

REICIS. Revista Española de Innovación,

Calidad e Ingeniería del Software

E-ISSN: 1885-4486

reicis@ati.es

Asociación de Técnicos de Informática

España

Lluna, Eduardo

Análisis estático de código en el ciclo de desarrollo de software de seguridad crítica

REICIS. Revista Española de Innovación, Calidad e Ingeniería del Software, vol. 7, núm. 3, 2011, pp.

26-38

Asociación de Técnicos de Informática

Madrid, España

Disponible en: http://www.redalyc.org/articulo.oa?id=92222551004

 Cómo citar el artículo

 Número completo

 Más información del artículo

 Página de la revista en redalyc.org

Sistema de Información Científica

Red de Revistas Científicas de América Latina, el Caribe, España y Portugal

Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto

http://www.redalyc.org/revista.oa?id=922
http://www.redalyc.org/articulo.oa?id=92222551004
http://www.redalyc.org/comocitar.oa?id=92222551004
http://www.redalyc.org/fasciculo.oa?id=922&numero=22551
http://www.redalyc.org/articulo.oa?id=92222551004
http://www.redalyc.org/revista.oa?id=922
http://www.redalyc.org

Revista Española de Innovación, Calidad e Ingeniería del Software, Vol.7, No. 3, 2011

ISSN: 1885-4486 © ATI, 2011 26

Análisis estático de código en el ciclo de desarrollo de
software de seguridad crítica

Eduardo Lluna
Instituto Tecnológico de Informática (ITI)

elluna@iti.es

Resumen

El software es un elemento clave de los actuales sistemas de control incluidos los de
seguridad crítica, en los que un fallo puede causar daños irreparables a personas o el
entorno. Puesto que el software ni envejece ni se estropea, la calidad de éste dependerá
principalmente de los defectos que se introduzcan en la fase de codificación. Por lo
tanto cualquier técnica que permita eliminar estos defectos en la fase de creación
permitirá aumentar la calidad a un coste más reducido. Las técnicas de Análisis Estático
realizan esa función permitiendo localizar defectos sin ejecutar el código. Existen
diversas técnicas y no siempre se pueden aplicar todas por razones de coste y tiempo.
En este artículo se presenta una selección de las técnicas de análisis estático mínimas
requeridas para un sistema de seguridad crítica en base a una norma y, puesto que estas
técnicas son más eficientemente aplicadas por herramientas automáticas, se presenta un
proceso de selección de estas herramientas en función de requisitos del proyecto.

Palabras clave: Calidad del software, Seguridad crítica, Análisis estático, EN-50128.

Static code analysis in the development cycle of safety critical
software

Abstract

The software is a key element of control systems, including safety-critical, where failure
could cause irreparable damage to persons or the environment. Software does not get
aged or broken so its quality will largely depend on the number of defects introduced in
the coding phase. Therefore any technique to avoid defects in the coding phase will
increase software quality at a lower cost. Static Analysis techniques perform this
function locating defects on the code without running it. There are several techniques
but all of them cannot always be applied due to cost and time reasons. This article
presents a minimum selection of static analysis techniques required for a safety critical
system according a norm and, since these techniques are more efficiently applied by
automated tools, a tool selection process based on project requirements is presented.

Key words: Software quality, Safety critical, Static analysis, EN-50128.

Lluna, E. “Análisis estático de código en el ciclo de desarrollo de software de seguridad crítica”, REICIS, vol. 7, no.3, 2011, pp.
24-**. Recibido: 22-11-2011; revisado:1-12-2011; aceptado: 19-12-2011.

Revista Española de Innovación, Calidad e Ingeniería del Software, Vol.7, No. 3, 2011

ISSN: 1885-4486 © ATI, 2011 27

1. Introducción

Hoy en día el software es un elemento clave en los sistemas de control, incluidos los de

seguridad crítica, aquellos cuyo fallo puede causar daños irreparables a personas, bienes

o medio ambiente. Esta dependencia ha hecho que el nivel de fiabilidad requerido para

este tipo de software sea muy elevado. La forma de conseguir un software de calidad

suficiente es realizando desarrollos guiados por una serie de normas y estándares que

fuercen el uso de prácticas seguras y controles de forma que se minimicen las

posibilidades de error y permitan un seguimiento de la evolución del mismo. Estas

normas dependen del área de aplicación final y afectan tanto al hardware como el

software del sistema.

Este artículo presenta la técnica del Análisis Estático de código y selecciona un

conjunto mínimo de técnicas específicas que puedan ser aplicadas en el contexto de los

sistemas de seguridad crítica. Esta técnica, que permite detectar defectos en el código

desarrollado sin necesidad de ejecutarlo, aparece recomendada en la mayoría de las

normas de desarrollo de este tipo de sistemas. El hecho de basarse en estas normas, las

cuales a su vez se basan en la experiencia y lecciones aprendidas a lo largo de muchos

años de actividad, nos facilita el proceso de elección mediante la adopción de una serie

de criterios predefinidos. El uso del Análisis Estático de código es altamente

recomendable no sólo en el desarrollo de sistemas de seguridad crítica sino de cualquier

tipo.

2. Desarrollo de sistemas de seguridad crítica

Las normas en uso para el desarrollo de software de sistemas de seguridad crítica

dependen de la aplicación final. En el campo de la aeronáutica se usa en todo el mundo

principalmente la norma DO-173B de la RCSA [1]. En Europa para el software de

sistemas electrónicos en general la norma base es la IEC-61608-3 [2] a partir de la cual

se derivan algunas otras normas para sistemas específicos como la EN-50128 [3] para

sistemas ferroviarios, la norma IEC-61513 [4] para sistemas de centrales nucleares y la

IEC-26262-6 [5] para el sector de la automoción. En temas de espacio, la NASA usa la

norma propia NASA 8739.8 [6] mientras que otras agencias espaciales, incluida la ESA,

usan la norma ECSS-ST-40C [7] de la ECSS para sus sistemas críticos.

Las normas mencionadas son sólo algunas de las existentes y, pese a la diversidad,

todas comparten una estructura común forzando un ciclo de desarrollo y definiendo la

Revista Española de Innovación, Calidad e Ingeniería del Software, Vol.7, No. 3, 2011

ISSN: 1885-4486 © ATI, 2011 28

documentación requerida así como una serie de técnicas y buenas prácticas a seguir en

cada una de las fases del desarrollo.

Figura 1: Ciclo de desarrollo del software definido por EN-50128.

Todos los sistemas no tienen la misma criticidad, por lo que las normas también

definen una serie de niveles que van desde la ausencia de requisitos de seguridad hasta

niveles máximos. Por ejemplo, la norma IEC-61608 define cuatro niveles de 1 a 4 de lo

que llama Safety Integrity Level (SIL), siendo 1 el nivel mínimo de criticidad y 4 el

máximo. Nivel 0 equivale a la ausencia de criticidad. Estos niveles de seguridad

realmente se refieren a la seguridad del sistema como tal y se centran principalmente en

el hardware definiendo tiempos medios antes de fallo. Desde el punto de vista del

software estos niveles representan la peligrosidad o nivel de riesgo que produciría un

fallo de software. En función del nivel de seguridad requerido las normas aplican unas

técnicas u otras, por lo tanto un aspecto muy importante en el diseño es la elección

adecuada del nivel de seguridad de la aplicación.

Vamos a centrarnos en la norma EN-50128 para aplicaciones ferroviarias la cual

se basa en un ciclo de desarrollo en V (V-model) [8]. La Figura 1 muestra de forma

esquemática este ciclo.

Especificación de
Requisitos del Sistema

Especificación de
Requisitos del Software

Diseño y Arquitectura
del Software

Diseño de Módulos del
Software

Codificación del
Software

Pruebas de Módulo de
Software

Integración del Software

Integración del
Hardware y el Software

Validación del Software

Verificación

Verificación

Verificación

Verificación

Validación del Sistema

Revista Española de Innovación, Calidad e Ingeniería del Software, Vol.7, No. 3, 2011

ISSN: 1885-4486 © ATI, 2011 29

El ciclo de desarrollo incluye etapas habituales de especificación, diseño,

codificación del software, integración de módulos, integración con el hardware y

validación del software y del sistema. Pero un aspecto clave de la norma es el proceso

de Verificación que se realiza siempre al terminar una de las fases y antes de comenzar

la siguiente. Conviene tener clara la diferencia entre Validación y Verificación. De

acuerdo con la definición de ambos términos que aparece en la norma ISO-9000 [9], la

validación es la confirmación mediante la aportación de evidencia objetiva de que se

han cumplido los requisitos para una utilización específica prevista, mientras que la

verificación es la confirmación mediante la aportación de evidencia objetiva de que se

han cumplido los requisitos especificados. Básicamente la validación tiene que ver con

el uso final del sistema en una aplicación específica mientras que la verificación

comprueba que en cada momento se ha hecho lo que se había dicho que se iba a hacer y

los entregables de salida de una fase son los que se esperan en la siguiente.

3. Verificación del software

El software es un elemento del sistema que ni se estropea ni envejece. Eso significa que

las posibles causas de fallo vendrán o bien de un fallo del hardware (sobre el que se

ejecuta o de los periféricos que usa) o por un defecto en su desarrollo que hace que este

no se comporte como se espera en función de las especificaciones en una situación

particular. Para el caso de los fallos del hardware se emplean técnicas de tolerancia a

fallos que principalmente se basan en redundancias de los componentes críticos y en las

que no entraremos. La segunda fuente de fallos es más difícil de tratar y se basa en

reducir al máximo posible, puesto que es prácticamente imposible erradicarlo al 100%,

los defectos en el software. Es importante tener en mente que estamos asumiendo que la

lógica especificada es correcta y que los problemas vienen de defectos que hacen que el

software no siga la lógica definida. Si tenemos problemas en cuanto a la lógica del

sistema (especificaciones de lo que debe hacer) nos encontramos en un caso de errores

de diseño, los cuales deberían haberse detectado y subsanado en las etapas de diseño.

Por lo tanto es posible eliminar defectos del sistema verificando que el código

desarrollado hace exactamente lo que se ha especificado que debe hacer. De esa forma

en el uso real, cuando se den esas condiciones, hará lo que se espera de él.

Existen diferentes técnicas de verificación de software y la norma EN-50128

propone principalmente las siguientes: ensayos formales, ensayos probabilísticos,

análisis estático y análisis dinámico. Para un nivel SIL4, el más estricto, todas estas

Revista Española de Innovación, Calidad e Ingeniería del Software, Vol.7, No. 3, 2011

ISSN: 1885-4486 © ATI, 2011 30

técnicas aparecen como Altamente Recomendables, mientras que para un nivel SIL1

sólo el análisis estático y el dinámico tienen esa consideración.

Aunque el uso de una única técnica de análisis no permite localizar todos los

defectos de un sistema [13], en las siguientes secciones vamos a centrarnos en el

análisis estático, ya que es una técnica que por sí misma es capaz de encontrar un

número elevado de defectos en el software siendo una técnica relativamente sencilla de

aplicar, por lo cual presenta un gran valor y es recomendada independientemente del

nivel de seguridad.

4. Análisis Estático

El Análisis Estático es una evaluación del código generado para buscar defectos con la

particularidad de que se realiza sin necesidad de ejecutar ese código.

Un aspecto importante para este análisis es el lenguaje de programación usado. La

norma EN 50128 presenta una lista de lenguajes recomendables. En general son

preferibles lenguajes altamente estructurados y muy restrictivos como el Ada, Modula-2

o Pascal, pero en la realidad, debido a la gran difusión del C/C++ en el sector industrial

la mayoría de los desarrollos se realizan en este lenguaje y en Ada. La norma

desaconseja el uso de C/C++ sin restricciones pero sí que permite el uso de estos

lenguajes usando un subconjunto de los mismos y aplicando una serie de normas de

codificación. El subconjunto más usado es el MISRA-C o MISRA-C++ [10] definido

por la Motor Industry Software Reliability Association el cuál se considera seguro para

aplicaciones de seguridad críticas.

En cuanto a las técnicas que pueden aplicarse para realizar este análisis la norma

EN 50218 define un conjunto de éstas y entre las que marca como Altamente

Recomendables para el nivel SIL4 se encuentran el análisis de valores extremos, el

análisis del flujo de control y de datos, las revisiones de diseño y la ejecución simbólica

del código. Estas técnicas tratan de revisar áreas que son conocidas como fuente de

errores. Además hay que realizar una comprobación de las reglas de codificación que se

adopten.

El análisis de valores extremos busca defectos en el manejo de las variables en los

extremos de su rango de validez o en valores típicamente propensos a error como el

cero en el caso de las divisiones o el uso de punteros. Igualmente se comprueban los

accesos a arrays y elementos con un límite, fuentes habituales de problemas. El análisis

del flujo de control busca problemas en la estructura lógica del programa los cuales

Revista Española de Innovación, Calidad e Ingeniería del Software, Vol.7, No. 3, 2011

ISSN: 1885-4486 © ATI, 2011 31

pueden ser reflejo de defectos. Por ejemplo, no debe haber fragmentos de código

inalcanzables, los cuales se pueden deber a defectos en decisiones que impiden entrar en

ciertas partes. También hay que evitar fragmentos de código de complejidad innecesaria

puesto ésta puede ocultar problemas y verificar que todos los bucles tienen condición de

salida. El análisis del flujo de datos busca errores en las estructuras de datos y en los

accesos a las mismas. Los tipos de problemas habituales que deben comprobarse son,

por ejemplo, la lectura de variables que no han sido previamente escritas, lo cual puede

llevar a comportamientos indeseados, que no haya lecturas o escrituras a una misma

variable seguidas, lo cual puede significar que falta código entre accesos. En general

hay que comprobar cualquier operación con datos que pueda ser susceptible de

enmascarar un problema. Las revisiones de diseños son procesos formales en los que un

grupo de revisores comprueban el código usando un conjunto de casos de ensayo que

son probados de forma manual sobre el código. Existen normas que definen los

procesos de revisión formal y uno de los más conocidos, y sugerido por la norma, son

las inspecciones de Fagan [11]. La ejecución simbólica consiste en sustituir a lo largo

del software las expresiones del lado derecho e izquierdo de todas las asignaciones

manteniendo nombre de variables en lugar de valores de forma que se obtenga al final

una expresión para cada una de las variables. Esa expresión resultante se compara con la

especificación para ver si coincide. Este proceso normalmente es largo y muy complejo

por lo que esta técnica se limita a código relativamente simple.

La tabla 1 muestra a modo de resumen para cada una de las técnicas mencionadas,

a excepción de la revisión formal y la ejecución simbólica, los aspectos más importantes

que hay que comprobar siguiendo las recomendaciones de la norma EN-50128 para un

sistema SIL4.

Técnica Actividad

Reglas de codificación
Las que vengan definidas en la norma que se aplique (por ejemplo

MISRA-C/C++)

Análisis de valores extremos

División por cero

Uso de punteros nulos

Uso del mayor valor posible de una variable

Uso del menor valor posible de una variable

Accesos fuera de rango en arrays

Uso correcto de listas y arrays vacios

Comprobación de rangos de parámetros en las funciones.

Revista Española de Innovación, Calidad e Ingeniería del Software, Vol.7, No. 3, 2011

ISSN: 1885-4486 © ATI, 2011 32

Análisis del flujo de control

Código accesible

No existe código anudado (simplificable)

Todos los bucles tienen condición de salida alcanzable

Análisis del flujo de datos

No se leen variables antes de ser iniciadas (salvo volátiles)

No se escriben variables más de una vez antes de ser leídas (salvo

volátiles)

No se escriben variables que luego no se leen (salvo volátiles)

Tabla 1. Técnicas de Análisis Estático recomendadas por la norma EN 50128.

5. Métricas

Las métricas son indicadores cuantitativos del grado en que un componente, en este

caso el software, posee un atributo dado. Al ser un indicador cuantitativo, un valor

numérico, permite una comprobación fácil de si el valor está dentro de unos rangos y

por lo tanto, de definir de forma clara un criterio de aceptación. Normalmente las

métricas no identifican directamente defectos pero, por ejemplo, las métricas de

complejidad del código, pueden dar una idea de las probabilidades de que haya más o

menos defectos ocultos puesto que a mayor complejidad mayor probabilidad de que

hayan defectos ocultos. Para cada métrica hay que definir también un rango de valores

que se considera aceptables, los cuales dependerán de la aplicación y del nivel de

seguridad requerido. Existen muchas métricas definidas y en uso pero para un sistema

de seguridad crítica las más interesantes, por los motivos mencionados, son las de

medida de la complejidad del código.

Métrica Descripción Rango

DCOM Densidad de comentarios >0.2

STCYC Complejidad ciclomática 1-5

LEVEL Nivel de anidamiento de funciones 0-4

CALLING Número de veces que una función es llamada 0-5

CALL Número de funciones llamadas por una función 0-5

PARAM Número de parámetros de una función 0-5

RETURN Número de puntos de retorno de una función 0-1

STNRA Número de funciones con recursividad 0

NGTO Número de instrucciones goto 0

Tabla 2. Métricas aplicables.

La tabla 2 muestra un conjunto de métricas a aplicar en sistemas críticos basada

en la propuesta del Hertseller Initiative Software [12] para sistemas de automoción. Las

Revista Española de Innovación, Calidad e Ingeniería del Software, Vol.7, No. 3, 2011

ISSN: 1885-4486 © ATI, 2011 33

métricas seleccionadas miden principalmente la complejidad del código puesto que es el

factor principal de cara a la presencia de defectos pero también incluye algunas

relacionadas con el uso de técnicas de programación difíciles de seguir y depurar como

la recursividad o de estructuras que incrementan la desorganización del código como el

goto. La tabla también incluye los rangos válidos propuestos para cada métrica en

sistemas con nivel SIL4.

El mantenimiento de las métricas dentro de los valores aceptados, si bien no

evitan los errores, nos dan una indicación directa del nivel de complejidad y por lo tanto

de la probabilidad de tener errores.

6. Proceso de selección de herramientas

El análisis estático puede realizarse de forma manual, de hecho, las inspecciones

formales se realizan de esa forma. Aspectos como la comprobación de reglas de

codificación y los análisis de valores extremos, flujo de control y datos se comprueban

de forma más eficiente mediante herramientas de software que evitan que se cometan

errores y aceleran el proceso.

Existen en el mercado una gran variedad de herramientas de análisis estático,

tanto de código libre como comerciales pero para sistemas de seguridad crítica es

necesario que estén certificadas, por lo que el número de estas se reduce

considerablemente y por otra parte el coste de las mismas crece de forma importante.

Por lo tanto, en base al proyecto en el que se vaya a aplicar, la elección de la

herramienta adecuada es muy importante puesto que por una parte afectará a la cantidad

de pruebas que haya que realizar de forma manual, lo cual impacta en la duración del

proyecto, y por otra, al tener un coste elevado pueden llegar a ser una parte importante

del presupuesto del proyecto.

Para realizar la selección de la herramienta de análisis se ha definido un proceso

que se muestra en la Figura 2.

Lo primero y fundamental es tener perfectamente definido el uso de la

herramienta, lo que incluye el lenguaje de programación, el nivel de seguridad

requerido, las reglas de codificación y el conjunto de técnicas de análisis requeridas. En

un proyecto de seguridad crítica la norma de aplicación marcará las pautas a seguir en

estas decisiones. Una vez está clara esta información se prepara un plan de evaluación el

cual incluye la definición de unas métricas que permitirán tomar la decisión final. En

nuestro caso las métricas son el porcentaje de cobertura de comprobación de las reglas

Revista Española de Innovación, Calidad e Ingeniería del Software, Vol.7, No. 3, 2011

ISSN: 1885-4486 © ATI, 2011 34

de codificación y el porcentaje de cobertura de las técnicas de análisis incluidas en la

tabla 1.

Figura 2: Proceso de selección de la herramienta

Métrica Descripción Rango

PTAE Porcentaje de técnicas de Análisis Estático soportadas >75%

PTAD Porcentaje de técnicas de Análisis Dinámico soportadas >75%

PRMC Porcentaje de reglas MISRA C++ comprobadas >75%

PMAE Porcentaje de métricas de Análisis Estático calculadas >80%

PMAD Porcentaje de métricas de Análisis Dinámico calculadas >80%

MCCY Cálculo de complejidad ciclomática Sí

Tabla 3. Métricas para la elección de la herramienta.

Para cada métrica también se definirá un rango de valores aceptables y el criterio

de selección consistirá en seleccionar aquella herramienta que obtenga mayores valores

en las métricas pero teniendo en cuenta que estas también tienen un valor mínimo de

Revista Española de Innovación, Calidad e Ingeniería del Software, Vol.7, No. 3, 2011

ISSN: 1885-4486 © ATI, 2011 35

aceptación y si no se llega a ese valor la herramienta en cuestión no puede ser tenida en

cuenta. Estas métricas y sus valores se muestran en la tabla 3.

El siguiente paso es la selección de las herramientas que aparentemente pueden

cumplir los requisitos básicos (preselección) y sobre las que se realizará la evaluación.

Por ejemplo, sólo por el lenguaje de programación o por la certificación de seguridad

requerida hay herramientas que se descartarán directamente. Por motivos de coste,

principalmente en tiempo, lo normal es que no sea posible evaluar todas las

herramientas que podrían servir al pasar la preselección, por lo que algunos candidatos

potenciales pueden quedar sin evaluar. En esta preselección, cuando hay muchos

candidatos y claramente hemos de quedarnos sólo con unos pocos, pueden aplicarse

criterios de selección más o menos subjetivos en base a prestigio de marcas o

experiencia previa. Es importante poder realizar la evaluación sobre una versión real de

la herramienta puesto que hay una serie de factores ‘no medibles’ que pueden influir,

principalmente ligados a la usabilidad de esta, por lo que es necesario en las

herramientas comerciales obtener una licencia de evaluación. Puesto que el coste de las

herramientas suele ser alto, es habitual que los fabricantes accedan a proporcionar

versiones de evaluación de duración limitada.

Una vez conseguidas las herramientas se efectúa el proceso de evaluación

mediante la ejecución del plan de pruebas definido con cada una de las herramientas

preseleccionadas y se calculan las métricas. Esta etapa es la que más tiempo requiere

puesto que las personas que realizan las pruebas deben de pasar por el periodo de

aprendizaje inicial de las herramientas.

Finalizadas las pruebas y calculadas las métricas el proceso de selección es

sencillo y se basa simplemente en la aplicación del criterio de selección previamente

definido. Puesto que existen unos valores mínimos es posible que ninguna de las

herramientas evaluadas supere la evaluación, en ese caso, si quedan candidatos

potenciales no evaluados, se procederá a una nueva selección con estos. En el caso de

que no queden candidatos, en principio no sería posible encontrar una herramienta con

nuestros requisitos, por lo que se podría repetir el proceso de toma de decisión

modificando el criterio de aceptación si decidimos que es preferible usar una

herramienta con una cobertura limitada a no usar ninguna.

Con la herramienta seleccionada ya sólo queda la compra de la licencia final y la

implantación de la misma. El proceso de implantación también puede llevar su tiempo

puesto que todos los miembros del equipo que vayan a participar en el análisis deben

Revista Española de Innovación, Calidad e Ingeniería del Software, Vol.7, No. 3, 2011

ISSN: 1885-4486 © ATI, 2011 36

entrenarse en el uso de la nueva herramienta. Para ello es muy conveniente que en la

fase de evaluación se vaya preparando una guía de cada herramienta que vaya

recogiendo las dificultades que el evaluador ha ido encontrando en su propio proceso de

aprendizaje. Si bien esto puede hacer que el proceso de evaluación tome más tiempo,

permitirá acelerar la implantación y la difusión de la herramienta entre los miembros del

equipo final.

Este proceso de selección se ha aplicado en un proyecto de seguridad crítica con

nivel SIL4 desarrollado en C y C++ de acuerdo a la norma EN 50128. Los criterios de

selección de la herramienta fueron los siguientes: certificada para SIL4, soporte del

lenguaje C/C++, uso de reglas de codificación MISRA C/C++ y soporte de las técnicas

de análisis estático mencionadas en la tabla 1. También se introdujeron una serie de

requisitos para el análisis dinámico que no se ha incluido en este artículo. Con lo

anterior se preparó el plan de evaluación y las métricas para tomar una decisión. El

criterio de aceptación corresponde a los valores de la Tabla 3. La ejecución del plan

consistió en realizar los análisis requeridos usando las herramienta bajo prueba a un

proyecto interno bien conocido para comprobar si es posible obtener con ella los

parámetros requeridos.

Se preseleccionaron cuatro herramientas comerciales que cumplían los requisitos

previos y de las cuales fue posible obtener una licencia de evaluación. Se dedicó una

única persona a la ejecución del plan de evaluación de forma que las evaluaciones se

realizaron en serie. El desarrollo del plan de evaluación requirió 6 semanas de trabajo.

Este periodo también puede ser considerado como de formación del evaluador en el

manejo de esas herramientas y para la redacción de la documentación de uso de la

misma. Esta documentación preparada mientras se realiza la evaluación es usada

posteriormente para la formación de los demás miembros del grupo. Finalizada la

evaluación, la selección de la herramienta más adecuada se realizó de forma objetiva e

inmediata aplicando las métricas.

7. Conclusiones

En este artículo se ha visto el papel de la verificación en el ciclo de desarrollo en V

típicamente usado en los sistemas de seguridad crítica en el caso particular de la norma

EN 50128. En particular la verificación del código generado tiene una gran importancia

puesto que las principales causas de fallo del software, descartadas las debidas a

problemas con el hardware o el diseño, son defectos introducidos en la fase de creación

Revista Española de Innovación, Calidad e Ingeniería del Software, Vol.7, No. 3, 2011

ISSN: 1885-4486 © ATI, 2011 37

del mismo. Esta verificación es vital para eliminar la mayor parte de defectos en la fase

más temprana posible y poder asegurar los niveles de seguridad y fiabilidad requeridos

por la aplicación.

Dentro de las técnicas de verificación de código el análisis estático es una técnica

relativamente sencilla y fácilmente automatizable, incluida como altamente

recomendable en todas las normas de sistemas de seguridad crítica y que permite

mejorar la calidad del software desde el momento mismo de su creación. Es conocido

que el coste de reparación de un defecto crece conforme avanzamos en el ciclo de

desarrollo, por lo que encontrar los defectos en la misma fase de la escritura del código

es el momento menos costoso. Aunque una única técnica no garantiza el descubrir todos

los problemas, la técnica tratada es una de las de más fácil adopción y que más ventajas

aporta.

Existen multitud de herramientas que permiten realizar de forma automática este

análisis de código, pero cuáles pueden ser usadas en un proyecto específico depende de

ciertos parámetros del proyecto, como son el lenguaje de programación usado y el nivel

de seguridad. Algunas de estas herramientas, sobre todo las que están certificadas para

aplicaciones de seguridad crítica, son caras. Luego debido a la gran variedad y al coste

de las mismas, la elección de la herramienta adecuada es importante para el éxito del

proyecto. Se ha presentado un proceso de selección sencillo pero que permite realizar

esta selección de una forma rigurosa.

Para sistemas que no sean de seguridad crítica, el análisis estático es también una

herramienta importante para aumentar la calidad de los productos de software a un coste

relativamente bajo por lo que debería estar incluida en cualquier ciclo de desarrollo de

software.

Referencias

[1] RTCA, DO-178B. Software Considerations in Airborne Systems and Equipment

Certification, RTCA, 1992.

[2] IEC, IEC-61508-3 Seguridad funcional de los sistemas eléctricos, electrónicos y

electrónicos-programables relacionados con la seguridad. Parte 3: Requisitos del

Software (soporte lógico), IEC, 2004.

[3] AENOR, UNE-EN-50128 Aplicaciones ferroviarias. Sistemas de comunicación,

señalización y procesamiento. Software para sistemas de control y protección de

ferrocarril, AENOR, 2002.

Revista Española de Innovación, Calidad e Ingeniería del Software, Vol.7, No. 3, 2011

ISSN: 1885-4486 © ATI, 2011 38

[4] IEC, IEC-61513 Nuclear power plants. Instrumentation and control for systems

important to safety. General requirements for systems, IEC, 2011.

[5] IEC, IEC-26262-6 Road vehicles – Functional safety. Part 6. Product development.

Software Level, IEC, 2009.

[6] NASA. NASA 8739.8 Software assurance standard, NASA, 2004.

[7] ECSS. ECSS-ST-40C Space Engineering. Software, ECSS, 2009.

[8] Broekman, B. y Nothenboom, E., Testing Embedded Software, Addison-Wesley,

2003.

[9] AENOR. UNE-EN ISO 9000 Sistemas de gestión de la calidad. Fundamentos y

vocabulario, AENOR, 2005.

[10] MISRA. Motor Industry Software Reliability Association: Guidelines for the use of

the C language in critical systems. MISRA, 2004.

[11] Fagan, M.E., “Advances in Software Inspections”, IEEE Transactions on Software

Engineering, vol. 12, nº 7, pp 744-751, 1986.

[12] HIS, Source Code Metrics, Herfseller Initiative Software, 2008.

[13] Zheng, J., Nagappan, N., Hudepohl, J.P., Vouk, M.A., On the value of static

analysis for fault detection in software. IEEE Transactions on Software Engineering,

vol. 32, no 4, pp 240-253, April 2006.

