es la que mas tiempo requiere
puesto que las personas que realizan las pruebas deben de pasar por el periodo de
aprendizaje inicial de las herramientas.

Finalizadas las pruebas y calculadas las métricas el proceso de seleccion es
sencillo y se basa simplemente en la aplicacion del criterio de seleccion previamente
definido. Puesto que existen unos valores minimos es posible que ninguna de las
herramientas evaluadas supere la evaluacion, en ese caso, si quedan candidatos
potenciales no evaluados, se procedera a una nueva seleccion con estos. En el caso de
que no queden candidatos, en principio no seria posible encontrar una herramienta con
nuestros requisitos, por lo que se podria repetir el proceso de toma de decision
modificando el criterio de aceptacion si decidimos que es preferible usar una
herramienta con una cobertura limitada a no usar ninguna.

Con la herramienta seleccionada ya so6lo queda la compra de la licencia final y la
implantacion de la misma. El proceso de implantacion también puede llevar su tiempo

puesto que todos los miembros del equipo que vayan a participar en el analisis deben



Revista Espariola de Innovacion, Calidad e Ingenieria del Software, Vol.7, No. 3, 2011

entrenarse en el uso de la nueva herramienta. Para ello es muy conveniente que en la
fase de evaluacion se vaya preparando una guia de cada herramienta que vaya
recogiendo las dificultades que el evaluador ha ido encontrando en su propio proceso de
aprendizaje. Si bien esto puede hacer que el proceso de evaluacion tome mas tiempo,
permitird acelerar la implantacion y la difusion de la herramienta entre los miembros del
equipo final.

Este proceso de seleccion se ha aplicado en un proyecto de seguridad critica con
nivel SIL4 desarrollado en C y C++ de acuerdo a la norma EN 50128. Los criterios de
seleccion de la herramienta fueron los siguientes: certificada para SIL4, soporte del
lenguaje C/C++, uso de reglas de codificacion MISRA C/C++ y soporte de las técnicas
de analisis estatico mencionadas en la tabla 1. También se introdujeron una serie de
requisitos para el andlisis dindmico que no se ha incluido en este articulo. Con lo
anterior se prepar6 el plan de evaluacion y las métricas para tomar una decision. El
criterio de aceptacion corresponde a los valores de la Tabla 3. La ejecucion del plan
consistié en realizar los analisis requeridos usando las herramienta bajo prueba a un
proyecto interno bien conocido para comprobar si es posible obtener con ella los
parametros requeridos.

Se preseleccionaron cuatro herramientas comerciales que cumplian los requisitos
previos y de las cuales fue posible obtener una licencia de evaluacion. Se dedico una
unica persona a la ejecucion del plan de evaluacion de forma que las evaluaciones se
realizaron en serie. El desarrollo del plan de evaluacion requirié 6 semanas de trabajo.
Este periodo también puede ser considerado como de formacion del evaluador en el
manejo de esas herramientas y para la redaccién de la documentacion de uso de la
misma. Esta documentacién preparada mientras se realiza la evaluacion es usada
posteriormente para la formacion de los demds miembros del grupo. Finalizada la
evaluacion, la seleccion de la herramienta mas adecuada se realizd de forma objetiva e

inmediata aplicando las métricas.

7. Conclusiones

En este articulo se ha visto el papel de la verificacion en el ciclo de desarrollo en V
tipicamente usado en los sistemas de seguridad critica en el caso particular de la norma
EN 50128. En particular la verificacion del codigo generado tiene una gran importancia
puesto que las principales causas de fallo del software, descartadas las debidas a

problemas con el hardware o el disefio, son defectos introducidos en la fase de creacion



Revista Espariola de Innovacion, Calidad e Ingenieria del Software, Vol.7, No. 3, 2011

del mismo. Esta verificacion es vital para eliminar la mayor parte de defectos en la fase
mas temprana posible y poder asegurar los niveles de seguridad y fiabilidad requeridos
por la aplicacion.

Dentro de las técnicas de verificacion de codigo el analisis estatico es una técnica
relativamente sencilla y facilmente automatizable, incluida como altamente
recomendable en todas las normas de sistemas de seguridad critica y que permite
mejorar la calidad del software desde el momento mismo de su creacion. Es conocido
que el coste de reparacion de un defecto crece conforme avanzamos en el ciclo de
desarrollo, por lo que encontrar los defectos en la misma fase de la escritura del codigo
es el momento menos costoso. Aunque una tnica técnica no garantiza el descubrir todos
los problemas, la técnica tratada es una de las de mas facil adopcion y que mas ventajas
aporta.

Existen multitud de herramientas que permiten realizar de forma automatica este
analisis de codigo, pero cudles pueden ser usadas en un proyecto especifico depende de
ciertos parametros del proyecto, como son el lenguaje de programacion usado y el nivel
de seguridad. Algunas de estas herramientas, sobre todo las que estan certificadas para
aplicaciones de seguridad critica, son caras. Luego debido a la gran variedad y al coste
de las mismas, la eleccion de la herramienta adecuada es importante para el éxito del
proyecto. Se ha presentado un proceso de seleccion sencillo pero que permite realizar
esta seleccion de una forma rigurosa.

Para sistemas que no sean de seguridad critica, el analisis estatico es también una
herramienta importante para aumentar la calidad de los productos de software a un coste
relativamente bajo por lo que deberia estar incluida en cualquier ciclo de desarrollo de

software.

Referencias

[1] RTCA, DO-178B. Software Considerations in Airborne Systems and Equipment
Certification, RTCA, 1992.

[2] IEC, IEC-61508-3 Seguridad funcional de los sistemas eléctricos, electronicos y
electronicos-programables relacionados con la seguridad. Parte 3: Requisitos del
Software (soporte logico), IEC, 2004.

[3] AENOR, UNE-EN-50128 Aplicaciones ferroviarias. Sistemas de comunicacion,
senializacion y procesamiento. Software para sistemas de control y proteccion de

ferrocarril, AENOR, 2002.



Revista Espariola de Innovacion, Calidad e Ingenieria del Software, Vol.7, No. 3, 2011

[4] IEC, IEC-61513 Nuclear power plants. Instrumentation and control for systems

important to safety. General requirements for systems, IEC, 2011.

[5] IEC, IEC-26262-6 Road vehicles — Functional safety. Part 6. Product development.

Software Level, IEC, 2009.

[6] NASA. NASA 8739.8 Software assurance standard, NASA, 2004.

[7] ECSS. ECSS-ST-40C Space Engineering. Software, ECSS, 2009.

[8] Broekman, B. y Nothenboom, E., Testing Embedded Software, Addison-Wesley,

2003.

[9] AENOR. UNE-EN ISO 9000 Sistemas de gestion de la calidad. Fundamentos y
vocabulario, AENOR, 2005.

[10] MISRA. Motor Industry Software Reliability Association: Guidelines for the use of
the C language in critical systems. MISRA, 2004.

[11] Fagan, M.E., “Advances in Software Inspections”, [EEE Transactions on Software
Engineering, vol. 12,n° 7, pp 744-751, 1986.

[12] HIS, Source Code Metrics, Herfseller Initiative Software, 2008.

[13] Zheng, J., Nagappan, N., Hudepohl, J.P., Vouk, M.A., On the value of static
analysis for fault detection in software. [EEE Transactions on Software Engineering,

vol. 32, n° 4, pp 240-253, April 2006.



