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Abstract:

An explanation and an illustration of the meaning of a discrete phase-space is given. e class of a discrete Wigner transform
(DWT) for the specific case of a one-qubit state is introduced. We derive the one-qubit state formalism around its formulation
in terms of the DWT in detail. A novel structure of a one-qubit purity in terms of the DWT is introduced. We find a criterion
for stating when a one-qubit state is either mixed or pure.
Keywords: Discrete phase space, Hilbert space, unbiased bases, discrete Wigner transform, purity.

Resumen:

Se proporciona e ilustra una explicación del significado de espacio fase discreto dirigida a un lector no especialista. Se presenta
también la clase de la transformada discreta de Wigner (TDW) para el caso específico de un estado de un qubit. Asimismo,
derivamos detalladamente el formalismo involucrado en la formulación del estado de un qubit en términos de la TDW. En este
contexto, se introduce una estructura novedosa de la pureza de un qubit en términos de la TDW y se halla un criterio para decidir
cuando el estado de un qubit es puro o mixto.
Palabras clave: espacio fase discreto, espacio de Hilbert, bases imparciales, transformada discreta de Wigner, pureza.

Introduction

e real-valued Wigner function W(q, p) play the role of a quasi-probability distribution for continuous-
variable quantum systems in continuous coordinates (q) versus momentum (p) (phase) space (Wigner, 1932;
Hillary et al., 1984). In spite of the fact that W( q , p) allows us to calculate properties of a system through
phase-space integrals weighted by it, however this cannot be interpreted as the positive-valued probability of
simultaneously measuring observables  and  with eigenvalues p 0 and q 0. In fact, W(q, p) could be negative
in some phase-space regions (from there the term quasi-probability).

Buot (1974), Hannay and Berry (1980) were the first to propose the novel idea of the analogous Wigner
function for a discrete (finite-dimensional) Hilbert space. Later on, such findings were rediscovered by
Cohen and Scully (1986) and Feynman (1987) who defined a discrete Wigner function W for a single qubit.
e above works were extended by Wootters (1987) and Galetti and De Toledo Piza (1988) by introducing
a Wigner function for prime-dimensional Hilbert spaces.

ese extensions have been employed for teleportation protocols (Koniorczyk et al., 2001; Paz, 2002),
quantum algorithms (Bianucci et al., 2002; Miquel et al., 2002), and decoherence (Lopez, 2003).

ere is scarce (almost null) information in the literature about the concept of purity of a single qubit
from the point of view of the discrete Wigner transform. Within such a formalism it is difficult to find a
criteria for stating whether a qubit state is pure. In the present paper we discuss both the discrete Wigner
function for a single qubit and introduce the concept of purity for it.
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1. One-qubit in terms of a discrete Wigner functio

e conventional definition of continuous phase space is a plane where the horizontal axis denotes the
continuous position coordinate q while the vertical axis represents the continuous linear momenta variable
p. At this stage it arises the following question: what does a discrete phase space mean? By discrete phase
space (DPS) we mean that the coordinate variable q takes a finite set of real values Q = {q 1, q 2,….,qn } while
the momenta variable takes also a finite set of real values P = {p 1, p 2,….,pn } in such a way that the DPS is
the set {(qi  , pj )|qi  Q, pj   P}. We can state that the discrete analogue of phase space in a d-dimensional
Hilbert space is a d × d real array. us, for the case of one qubit one has d = 2. Consequently a 2-dimensional
Hilbert discrete phase space can be represented by the following four real numbers denoted by:

(1)

In the continuous phase space (continuous XY-plane) we can draw continuous lines while in the discrete
case this is not the case. We define a “line” in the d-dimensional discrete phase space as a set of d points in
discrete phase space. us, a “line” in the case of a 2-dimensional discrete phase space is a set of 2 points in
the discrete phase space of Eq. (1). e discrete phase space of Eq. (1) will contain the following six “lines”

(2)

e discrete phase space can then be partitioned into a collection of parallel lines. By a parallel line it is
understood disjoint sets of d = 2 phase space points. Such partitions are called striations (Wootters, 1987).
According to Eq. (2), in the present case there will be the following d + 1 = 2 + 1 = 3 striations

(3)

Wootters’ definition of discrete Wigner functions employs a special set of d + 1 = 2 + 1 = 3 bases for a d-
dimensional Hilbert space. Such bases can be defined in terms of eigen-states of generalized Pauli operators.
In this way, for the Pauli matrix  the respective eigen-states should be:

(4)

where we have employed the matrix notation  and . In the aboveequation by eigenstates of the Pauli
operator σx  we mean the following  where we have used that .
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For the Pauli matrix  the eigen-states are:

(5)

Clearly,  and  .
While for  the respective eigen-states will be:

(6)

Clearly 
A set  is a basis for a Hilbert space if any state  of the space can be written as  where

a and b are complex numbers such that |a|2 + |b|2 = 1. e basis B is orthonormal if  where . Let
us observe that .

e states given by (5), (6), (7) define the following d + 1 = 2 + 1 = 3 different bases

(7)

We must observe that there is a one-to-one correspondence between the striations of Eq. (3) and the bases
of Eq. (7), that is

(8)

On the other hand, the bases of Eq. (7) are unbiased, that is

(9)

2. Discrete Wigner functions

We have the necessary ingredients to define a class of discrete Wigner functions. On one hand, there is a d
+ 1 = 2 + 1 = 3 mutually unbiased bases {Bx , By , Bz } and on the other a set of d + 1 = 2 + 1 = 3 striations
{S 1, S 2, S 3} of the d × d = 2 × 2 = 4 phase space into d = 2 parallel lines. We need to choose a one-to-one
maps as follows:

I. Each basis set Bi  is associated with one striation S i
II. Each basis vector  is associated with a line αi ,  j  (the jth line of the ith striation).
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With the above association, the Wigner function W is uniquely defined if we demand that

(10)

where  are the basis states of Eqs. (5)-(7) and p is the one-qubit density state (Nielsen, & Chuang,
2000). Let us observe that Eq. (10) gives rise to the following Wigner functions associated to the four real
numbers of Eq. (1)

(11)

where the probabilities satisfy

(12)

Eq. (11) define uniquely the Wigner function W in terms of the probabilities

(13)

3. Wigner formulation of one-qubit purity

In the literature is scarce the information on the one-qubit purity. We then propose the following
formulation of the purity in terms of the Wigner function

(14)

where 0 ≤ ce  ≤ 1 are real numbers. Eq. (14) can be expanded in terms of the following six equations as
follows
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(15)

We say that one qubit is in a mixed state if

(16)

On the other hand, one qubit is in a pure state if

(17)

Conclusions

We have formulated the one-qubit state in terms of the Wigner transform operating on a discrete
phase-space. In classical approaches the phase-space is usually understood as the composition of both the
continuous spatial coordinates {X} and the continuous momentum space {P}, that is, a {X, P} continuous
generalized coordinates space. In the present approach we focus on two spatial coordinates {q 1, q 2} versus
two momenta coordinates {p 1, p 2} is such a way that the two above sets generates the following four elements
set {q 1 p 1, q 1 p 2, q2 p1, q2 p2} ≡ {x11, x12, x21, x22} defining the discrete phase-space of Eq. (1). An
example of a one possible phase-space is the following {-17.21, 8.3, -2.1, -0.17}.

e striations of Eq. (3) can be generalized for a prime d-dimensional phase-space. In particular, we
have considered a one-qubit state where d = 2. Let us note that for the one-qutrit state one must have
d = 3 Eq. (10) defines uniquely a one-qubit state in terms of the Wigner discrete transform W. Such a
definition is equivalent to the conventional definition of a one-qubit state if one observe from Eq. (10) that

 where Tr ρ = |a 0|2 + |a 1|2 = 1. On the other hand, the main achievement of the present
work is the formulation of the purity of a one-qubit state in terms of the Wigner discrete transform W
through Eq. (14). It is worth to mention that such a formulation is absent in the literature. With Eqs. (14)
and (17) we can state a criteria for concluding when a one-qubit is in a pure state.

Prospective analysis

e formulation of a one-qubit state in terms of W is elegant and allows to geometrize the probabilities p( i ,
j ) of Eq. (11). Indeed, the constrain of Eq. (12) on the probabilities pi ,  j implies that they can be represented
in a Bloch sphere.
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On the other hand, the understanding of the formulation of the purity of a one-qubit state in terms of the
discrete Wigner transform as stated from Eqs. (15)-(17) could help in the future to understand intriguing
properties of qubits such as the relation between W and the speed of quantum information processing.
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