

Scientia Agraria

ISSN: 1519-1125 sciagr@ufpr.br

Universidade Federal do Paraná

Brasil

Pio, Rafael; Carvalho Costa, Fernanda; Nogueira CURI, Paula; Abreu Moura, Pedro Henrique ENRAIZAMENTO DE ESTACAS LENHOSAS DE CULTIVARES DE KIWIZEIRO Scientia Agraria, vol. 11, núm. 3, mayo-junio, 2010, pp. 271-274

Universidade Federal do Paraná

Paraná, Brasil

Disponível em: http://www.redalyc.org/articulo.oa?id=99515056012

Número completo

Mais artigos

Home da revista no Redalyc

SCIENTIFIC NOTE / NOTA CIENTÍFICA

ENRAIZAMENTO DE ESTACAS LENHOSAS DE CULTIVARES DE KIWIZEIRO

ROOTING OF KIWI CULTIVARS WOODY CUTTINGS

Rafael PIO1 Fernanda Carvalho COSTA² Paula Nogueira CURI³ Pedro Henrique Abreu MOURA³

RESUMO

O presente trabalho foi realizado com o intuito de verificar o potencial de enraizamento de estacas de diferentes cultivares de kiwizeiro. Estacas lenhosas das cultivares Hayward, Monty, Abbott, Allison, Tomuri e Bruno foram coletadas no final de julho, padronizadas em 20 cm de comprimento e diâmetro basal de 0,8 cm com um corte transversal da estaca no seu ápice e outro em bisel na base. Após preparadas foram realizadas incisões na base das estacas e sua imersão por 10 s em AIB (ácido indolbutírico) a 8000 mg dm⁻³. As estacas foram inseridas em leito de areia umedecido sob telado e decorridos 90 dias concluiu-se que as estacas de kiwizeiro diferem quanto à brotação e enraizamento e as estacas da cultivar Allison são as que possuem a maior porcentagem de enraizamento e brotação.

Palavras-chave: Actinidia deliciosa; produção de mudas; propagação.

ABSTRACT

The objective of this present study was to assess the efficacy on utilizing biostimulant and Calcium (Ca) and Boron (B) leaf sprays in different bean crop phenological stages in sandy soil, under irrigated and non-irrigated systems. Treatments utilized in this experiment received foliar biostimulant applications (0.9 g dm⁻³ kinetin: kitocynin-related; 0.5 g dm⁻³ giberelic acid: giberelin-related; and 0.5 g dm3 indolbutiric acid: auxin-related) in doses of 0.75 dm3 ha1 e de 3 dm3 ha1 of a mixture of Calcium (10%) and Boron (2%). Applications were carried out during both V4 (third trifoliate leaf) and R5 (blooming) plant phenological stages, isolated or combined in areas with and without irrigation, except for the witness (treatment without irrigation and without spraying). Analyzing the results, it can be concluded that irrigation, because of the water deficit frequency that occurred in the northwest of Parana, is confirmed as a tool to promote productivity increased of the bean crop. The application of biostmulant and Ca + B, associated or not when sprayed at different phenological stages of the bean crop did not show improvement in culture performances.

Key words: yield; water deficit; phytohormone; calcium; boron.

¹ Prof. adjunto do Departamento de Agricultura, Universidade Federal de Lavras (UFLA), C.P. 3037, 37200-000, Lavras, Minas Gerais, Brasil.

Bolsista Produtividade em Pesquisa do CNPq. E-mail: rafaelpio@dag.ufla.br
² Bolsista DTI-III do CNPq, Departamento de Agricultura, Universidade Federal de Lavras (UFLA), Caixa Postal 3037, 37200-000, Lavras, Minas Gerais, Brasil. E-mail: fecostapur@yahoo.com.br

³ Pós-graduando do curso de Mestrado em Fitotecnia, Departamento de Agricultura, Universidade Federal de Lavras (UFLA), Caixa Postal 3037, 37200-000, Lavras, Minas Gerais, Brasil. E-mail: paulanogueiracuri@yahoo.com.br pedrohamoura@yahoo.com.br

INTRODUÇÃO

O kiwi (*Actinia deliciosa* A. Chev.) tem sua origem no vale do rio Yang-Tse-Kiang, na China. Seu maior estímulo ao cultivo e ao melhoramento genético se deu na Nova Zelândia. É cultivado na região Sul do Brasil, em locais de clima temperado com média a alta necessidade em frio (Schuck, 1992).

Diversas cultivares foram introduzidas no Brasil na década de 70 visando a seleção de genótipos adaptados às diversas regiões no sul brasileiro para impulsionar o seu cultivo. A cultivar Hayward necessita de maior quantidade de horas de frio abaixo de 7,2 °C (700 h), o fruto possui formato oval e resiste por até oito meses em câmara fria após a colheita. A cultivar Monty possui média necessidade de frio (500 h), frutos de formato oblongo e média conservação em pós-colheita (quatro meses). 'Abbott', 'Allison' e 'Bruno' são as cultivares que requerem menores quantidades de horas de frio (300 h), sendo o primeiro de formato oval e os outros alongados, todos com média a baixa conservação em pós-colheita (dois a três meses). A cultivar Tomuri é utilizada como polinizadora para as demais cultivares (Simonetto & Grellmann, 1999). Apesar dos estados da região Sul do Brasil produzirem mais de 50 ton de kiwi e haver crescimento linear das áreas produtivas nos últimos 20 anos, essa quantidade não supre a demanda do mercado interno (FAO, 2010).A multiplicação do kiwizeiro normalmente ocorre pela enxertia das cultivares copas sobre porta-enxertos originados de sementes, existindo um grande intervalo entre a formação dos porta-enxertos e posterior enxertia, requerendo no mínimo 16 meses para as plantas serem transplantadas para o lugar definitivo (Rathore, 1984; Simonetto & Grellmann, 1999).

A estaquia pode ser uma alternativa para a produção de mudas clonais de kiwizeiro e de portaenxertos para posterior enxertia de cultivares copa que possuem baixo potencial rizogênico, aproveitando-se o material oriundo da poda invernal. As mudas propagadas por estaquia demandam seis meses para estarem aptas a irem ao campo e mudas enxertadas 16 meses (Costa & Baraldi, 1983; Fachinello et al., 2005). Embora seja possível a coleta de estacas em outras épocas do ano, isto não é recomendado, pois podas verdes podem comprometer o ciclo fenológico das plantas e a produção, dependendo do número de estacas coletadas.

A estaquia tem também a vantagem de substituir a enxertia, uma vez que não existe portaenxerto específico para essa espécie (Manfroi et al., 1997).

Há trabalhos desenvolvidos com o enraizamento de estacas lenhosas de kiwizeiro coletados no inverno, junto a poda invernal, dentre eles o de Paes et al. (2003) que trabalhando com o kiwizeiro 'Bruno' registraram 2,5% de enraizamento sem o tratamento com ácido indolbutírico (AIB) e 20% quando as estacas foram tratadas com 5000

mg kg⁻¹ na forma de talco. Ferri et al. (1996) verificaram na cultivar Hayward rendimento de 37% de enraizamento com uso de AIB em base alcoólica. Ono et al. (1995) obtiveram 7,2% de estacas enraizadas do kiwizeiro 'Abbott' quando as mesmas foram imersas em solução de 300 mg dm⁻³ de AIB por 24 h. Mattiuz & Fachinello (1996) verificando o enraizamento das cultivares Tomuri e Bruno obtiveram 19,78% e 10,76% de estacas enraizadas, respectivamente, e ainda afirmaram que o tratamento com 8000 mg dm⁻³ de AIB auxiliou a emissão de raízes. Já Manfroi et al. (1997) não constataram efeito do AIB no enraizamento de estacas do kiwizeiro 'Monty'.

O presente trabalho foi realizado com o intuito de verificar o enraizamento de estacas de diferentes cultivares de kiwizeiro com potencial de exploração na região serrana de Santa Catarina e Rio Grande do Sul.

MATERIAL E MÉTODOS

Ramos lenhosos das cultivares Hayward, Monty, Abbott, Allison, Tomuri e Bruno foram coletados em plantas de oito anos de idade da coleção de kiwizeiro da Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), no município de Veranópolis, RS, no final do mês de julho. As estacas foram embrulhadas em camadas de papel umedecido, vedadas com sacos plásticos e transportadas para a Universidade Federal de Lavras (UFLA), Lavras-MG.

Destas foram confeccionadas estacas com 20 cm de comprimento, diâmetro de 0,8 cm e três gemas, sendo efetuado um corte transversal da estaca em seu ápice e em bisel na base.

Depois de preparadas as estacas, foi retirada uma porção de dois centímetros da casca em ambos os lados da sua base, a qual foi imersa em solução de 8000 mg dm³ de AIB por 10 s, conforme metodologia de Mattiuz & Fachinello (1996). Posteriormente ao tratamento, as estacas foram mantidas em ambiente sombreado por cinco minutos e em seguida aprofundou-se 2/3 de seu comprimento em canteiro de areia umedecido, sob viveiro coberto por tela de 50% de sombreamento, nas dependências do pomar didático do Setor de Fruticultura da UFLA. O leito de enraizamento foi diariamente umedecido com auxílio de regador manual, aplicando-se 2 dm³ a cada rega na área experimental.

Decorridos 90 dias foram mensuradas as porcentagens de estacas vivas, estacas brotadas, estacas calejadas, estacas enraizadas e o número médio de raízes por estaca.

O delineamento experimental utilizado foi o inteiramente casualizado, com seis tratamentos, composto pelas cultivares de kiwizeiro, seis repetições e dez estacas por unidade experimental. Os dados foram submetidos à análise de variância e as médias comparadas pelo teste Tukey, ao nível de 5% de probabilidade, segundo as recomendações de Pimentel Gomes (2000). As análises foram realizadas com auxílio do programa

computacional Sistema para Análise de Variância – SISVAR (Ferreira, 2000).

RESULTADOS E DISCUSSÃO

Houve diferença entre tratamentos para todas as variáveis. Todas as estacas que permaneceram vivas brotaram, já as demais estacas secaram ao longo dos dias que decorreu a experimentação.

As estacas da cultivar Abbott não enraizaram, apenas 25% de estacas brotaram e todas as estacas vivas apresentaram calejamento na base (Tabela 1). Esses resultados concordam com Ono et al. (1995), que verificaram que as estacas do kiwizeiro 'Abbott' emitiram poucas raízes e apenas 7,2% das estacas enraizaram, mesmo com a imersão em solução de 300 mg dm⁻³ de AIB por 24 h.

TABELA 1 - Porcentagem de estacas enraizadas (PEE), porcentagem de estacas vivas (PEV), porcentagem de estacas calejadas (PEC), número médio de raízes (NMR) e porcentagem de estacas brotadas (PEB) de cultivares de kiwizeiro. UFLA, Lavras-MG, 2009.

Cultivares	Variáveis analisadas*				
	PEE	PEV	PEC	NMR	PEB
Hayward	2,5 c	60,0 b	50,0 c	0,3 c	60,0 b
Monty	0 c	100,0 a	100,0 a	0 c	100,0 a
Abbott	0 c	25,0 c	25,0 d	0 c	25,0 c
Allison	72,5 a	100,0 a	100,0 a	3,3 a	100,0 a
Tomuri	35,0 b	90,0 a	75,0 b	2,0 b	90,0 a
Bruno	46,7 b	100,0 a	90,0 a	2,0 b	100,0 a
DMS	13,2	17,0	12,2	1,1	17,0
C.V. (%)	19,8	14,9	14,9	27,2	14,9

^{*} Médias seguidas pela mesma letra na coluna, não diferem entre si pelo teste Tukey (P < 0,05).

Já 2,5% das estacas da cultivar Hayward enraizaram, 50% de estacas calejaram e 60% brotaram, resultados que diferiram dos obtidos por Ferri et al. (1996). No entanto, as estacas da cultivar Monty permaneceram todas vivas, brotaram e calejaram, mas nenhuma emitiu raiz (Tabela 1).

Os resultados mostram que essas três cultivares não são aptas para serem multiplicadas pelo método de estaquia. Assim, técnicas auxiliares devem ser estudadas para então propiciarem viabilização da utilização da estaquia ou outra forma de propagação vegetativa para a produção de mudas, principalmente para a cultivar Monty, em que todas as suas estacas calejaram.

As demais cultivares estudadas apresentaram melhores desempenhos e não diferiram entre si para a porcentagem de estacas vivas e brotadas, com mais de 90% de brotação (Tabela 1). As cultivares Allison e Bruno apresentaram a maior porcentagem de estacas calejadas e a cultivar Allison atingiu 72,5% de enraizamento, com média de 3,3 raízes emitidas. As cultivares Bruno e Tomuri apresentaram 46,7% e 35% de estacas enraizadas, respectivamente, com emissão média de duas raízes por estaca.

A porcentagem de enraizamento das estacas obtidas no presente trabalho foi ligeiramente superior à obtida por Paes et al. (2003), que registraram 20% de enraizamento das estacas da cultivar Bruno e à obtida por Mattiuz & Fachinello (1996), que registraram 19,78% de enraizamento para a cultivar Tomuri.

Essa diferença pode estar relacionada à retirada da porção da casca na base das estacas (incisão) adotada nesse trabalho. O uso de ferimento na base da estaca submersa ao leito de enraizamento e a aplicação de fitorreguladores, ou o sinergismo das duas técnicas, têm apresentado bons resultados para espécies de difícil enraizamento, pois as incisões expõem o câmbio e a região do córtex, aumentando assim a interação com o regulador vegetal (Hartmann et al., 2002).

Mesmo as estacas das cultivares de kiwizeiro que apresentaram maior porcentagem de sobrevivência e brotação, não apresentaram o mesmo desempenho na porcentagem de enraizamento e na emissão de raízes. Esses resultados demonstram que algumas cultivares emitem brotações em detrimento das reservas contidas endogenamente nas estacas, sendo essas reservas não suficientes para a emissão de raízes, o que torna baixo o potencial rizogênico de algumas cultivares.

A formação de raízes adventícias em estacas pode ser direta e indiretamente controlada por genes (Hartmann et al., 2002). Segundo estes autores, o aspecto genético que influencia o processo de enraizamento de estacas não tem sido investigado. A potencialidade de uma estaca em formar raízes é variável com a espécie e cultivar, podendo ser feita uma classificação entre espécies ou cultivares de fácil, médio ou difícil capacidade de enraizamento, ainda que a facilidade de enraizamento seja resultante da interação de diversos fatores e não apenas do potencial genético

PIO, R. et al. Enraizamento de estacas lenhosas...

enraizamento seja resultante da interação de diversos fatores e não apenas do potencial genético (Fachinello et al., 2005).

junto a poda invernal possuem capacidade distinta quanto a sobrevivência e potencial rizogênico. Estacas da cultivar Allison são as que possuem maior porcentagem de brotação e enraizamento.

CONCLUSÃO

Estacas das cultivares de kiwizeiro coletadas

REFERÊNCIAS

- COSTA, G.; BARALDI, R. Ricerche sulla propagazione per talea legnosa dell'actinidia chinensis. Rivista Della Ortoflorofruticoltura Italiana, v. 67, p.123-128, 1983.
- FACHINELLO, J.C.; HOFFMANN, A.; NACHTIGAL, J.C. Propagação de plantas frutíferas. 1. ed. Brasília: Embrapa, 2005. 221p.
- FOOD AND AGRICULTURE ORGANIZATION (FAO). Fig. Disponível em: http://faostat.fao.org. Acesso em: 08 jan. 2010.
- FERREIRA, D. F. Análise estatística por meio do SISVAR (Sistema para Análise de Variância) para Windows versão 4.0.
 In: REUNIÃO ANUAL DA REGIÃO BRASILEIRA DA SOCIEDADE INTERNACIONAL DE BIOMETRIA, 45., 2000, São Carlos. Anais... São Carlos: UFSCar, 2000. p. 255-258.
- 5. FERRI, V.C.; KERSTEN, E.; MACHADO, A.A. Efeito do ácido indolbutírico no enraizamento de estacas semilenhosas de kiwi (Actinidia deliciosa, A. Chev.) cultivar Hayward. **Revistas Brasileira de Agrociência**, v. 2, n.1, p. 63-66, 1996.
- 6. HARTMANN, H.T. et al. **Plant propagation:** principles and practices. 7. ed. New Jersey: Prentice Hall, 2002. 880 p
- MANFROI, V. et al. Efeito do AIB sobre o enraizamento e desenvolvimento de estacas de quivi (*Actinidia deliciosa*).
 Ciência Rural, v. 27, n. 1, p. 43-46, 1997.
- 8. MATTIUZ, B. H.; FACHINELLO, J. C. Enraizamento de estacas de kiwi *Actinidia deliciosa* (A. Chev.) C. F. Liang & A. R. Ferguson var. *Deliciosa*. **Pesquisa Agropecuária Brasileira**, v. 31, n. 7, p. 503-508, 1996.
- ONO, E. O.; RODRIGUES, J. D.; PINHO, S. Z. Enraizamento de estacas caulinares de kiwi (*Actinidia chinensis* Planch cv. Abbott) tratadas com auxinas e boro. Scientia Agricola, v. 52, n. 3, p. 462-468, 1995.
- 10. PAES, E. G. B. et al. Enraizamento de estacas de kiwizeiro (*Actinidia deliciosa* Lang et Ferguson cv. Bruno) nas quatro estações do ano. **Scientia Agraria**, v. 4, n. 1-2, p. 69-76, 2003.
- 11. PIMENTEL GOMES, F. Curso de estatística experimental. 14. ed. Piracicaba: USP/ESALQ, 2000. 477 p.
- 12. RATHORE, D. S. Propagation of chinese gooseberry from stem cuttings. **Indian Journal of Horticulture**, v. 41, n. 3/4, p. 237-239, 1984.
- 13. SCHUCK, E. Cultivares de quivi e propagação do quivi. Agropecuária Catarinense, v. 5, n. 4, p. 13-19, 1992.
- 14. SIMONETTO, P. R.; GRELLMANN, E. O. Cultivares de kiwi com potencial de produção na região da serra do nordeste do Rio Grande do Sul. Porto Alegre: FEPAGRO, 1999. 19 p. (Boletim Técnico, 7).

Recebido em 17/09/2009 Aceito em 09/04/2010