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ABSTRACT:

Spectral multiplexing sensors based on compressive sensing attempt to break the Nyquist barrier to acquire high spectral resolution
scenes. Particularly, the colored coded aperture-based compressive spectral imager extended to video, or video C-CASSL, is a
spectral multiplexing sensor that allows capturing spectral dynamic scenes by projecting each spectral frame onto a bidimensional
detector usinga 3D coded aperture. Afterwards, the compressed signal reconstruction is performed iteratively by finding a sparse
solution to an undetermined linear system of equations. Even though the acquired signal can be recovered from much fewer
observations by an ¢, -4, -norm recovery algorithm than using conventional sensors, the reconstruction exhibits diverse challenges
originated by the temporal variable or motion. The motion during the reconstruction produces artifacts that damages the entire
data. In this work, a multiresolution-based reconstruction method for compressive spectral video sensing is proposed. In this way,
it obtains the temporal information from the measurements at a low computational cost. Thereby, the optimization problem
to recover the signal is extended by adding temporal information in order to correct the errors originated by the scene motion.
Computational experiments performed over four different spectral videos show an improvement up to 4dB in terms of peak-signal
to noise ratio (PSNR) in the reconstruction quality using the multiresolution approach applied to the spectral video reconstruction
with respect to the traditional inverse problem.

KEYWORDS: Multiresolution reconstruction, compressive spectral video, optimization.

RESUMEN:

Los sensores de multiplexacién espectral basados en muestreo compresivo intentan romper la barrera de Nyquist para adquirir
escenas de alta resolucidn espectral. Particularmente, el sistema de imagenes espectrales de tnica captura basado en aperturas
codificadas de color extendido a video, o video — CCASSI, es un sensor de multiplexacion espectral que permite la adquisicion
de imdgenes espectrales dindmicas proyectando cada fotograma espectral sobre un detector bidimensional usando un apertura de
codificacién 3D. Posteriormente, la reconstruccién de la senal comprimida se realiza iterativamente encontrando una solucién
escasa a un sistema lineal de ecuaciones indeterminado. Si bien la sefial adquirida puede ser recuperada desde un algoritmo basado
en lanorma #; - €, con muchas menos observaciones en comparacidn a los sistemas convencionales, dicha reconstruccion presenta
diversos desafios originados por la variable temporal o el movimiento. El movimiento durante la reconstruccién produce artefactos
que dafan la totalidad de los datos. En este trabajo, se propone un método de reconstruccion basado en multiples resoluciones
para la adquisicién compresiva de video espectral. De este modo, el problema de optimizacién para recuperar la sefial se amplia
afiadiendo la informacién temporal como restriccidn, con el objetivo de corregir los errores originados por el movimiento de la
escena. Los experimentos computacionales realizados en cuatro videos espectrales diferentes muestran una mejora de hasta 4dB
en términos de relacidn pico-sefial a ruido (PSNR) en la calidad de reconstruccién usando el enfoque multirresolucién aplicado a
la reconstruccién de video espectral con respecto al problema de optimizacién que no considera el movimiento.

PALABRAS CLAVE: Reconstruccién basada en multirresolucién, video espectral compresivo, optimizacion.
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1. INTRODUCTION

Compressive sensing (CS) establishes that a given signal can be recovered from far fewer samples than those
required by the Shannon-Nyquist criterion. As a consequence, through the years some sensors to acquire
multidimensional signals as spectral images or video from less samples have been developed. Particularly,
spectral multiplexing sensors based on CS attempt to break the Nyquist barrier by acquiring 2D projections
of a scene in order to obtain a high spectral resolution image. The most remarkable CS sensor for spectral
imaging is called the coded aperture snapshot spectral imager (CASSI) which is composed by a few set of
clements such as a lenses set, a coded aperture, a dispersive element and a focal plane array (FPA). Particularly,
the colored CASSI or C-CASSI is a version of CASSI where the coded aperture is a colored coded aperture
(CCA) which leads a richer encoding procedure [1, 2, 3].

Figure 1 illustrates the set of elements in the C-CASSI. The principal characteristic of a CCA relies on
the fact that each CCA pixel can spectrally encode the incoming light letting to pass just a desired set of
wavelengths. Hence, the CCA pixels can operate on the spectral axis as frequency-selective filters, i.e. as
low pass (L), band pass (B) or high pass (H) optical filters. In other words, each pixel lets to pass certain
frequency components of the source pixel and totally rejects all others. Thus, each CCA pixel is one of many
possible optical filters whose spectral response can be selected. Figure 1(b) shows an illustration of the above-
mentioned filters where each CCA pixel color corresponds to a specific spectral response: Low, High and
Band pass filter, respectively. Further, the filters in the CCA can be selected at a randomly form or they can
be optimally selected such that the number of projections is minimized while the quality of reconstruction
is maximized [1].
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FIGURE 1
Optical elements presented in C-CASSI [1]. (a) The binary CA is replaced
by a colored coded aperture (CCA). (b) Then, each CCA pixel is one

of many possible optical filters whose spectral response can be selected

The C-CASSI permits the compressive acquisition of a 3D spectral image into a 2D detector. Further, the
CCASSI extended to video (video C-CASSI) is a spectral multiplexing sensor that allows capturing spectral
dynamic scenes, or spectral video, by projecting each spectral frame onto a bidimensional detector [4, 5, 6].
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A spectral video is considered as a four-dimensional signal f(x.y.41), where xy denote the spatial pixels, 2
represents the spectral dimension and 7 denotes the temporal component.

The spectral video has many applications in the industry and the academy, such as surveillance, moving
targets recognition, security, and classification, where the discrimination of the features is performed over
the different spectral bands instead of use only three channels (RGB) as in traditional approaches [7, 8, 9,
10]. Figure 2 shows the sensing process in the video C-CASSI system for a spectral video. Basically, in the
sensing process, the incoming light is encoded by the coded aperture r(x..4,1, and then, the coded light is
spectrally dispersed by the dispersive element, usually a prism.

Finally, the encoded and dispersed light is integrated in the FPA. The compressed video is reconstructed
iteratively by finding a sparse solution to an undetermined linear system of equations.
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Hlustration of the process in the video colored coded aperture-based compressive spectral

imager (video C-CASSI). A set of optical filters used in the CCA is shown in the bottom

However, recovering a compressed video entails diverse challenges originated by the temporal variable.
The scene motion during the acquisition yields to motion artifacts, and these artifacts get aliased during
the video reconstruction damaging the entire data [11]. As a result, multiresolution approaches have been
proposed in order to alleviate the aliasing and enhance the video reconstruction. The idea of interpret the data
at multiple resolutions have been called the “chicken-and-egg” problem, which states that reconstructing a
high-quality CS video could be obtained adding temporal correlation such as motion compensation, and
computing motion compensation requires knowledge of the full video. Works such as [12, 13] propose a
preview reconstruction to estimate the motion field in the video such that it can be used to achieve a high-
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quality reconstruction. However, these approaches have been focused in spatial or temporal multiplexing
architectures while the spectral information in the video has been discarded.

This work presents a modification to the compressive spectral video recovery step adding an additional
regularization term to correct the errors induced by the motion. Thus, the motion estimated from a low
spatial resolution version, or a preview, is imposed as prior information in the optimization problem. This
approach aims to correct the artifacts induced by the motion in the reconstruction problem following a
multiresolution strategy. Hence, this scheme allows going from a low to a high spatial resolution in the
reconstruction, in order to obtain an improvement in the spatial quality of the reconstructed spectral video.
In the following sections, it is introduced the discrete model of the CASSI system using colored coded
apertures extended to spectral video acquisition. Next, the multiresolution strategy for compressive spectral
video reconstruction is developed, and then, a quantitative comparison to measure the performance of the
proposed approach is presented.

2. COMPRESSIVE SPECTRAL VIDEO C-CASSI MODELING
2.1. Discrete sampling model for video C-CASSI

Let rerv»e be the discretized-form of a given spectral video, with ¥x~ spatial pixels, z spectral bands
and b spectral frames; then, the sensing process of F through the video C-CASSI system can be modeled
as the linear projection of the vectorized form of the source f=16.67....65.17, where fer® with » = ¥10, onto
the matrix H as

g = Hf, (1)
where g€ ®™ represents the vectorized form of the compressive measurements on the detector, with
m = NV +1—-1)p. For the recovery of the compressive spectral video, CS exploits the fact that many signals
can be represented in a sparse form in some representation basis. Formally, the given spectral video signal ¢
can be expressed as f = weo, where w e m is a representation basis such as a Wavelet or Cosine, and 6 denotes
the nonzero coeflicients of the signal in the given basis w.
Hence, the Eq. (1) can be rewritten as

g = H¥6.

2.2. Inverse problem

Solving the problem in Eq. (1) requires the inversion of the linear system, however, since the number of the
measurements # is significantly smaller than the number of columns in H, i.e. m «n, the direct inversion of
the system is not feasible. Then, the compressed signal reconstruction is performed iteratively by finding a
sparse solution to Eq. (2) given by the optimization problem expressed as

6 = argmin|lg — HW6||3 + 7/l6]l;.
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where 112+ is the square |_2 -norm that measures the mean square error of the estimation, 1.1 is the]_1-
norm that measures the nonzero values in the vector and t is a regulator which penalizes searching the
sparsest solution. However, notice that the optimization problem presented in Eq. (3) does not consider
the motion in the compressive measurements. In other words, this optimization problem searches a sparse
solution for static images, hence, some motion artifacts are produced in the spectral video reconstruction
process damaging the entire data and producing low spatial quality reconstruction.

3. MULTIRESOLUTION RECONSTRUCTION APPROACH FOR COMPRESSIVE
SPECTRAL VIDEO SENSING

Briefly, the proposed multiresolution reconstruction approach is based on the reconstruction of a low spatial
resolution version of the spectral video in order to extract the temporal or motion information. Then, the
motion information is added as an additional regularization term in the optimization problem to correct
motion artifacts and enhance the reconstruction quality of the high resolution spectral video.

More formally, for the low-resolution estimation, a spatial down-sampling operator B e &=, (n/x = ), is
introduced in Eq. (1) such that the measurements are rewritten as

g = HBTBf,
(4)
where #7 is the transpose of B. Then, an - 4-norm algorithm to solve the minimization problem presented
in Eq. (3) is used with few iterations to obtain the sparsest coefficients of a coarse reconstruction of the
spectral video from the measurements as

B, = argminllg — (HE")B(WO) 2 + rlo]l.
Then, the low-resolution version of the spectral video is estimated by

Fos = ) “
where b, - [@...@.. @] represents the low spatial resolution version.

The obtained coarse estimation .. is up-sampled and then, used to extract the motion of the video as the
optical flow.

The optical flow estimation between any two frames G.),,, and ()., for w,z = 0,-D — 1,and w> z,is given
by £, =@, where v is an up-sampling operator such as a “bilinear interpolation”. Then, the optical flow is
estimated from any two frames f. and & by computing the changes in the horizontal #and vertical #axis as in
[14]. Then, for an estimation of the spectral video, the motion errors can be expressed as

B = ﬂ(fw)i,j - ﬂ(ﬂ'}(i"‘“}ﬂ"’u],
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7)

where e represents the error induced by the scene motion, a¢) - & g™ is an operator that arranges a
vector in matrix form, and i.j goes over the spatial dimension of the selected frame.

Following the Eq. (7) to compute the motion errors, the optimization problem in Eq. (3) can be rewritten
as

6 = argmin||g — HWO||; + 7|6]|; + BIIT|I2, ©

where s is a regularizer parameter and r is defined as

I = A(W0) ijdew ﬂ(qlﬂ)(£+u],[j+v],k,z:- 9
where we - [woy.... w0z cv0)L,... w0 1" with k = o,..... — 1. Notice that in Eq. (9) the subindex ¢ + w and ¢ +»
accounts for the horizontal and vertical changes, respectively.

For illustration purposes, Figure 3 shows the optical flow estimation followinga color map representation
with the horizontal and vertical changes. Notice that in Fig. 3, the Frame 1 changes with respect to Frame 2
in the horizontal axis. Then, the optical flow representation adopts the respective colors given by the color
map for the left and right movements [14].

To solve the problem in Eq. (8), it can be used wellknown implementations of signal recovery such as
the LASSO or the GPSR algorithm by adding the regularization term as shown in Eq. (8) [15]. Finally, the

reconstruction of the signal is attained by

f == "Pg ( 10)
where # is the reconstructed spectral video in vector form.

R

Color Map

Frame 1 Frame 2

Optical flow
represanlation

FIGURE 3
[llustration of the optical flow estimation between two frames following a color

map. The scene changes from the Frame 1 to the Frame 2 and the optical flow
representation adopts the respective color of the movement from the color map
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4. RESULTS

To evaluate the performance of the proposed multiresolution reconstruction, a set of compressive
measurements is simulated using the forward model in Eq. (1). For this, four test spectral videos were selected
as follows. The first and the second dataset are cropped sections of the spectral video taken from [16] called
Boxes 1 and Boxes 2, respectively. The third dataset, called Beads, is a synthetic spectral video of a moving
object over a spectral static scene [17], and the fourth dataset, called Chiva bus, is a real sequence of spectral
images acquired in the Optics Lab of the High Dimensional Signal Processing (HDSP) research group of
the Universidad Industrial de Santander. All the datasets were acquired with a CCD camera and a VariSpec
Liquid Crystal Tunable Filter (LCTF) in wavelengths from 400 nm to 700 nm at 10 nm steps. A spatial
section of nxn pixels with ;¥ = 128, L = 8 spectral bands and p = 8 frames was used for simulations.
Specifically, the L selected wavelengths were 1, = 400, 2 =440, 1, =480, i = 520, 2, = 560, 2, = 600, 2, =
640 and 2, = 680 nm. Figure 4 presents an RGB profile of the four test spectral videos.

Ibr) Bowes 2

dp Chivas bus

FIGURE 4
RGB representation of the eight frames for the four spectral videos used in the simulations.
The resolution of each video is 128 x 128 spatial pixels, 8 spectral bands and 8 spectral frames

For the numerical simulation of the video C-CASSI system illustrated in Fig. 1, it was used a random
and an optimized colored coded aperture (CCA) with low and high band pass filters denoted by cz¢-
random CCA and 3c-CCA, respectively [1]. Further, in order to test the proposed multiresolution-based
reconstruction, the different measurements attained with the aforementioned coded apertures realizations
were reconstructed by using the GPSR algorithm adding the above-mentioned regularization term [15]. The
peak signal-to-noise ratio (PSNR) metric is used to assess the image quality of the reconstructions. The PSNR
is related with the mean square error (MSE) error as 101ogi0(max?/msey where ###is the maximum possible value
of the image and the measure is given in decibels (dB). All simulations were performed using the MATLAB
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software R2015a under the license Total Academic Headcount of the Universidad Industrial de Santander
in an Intel Core i7 3.6 GHz processor and 16 GB RAM memory.

4.1. Multiresolution reconstructions

The low-resolution version for the multiresolution reconstruction was estimated with a spatial resolution
of 32 x 32 pixels, i.e. a spatial down-sampling by a factor of 4. The high-resolution reconstruction is
performed following both the traditional and the proposed reconstruction by using the sparse solution
attained from Eq. (3) and Eq. (8), respectively. Figure 5 shows an RGB representation of the frame 2 from the
reconstructed videos (a) Boxes 1, (b) Boxes 2, (c) Beads and (d) Chiva bus with the proposed multiresolution
reconstruction. For each coded aperture used, the averaged PSNR is shown.

CR-CCA

CR-random CCA

PN S 0a || PSNR 29 41 od] PSNR 33.35 0B
FIGURE 5
RGB representation of the frame 2 from the reconstructed videos: (a) Boxes I, (b)
Boxes 2, (c) Beads and (d) Chiva bus, using the proposed reconstruction approach.
First row presents the reconstruction using ##-CCA, and second row using the ##-
random CCA. The averaged PSNR across the spectral bands is shown for each case

Figure 6 illustrates three original spectral bands for the 2nd frame of the Chiva bus video, and its respective
reconstructions using the multiresolution approach. Each wavelength and the quality of reconstruction in
terms of PSNR are shown.



Original

LH-CCA

PSHR 31,81d8

PSNR 32.89d8

PENR 33.83dB

FIGURE 6
Original (first column) and reconstructions of 3 spectral bands for the frame 2 of the Chiva

bus video by using ##-CCA (second column) and the ##-random CCA (third column) coded
apertures. The quality reconstruction in terms of PSNR is shown for each spectral band

LH-random CCo

PENR 31.31dB

PSNR 32.59d8

PESNR 32848

4.2. Multiresolution reconstruction vs. Traditional reconstruction
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Table 1 presents the summarization of the results in terms of averaged PSNR for the 2 coded aperture
patterns used and both reconstruction methods. In general, observe that the obtained PSNR values with the

multiresolution-based reconstruction are higher than those obtained with the traditional reconstruction.

TABLE 1
PSNR mean across the four dimensions for the traditional and multiresolution reconstruction
PSNR(dB) mean
Tmchtmnal. Boxes 1 |Boxes 2 | Beads o
reconstruction bus
LH-CCA 32.17 316 26.68 | 3007
LH-Random CCA | 31.46 316 26.41 30.2
Multiresolution
reconstruction
LH -CCA 34.52 3345 | 30,53 | 3117
LH -Random CCA 34,7 33,58 | 30,09 | 31,06

Notice that the multiresolution-based reconstruction proposed outperforms the

reconstruction in up to 4 dB.

traditional
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5. CONCLUSION

The multiresolution reconstruction for compressive spectral video sensing in the video C-CASSI
architecture has been proposed in this paper. For this, a low-resolution version is reconstructed using a few
iterations of a # - #--norm recovery algorithm. Later, from the lowresolution reconstruction, the optical flow
is estimated to obtain the scene motion. The multiresolution-based reconstruction attempts to reduce the
error originated by the temporal variable adding the scene motion as an additional regularization term in
the minimization problem. Simulations show a reconstruction quality improvement using the proposed
reconstruction up to 4 dB of PSNR with respect to the traditionally reconstruction.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the Vicerrectoria de Investigacion y Extension of Universidad Industrial
de Santander for supporting this research registered under the project titled: “Disefio y simulacion de un
sistema adaptativo de sensado compresivo de secuencias de video espectral” (VIE code 1891).

REFERENCES

[1] H. Arguello and G. R. Arce, “Colored coded aperture design by concentration of measure in compressive spectral
imaging,” IEEE Transactions on Image Processing, vol. 23, no. 4, pp. 1896-1908, 2014.

[2] H. Rueda, H. Arguello, and G. R. Arce, “Dmd-based implementation of patterned optical filter arrays for
compressive spectral imaging,” JOSA A4, vol. 32, no. 1, pp. 80-89, 2015.

[3] K. Leon, L. Galvis, and H. Arguello, “Reconstruction of multispectral light field (5d plenoptic function) based
on compressive sensing with colored coded apertures from 2d projections,” Revista Facultad de Ingenieria
Universidad de Antioquia, no. 80, Ene. 2016.

[4] A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture
snapshot spectral imager,” Optics Express, vol. 17, no. 8, pp. 6368-6388, 2009.

[5] C. Correa, D. F. Galvis, and H. Arguello, “Sparse representations of dynamic scenes for compressive spectral video
sensing,” Dyna, vol. 83, no. 195, p. 42, 2016.

(6] K. Leon, L. Galvis, and H. Arguello, “Spectral dynamic scenes reconstruction based in compressive sensing using

optical color filters,” in SPIE Commercial+ Scientific Sensing and Imaging, International Society for Optics and
Photonics, 2016, pp. 98600D-98600D.

[7] B. Pedraza, P. Rondon, H. Arguello, “Sistema de reconocimiento facial basado en imdgenes con color,” Rev. UIS
Ing.,vol. 10, no. 2,2012.

[8] A. B. Ramirez, H. Arguello, and G. Arce, “Video anomaly recovery from compressed spectral imaging,” in Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on. IEEE, 2011, pp. 1321-1324.

[9]]. Chen, Y. Wang, and H. Wu, “A coded aperture compressive imaging array and its visual detection and tracking
algorithms for surveillance systems,” Sensors, vol. 12, no. 11, pp. 1439714415, 2012.

[10] A. Banerjee, P. Burlina, and J. Broadwater, “Hyperspectral video for illumination-invariant tracking,” in
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2009. WHISPERS 09. First Workshop
on. IEEE, 2009, pp. 1- 4.

[11] T. Goldstein, L. Xu, K. F. Kelly, and R. Baraniuk, “The stone transform: Multi-resolution image enhancement
and compressive video,” IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5581-5593, 2015.

[12] A. C. Sankaranarayanan, L. Xu, C. Studer, Y. Li, K. F. Kelly, and R. G. Baraniuk, “Video compressive sensing
for spatial multiplexing cameras using motionflow models,” SLAM Journal on Imaging Sciences, vol. 8, no. 3, pp.
1489-1518, Jul,, 2015.



RevisTA UIS INGENIERTAS, 2018, 17(1), ISSN: 1657-4583 / 2145-8456

[13] D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2¢2: Programmable pixel compressive camera for high speed
imaging,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on.1IEEE, 2011, pp. 329—
336.

[14] C. Liu, “Beyond pixels: exploring new representations and applications for motion analysis,” Ph.D. dissertation,
Citeseer, 2009.

[15] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application
to compressed sensing and other inverse problems,” IEEE Journal on Selected Topics in Signal Processing, vol. 1,
no. 4, pp. 586-597, 2007.

[16] A. Mian and R. Hartley, “Hyperspectral video restoration using optical flow and sparse coding,” Optics express,
vol. 20, no. 10, pp. 10658-10673, 2012.

[17] F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar. 2008 CAVE Projects: Multispectral Image Database. [Online],
Available: http://www.cs.columbia.edu/CAVE/databases/multispectral/

CCBY-ND
ADDITIONAL INFORMATION

How to cite: K. Ledn, L. Galvis, H. Arguello, “Multiresolution-based reconstruction for compressive spectral
video sensing using a spectral multiplexing sensor,” Rev. UIS Ing., vol. 17, no. 1, pp. 209-216, 2018. Doi: h
ttps://doi.org/10.18273/revuin.v17n1-2018020


http://www.cs.columbia.edu/CAVE/databases/multispectral/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.18273/revuin.v17n1-2018020
https://doi.org/10.18273/revuin.v17n1-2018020

