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ABSTRACT:

Two modified Portmanteau statistics are studied under dependence assumptions common in financial applications which can
be used for testing that heteroskedastic time series are serially uncorrelated without assuming independence or Normality. Their
asymptotic distribution is found to be null and their small sample properties are examined via Monte Carlo. The power of the
tests is studied under the MA and GARCH-in-mean alternatives. The tests exhibit an appropriate empirical size and are seen to
be more powerful than a robust Box-Pierce to the selected alternatives. Real data on daily stock returns and exchange rates is used
to illustrate the tests.

KEYWORDS: Nonlinear Dependence, Sample Autocorrelation, Portmanteau Statistics, Robust Tests.

RESUMEN:

Se estudian dos estadisticos de Portmanteau modificados bajo supuestos de dependencia comunes en aplicaciones financieras que
pueden utilizarse para comprobar que series de tiempo heterocedésticas son serialmente incorreladas sin suponer independencia o
normalidad. Se encuentra que su distribucién asintdtica es nula y se examinan sus propiedades de muestras pequefias usando Monte
Carlo. El poder de las pruebas se estudia para alternativas MA y GARCH en la media. Las pruebas exhiben un tamafio muestral
apropiado y se comprueba que son mds poderosas que la prueba robusta de Box-Pierce para alternativas selectas. Ilustramos las
pruebas usando datos diarios de retornos financieros y de tipos de cambio.

PALABRAS CLAVE: dependencia no lineal, autocorrelacién muestral, estadisticos de Portmanteau, pruebas robustas.

INTRODUCTION

Testing for zero autocorrelation is a frequently encountered problem in applied financial econometrics.
Customarily, testing the random walk hypothesis for log-returns of financial assets is done with the
Portmanteau statistic of Box & Pierce (1970) or its size-corrected version of Ljung & Box (1978), both of
which are based in the vector or empirical autocorrelations

px=(px (1), px (0))),

and whose limiting null distribution is found using Bartlett’s formula of Bartlett (1946). This result heavily
depends on the hypothesis that the underlying series is not only uncorrelated; but independent. Thus, in a
sense, Portmanteau tests based on Bartlett’s formula are not only tests for the absence of autocorrelation;
but also, and mainly, tests of independence. One way in which this may not be adequate in practice is if the
observed series appears to be uncorrelated; but certain functions of it do not. Certainly, if the series {X, } , is of
independent random variables, then so is the transformed series {/(X; )} ; for any function f. A usual finding
in financial econometrics is the presence of a significant correlation in the squared and absolute log-returns
which signals a nonlinear dependence ignored by the usual Portmanteau tests. Since these tests are not robust
to nonlinear dependencies, serious consequences arise in terms of both, size distortion and inappropriate
power when using them in financial applications.
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Asargued amongother authors (Campbell ez 4/., 1996) financial econometrics is more concerned with the
absence of autocorrelation than it is with independence in dealing with log-returns. The reason for this is that
the models that best suit the examination of the Efficient Market Hypothesis are precisely those in which
the log-prices are either a martingale or a random walk with uncorrelated increments. Since martingales in
discrete time can be represented as a random walk with martingale difference increments, and given that
the property of being a martingale difference entails uncorrelatedness; the random walk with uncorrelated
increments is the most general one for dealing with log-returns, according to financial theory.

For this reason, the study of Portmanteau statistics for uncorrelated, dependent data has received some
attention in the literature. One of the main strategies in this direction is to correct Bartlett’s formula in
different ways. For instance, Diebold (1986) focuses on the ARCH(q) case showing that the correct limiting
variance for 5y (/) depends on the autocovariance function of the squared process, (x2}. Franq ez a/. (2005)
and Franq & Zakoian (2009) also obtain modified versions of Bartlett’s formula for weak white noise. A
fundamental reference in this direction is Romano & Thombs (1996), where the asymptotic normality of the
sample autocorrelation function of weakly dependent processes is proven. In all cases, moment conditions
set the stage for generalized laws of large numbers and central limit theorems as those of Ibragimov & Linnik
(1971).

Applying a particular version of these results, Lobato ez /. (2001) propose a simple modification of the
Portmanteau statistic of Box and Pierce, O, which is suitable for financial analysis. In fact, Escnaciano
and Lobato (2009, p. 978) recommend this modified statistic (or its Ljung-Box analog) to be “routinely
computed for financial data instead of the standard Q, [of Box and Pierce]”. A generalization of this test can
be found in Lobato ez 4/. (2002), and an alternative version in Lobato (2001).

On the other hand, research on improving the power of Portmanteau tests against different alternatives
has been fueled by their use in univariate model selection. For example, the test by Monti (1994) uses the
empirical partial autocorrelation function, # (-), instead of 5 () to test #. More specifically, the test statistic,Qa
, is exactly that of Ljung & Box (1978); but with 5 (/) substituted by # (), and is more powerful to AR
alternatives. The asymptotic null distribution of Q) is established by using the fact that 7 satisfies the same
limit theorem as px: Bartlett’s formula. Other tests have been devised based on completely different ideas.
For example, Lin & McLeod (2006) and Pefia & Rodriguez (2002, 2006) develop tests based on a general
measure of multivariate dependence. Their main idea is that the estimated residuals from an ARMA fit can
be viewed as a sample from a multivariate distribution, so that testing for zero autocorrelation amounts to
testing for proportionality of their correlation matrix to the identity, in other words, testing whether or
not the correlation matrix is diagonal. In a similar vein, Fisher & Gallagher (2012) are inspired in high-
dimensional data analysis to derive new weighting schemes for the Portmanteau statistic. All the resulting
tests are weighted sums of the empirical autocorrelation and partial autocorrelation functions as explained
in Gallagher & Fisher (2015). The asymptotic null distribution under is, in all cases, a linear combination of
k independent X *(1) variates. This follows from the fact that under the assumption of independence, the
classical results for the empirical autocorrelation functions apply so that #5 ()2 converges in distribution to
a X %(1) variate.

In this paper, we combine these two approaches, namely, modifying the Portmanteau statistic to achieve
a better power and, simultaneously, making the tests robust to heteroskedasticity and weak dependence as is
required for financial applications. We study a modified version of the test of Pefia & Rodriguez (2006) and
the test of Fisher & Gallagher (2012) under the assumptions of weak dependence of Lobato e /. (2001) or
(Franq & Zakoian, 2009). These assumptions are satisfied by the usual models in the GARCH and Stochastic
Volatility families and are suitable for financial applications. The limiting null distribution will be obtained as
alinear combination of independent y *(1) with coefficients which depend on the fourth order properties of
the underlying process. A feasible version of the test, obtained by estimating such moments in a J7z-consistent
fashion, is proposed, and its small sample properties are examined.
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We focus on the GARCH process of Bollerslev (1986) and the Long Memory Stochastic Volatility of
Hurvich & Soulier (2009) to study the small sample properties of our tests. The reader is referred to Breidt
et al. (1998), Ding et al. (1993), Franq & Zakoian (2010), Harvey (1998), Lobato ez 4/. (2001) for further
justification of our choice.

A Monte Carlo experiment is presented which includes seven models representing different degrees and
forms of persistence in volatility. For each model, we use sample sizes ranging from small (» = 100) to
relatively large (72 = 1 000) and different lags (j = 1, 5, 10). We estimate the empirical size of the test and the
power under two alternatives: the weak MA and the GARCH in mean. We compare the new tests with the
one by Lobato ¢z 4/. (2001) and find that these new statistics offer more powerful tests without a significant
size bias.

1. THE TESTS AND THEIR ASYMPTOTIC NULL DISTRIBUTION

Let {¢; } be a stochastic process with autocorrelation function p(#) and autocovariance function y(#). The
dependence structure of {¢, } is limited in two ways: First we impose a mild mixing condition with fast
enough a decay and, second, we impose a symmetry condition on the fourth order moments. Outliers are also
restricted by fourth order conditions. Specifically, the following set of assumptions is maintained throughout
the paper.

Assumptions A1

The following assumptions hold for the underlying stochastic process {¢, }:

1. {¢, } is stationary,

2.m<,and E[| e 1 ¢ |2+3] < oo for some 0 > 0,

3.{¢, } is #—mixing with mixing coeflicients satisfying s, u:*s- . and

4.E(e -p)(er +i-w)(er +a-p)(€ r4dsj-p) =0fori,j=1,..k; foralld wheni#jand ford =0ifi = .

Let ¢ be the Toeplitz matrix of sample autocorrelations of order £ 2 1, that i,

R R N )
Re= | 2D 1 pry e Pl
b pU-1) phk-2) - 1

Also, let |2 denote its determinant. The statistics of Fisher & Gallagher (2012) and Pena & Rodriguez
(2006), hereafter abbreviated as PR and FG, for the null hypothesis

HE p)= - =piky=0,

as we will use them throughout the paper are defined as

, ~ kg _ 52 (i
PR=- 2log(|Rk\) and FG=n(n+2) Z k=j+17 (j.).
k j=1 k n—j

The PR statistic is originally normalized by £ + 1 instead of &, the number of autocorrelations in the test.
Nonetheless, Pefia & Rodriguez (2006) use this normalization only as a matter of preferred interpretation.
We normalize by £ in order to make the weight schemes of both statistics the same. Assuming {¢, } is strong
white noise, these statistics share a common limiting distribution which can be written as that of:

2=yt A e, W
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where the y ?(1) variates are independent. To understand this asymptotic equivalence, let
By = 6 (0.7 @) W), 7= (1), 22),....x4)" and M the diagonal matrix

I 0 - 0
k-1
= 0

o 0o o L

(2)

As one can see from the Appendix to Pefia & Rodriguez (2002), two applications of the delta method
imply that the PR statistic is asymptotically equivalent to uz {um#e; while it’s clear that the FG statistic is
asymptotically equivalent to »[m. It must be emphasized that this asymptotic equivalence does not rest upon
the dependence structure of {, } but only in the form of the test statistics. Furthermore, # =i+ Op(n1) as
shown, for instance, in Monti (1994), which gives the asymptotic equivalence of /7 pr and 7 #. This is further
explained in the following lemma whose proof we give for completeness of exposition.

Lemma 1: Let {¢, } satisfy assumptions Al. Then, if the PR statistic is asymptotically distributed as X; so
is the FG statistic.

Proof: As shown in Pefia & Rodriguez (2002), the log-determinant of &, can be written as

k
|Ry|1/k = ]‘[ (1 — #(i)2)k—i+ Yk,
i=1

i=

which implies that -moei-ist, *=1+ 0 - 700, Apply the o-method as it is explained, for instance, in

Theorem 11.2.14 of Lehmann & Romano (2005) to the function
: k—i+1
SO == 2 S log(1 - ),
i=1

to obtain that if 12} converges in distribution to X then -mogi: does so to #£(0).X, where #f is the gradient
of fand can be easily evaluated to vo-(5+.1. Now, FG is asymptotically equivalent miva-nxf_, £=tp02 - wvsons,
Since /np, shares its asymptotic distribution with /7, it follows that FG converges in distribution to #(0)X
and the proof is complete.

Assumptions A1 are a particular case of those used by Romano & Thombs (1996) to derive a Central Limit

Theorem for the sample autocorrelations and is a simple generalization of the assumptions of Theorem 18.5.3
in Ibragimov & Linnik (1971). Under Al and #¢, Theorem 3.2 in Romano & Thombs (1996) states that

12 jj = N(O, W), 3)

where W(i,j) = 9(0)* (C:, j - p(I)Co,i - p(7 )Co,i + p(I )p(j )Co,0)- The last condition in assumptions A1
helps us in simplifying W to W(i, j) = (0)* C; , ;. Furthermore, C;; =0 fori#jand C;; = E [(, - #)*
(¢ +i-@)*], so that W is diagonal. This is the same strategy followed in Lobato ( 2001) and as mentioned in
the Introduction, includes the usual GARCH and LMSV models. As a consequence, we have the following
result.

Theorem 1: Let {¢, } be a stationary stochastic process for which assumptions A1 hold. Then, under #¢,

the limit in distribution of the statistics PR and FG can be written as =3, sw2 . The y %(1) variables are

independent, A; = (k+i-1)/k, and
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o E (e =02 (814 — )2
! E[(er— w)2)2

Proof: First, we know from Lemma 1, that both statistics have the same limiting distribution, so we
focus on the PR case. From the proof to Lemma 1, we also know that rr-u[ ms. Since {¢, } satisfies
assumptions Al, we know from (Romano, & Thombs, 1996) that # is asymptotically Normal with
asymptotic covariance matrix /7. The results in Box (1954) imply that re=3/, w20, where **#” signifies
convergence in distribution, the y %(1) variates are independent, and »; are the eigenvalues of matrix /M.
Finally, since both, /7 and M, are diagonal, with respective diagonal elements 7; and 2;, the result follows.

The asymptotic distribution depends on the unknown quantities {z; } which need to be estimated.
Consistent estimators of 7; are readily available making this a simple procedure to implement. To make the
robust PR and FG statistics feasible, we estimate 7; consistently as

Lyr -2 - 92

A @

1’-‘[.,

We follow Fisher & Gallagher (2012) and Pefia & Rodriguez (2002, 2006) in approximating the limiting
distribution with the methods of Box (1954) and Satterthwaite (1941, 1946). Thus, we use the distribution
of an 4y *(b) variable as an approximation to the distribution of 5%_,is%2 (1. The constants 2 and b are chosen
to equate the first two moments of these distributions and are, in our particular case, given by

1
XEyut i 43t3

i AT [Z§=1;“'?i]2
2
1

(5)

Remark: Under assumptions Al, Bartlett’s formula may hold either exactly or approximatively. If the
squared process 2} is uncorrlated, we have 7; = 1 in Theorem 1, which implies that Bartlett’s formula holds
exactly in this case. On the other hand, if the lag, 7, is large then Wi, I') = 1. To see why, define z, =¢, -
4 so that

_Elziz7,] _ y20) + P

Ti= e yZZ(l) + 1.

E[22]2 EZ22 (02

Now, under assumptions A1, {¢, } is short memory, and thus so are {2, } and (2. Therefore 3, *(I) >0 and
Bartlett’s formula holds asymptotically.

Thus, the need for modifications to the usual Portmanteau tests for zero autocorrelation is driven by the
autocorrelation in the squared process, which as explained in Cont (2001), Granger & Ding (1995) and
Granger et al. (2000), is common in financial data.

2. DESIGN OF THE MONTE CARLO EXPERIMENTS

We focus on two families of stochastic processes that are common in financial applications, namely the
GARCH and LMSV models with Gaussian innovations, which satisfy assumptions A1. Thus, we simulate
from the mul- tiplicative models ¢, = o, Z, , where the specification of 7, is either GARCH or LMSV. We
specify our GARCH models to have the orders (1, 1) and thus o2 =+ a2, 402, . The parameters (, 2, 8) are
required to satisfy w > 0, to avoid the trivial stationary solution, 1 - « - 8 > 0, which implies second order
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stationarity, and 1 - 32 > - 8% - 248 > 0, which is necessary for the fourth order moment to exist. For the
LMSV, we focus on the fractional AR(1) specification

log(c2) = (1= ¢L)~1 (1 = L)y-dn;: = hy,

where | ¢ | < 1, so that the process is stationary, 0 < 4 < 0.5, so that there is persistence in the volatility
process,{7; } and is strong Gaussian white noise with variance o2, The process {¢, } can then be written as

&= exp(h)Zy

and since 4, is a Gaussian process, ¢, follows a lognormal distribution which implies the existence of its
moments. In particular

Var(s) = exp(c 2 /2),
L[e4] = 3exp(202),

with o2 1 - 2451 - ap o2, the variance of b, . See, for example Harvey (1998).

We conduct our experiments for the hypotheses v for £ =1, 5, 10 and for the sample sizes of z = 100, 200,
500, and 1 000. Even if these sample sizes are relatively small, when the availability of long streams of daily log-
returns is considered, we choose them to illustrate the speed of convergence of the test to its nominal size. A
total of M =10 000 independent paths are generated from each of the models in table 1. The particular para-
meters chosen are intended to represent the usual range found in financial applications and are similar to
those used by Lobato ez 4/. (2001) to study the Q* statistic. The robust test based on the PR and FG statistics
are then performed as outlined in the previous Section, and the size is estimated as the empirical rejection
probability, that is, the ratio of the number of rejections to the number of simulated paths.

TABLE 1
Simulated processes under the Null

Model Parameters

GARCH a s [0}
1 0.09 0.90 0.01
2 0.01 0.97 0.01
3 0.10 0.90 0.01

LMSV ¢ a2 d
1 0.97 0.003 0.25
2 0.97 0.005 0.45
3 0.90 0.003 0.25
4 0.90 0.003 0.45

Source: Own elaboration

To study the power of the tests, we use two alternative hypotheses. In the first, we use the GARCH and
LMSV models in table 1 as innovations in an MA(1) process. Thus, under this alternative we have {¢, } a
GARCH or LMSV process and simulate from #, =¢, + 3¢, .1, allowing & to vary in (0.01, 0.35). Under the
second alterna- tive, we have a specification in the mean given by u-u+ co? + 2, where {¢;, o } are simulated with
each one of the model specifications of table 1. Parameter cis allowed to vary in [-0.9, 0.9], whereas parameter
¢ is fixed to 0.005 which does not pose any problem with the tests since g is just a location parameter. As
in the study of the empirical size, we generate M = 10 000 independent paths of each process and apply
the robust testing pro- cedures each time. We report the empirical rejection probability as an estimate of
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the power of the tests. All the simulations for these experiments were carried out in the Julia language of
Bezanson et al. (2017).

3. MoNTE CARLO RESULTS

We begin by observing that the GARCH 3 specification is an IGARCH(1, 1) model which therefore does
not meet the hypotheses Al, in particular its strongly stationary solution is not second-order stationary.
Nonetheless, as can be seen in the tables below, the size of the tests is quite well achieved, which suggests that
the result in Theorem 1 can be proven under even milder assumptions. Tracing this fact to the minimal set
of assumptions required for the robust statistics to perform as expected is out of the scope of this paper; but
may be an interesting line of future research.

Figures 1,2, and 3 show the deviations of the empirical size from the nominal one for the robust tests under
the chosen GARCH and LMSV specifications. We include the Q* test of Lobato ez al. (2001), labeled LN,
which is a robust Box test with good empirical properties, as a reference. The first thing to notice in these
Figures, is that there is no overall winner for every given sample size, model, and nominal size. Nonetheless,
when it comes to large sample sizes, illustrated here with 7 = 1 000, the PR and FG tests exhibit a smaller
deviation from its intended size most of the times. The scales of the vertical axis in the figures show that the
deviation is always small, though it increases slightly with the lag. The FG test appears to be more sensitive
to persistence for smaller sample sizes than the PR test; but as the sample size grows, the situation is reversed
in many cases. Overall, we can say that for sample sizes larger than, say, z = 500 the empirical size is certainly
reasonable for applications. For the smaller sample sizes, some distortion will occur, but not a drastic one. In
any case, for smaller sample sizes one could bootstrap the test to make its size more accurate.

GARCH 1 GARCH 2 GARCH 3 LMSV 1 LMSV 2 LMSV 3 LMSV 4
00125 % " e
001001 * . . . *
X .
000754 Al a . e + : %
A a - +
0.0050 . . £ 1. N ., + 4 ‘ +]]a #
0.0025 C i Loa t * o, A + a
0.0000+-=F=----J}p---- Atllgoccaaaa e o | (I e PN IS h 3
z
0.008
¢ + Test
= 0%, : R + N * Fa
I 0.004 + . + o+ + " $ . 95 + LNS
<8 a + + o+ C Lt i a + +
0.002 A + et Ll . " 4oa g i . 4 PR
4 e * a + ||+ * . . 4 S o L3N ] A
0000+ =-=-===moodp--n [P N B A [ e | . U URp R NP ARy U | Rpupap g 4o — e
+ ¥
0.004 + +
. H
0.003 A . + +
. * + 8
a A A a
0.002 , . . . . Al . . T |eo
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R A I . + P oo LT % . 4
0000 t8=tccccdlbloccpecadbecauaad y -3 [ | 1Y YUy TyRgE | ppmp, ¢ ore | X Ry
100 200 5001000 100 200 5001000 100 200 5001000 1002005001000 100200 5001000 100 200 5001000 100 200 5001000
Sample Size

Empirical size of the PR and FG tests at lag 1. Included, as a reference,
is the LNS test. The horizontal axis shows sample size, while the vertical

axis shows the empirical size. The dotted line indicates the nominal size.
Source: Own elaboration
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is the LNS test. The horizontal axis shows sample size, while the vertical

axis shows the empirical size. The dotted line indicates the nominal size.
Source: Own elaboration

GARCH 1 GARCH 2 GARCH 3 LMSV 1 LMSV 2 LMSV 3 LMSV 4
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Empirical size of the PR and FG tests at lag 10. Included, as a reference,
is the LNS test. The horizontal axis shows sample size, while the vertical
axis shows the empirical size. The dotted line indicates the nominal size.

Source: Own elaboration

The power against the MA(1) alternative is presented graphically for the GARCH models in figure 4.
We choose the nominal level of the test as 2 ¢ = 0.95 in all cases. As it can be appreciated, the persistence
plays a role in the power function, making it grow slower, if slightly. The difference in persistence between
the specifications is consistently 0.01 being 1 for GARCH3, 0.99 for GARCH 1 and 0.98 for GARCH2.
The decrease in the steepness of the power function with increasing persistence does not prevent the test
from being highly sensitive even in the IGARCH model. As it can be seen, the test for # is, for all practical
purposes, equivalent under all the tests. Nonetheless, for #¢ and #” the PR and FG tests exhibit a considerably
higher power.

Figure 5 shows the same kind of results for the MA(1) model with LMSV innovations that the GARCH
counterparts of figure 4. Again, the greater the persistence is in the volatility process, the lower the power
of the test for any given value of 3. Here, the effect of persistence is combined in the parameters 4, for the
fractional noise, and ¢ for the AR(1) part of the process. The upper part of the figure concerns models LMSV
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1 and 2, in which ¢ = 0.97, whereas the lower part depicts the power function for models with ¢ = 0.90. On
the other hand, the lefthand side of the figure includes models with 4 = 0.25, while d = 0.45 can be seen in
the righthand side. The loss of power is evident in both directions, when ¢ grows from 0.90 to 0.97 and 4 is
fixed, or when ¢ is fixed and 4 grows from 0.25 to 0.45. Indeed, the upper right figure, which corresponds
to ¢ = 0.97 and d = 0.45 shows a much slower increase in power than the one in the lower left where ¢ =
0.90 and & = 0.25. Notice that in this case the PR and FG tests are also more powerful than the LNS test,
the difference in power being more pronounced for more persistent processes.
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Power function for the MA(1) alternative under GARCH innovations.
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Figures 6 and 7 illustrate the situation for the second alternative of processes with a volatility effect in the
mean. Again, we see the strong impact that persistence has on the power of the tests. This is, of course, not a
surprise since the correlation in the series {¢, } is introduced by that of the volatility process (+2. In this case
all the tests seem to have a virtually equivalent power. The FG test is slightly more powerful than the other
procedures in most of the instances when the powers differ. Figure (b) suggests that with a persistence as
high as 0.98, the test may have a very low power.
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Figures 6 and 7 illustrate the situation for the second alternative of processes with a volatility effect in the
mean. Again, we see the strong impact that persistence has on the power of the tests. This is, of course, not
a surprise since the correlation in the series {¢, } is introduced by that of the volatility process (+21. In this
case all the tests seem to have a virtually equivalent power. The FG test is slightly more powerful than the
other procedures in most of the instances when the powers differ. Figure (b) suggests that with a persistence
as high as 0.98, the test may have a very low power. Remember that under the GARCH 1 and GARCH 3
specifications, the persistence is 0.99 and 1.0 respectively. However, this low power is rather a function of
parameter « in the specification of the model, namely,

&=017Zs,
02 =001+as2 + (098 -a)2,
o € [0.01,0.20].

Finally, figure (6-d) depicts the power function of the family of GARCH-M models with = 0.005 and ¢
= 0.9 and a rapid and persistent increase of power can be seen for all testing procedures.

Observe that the persistence in volatility is fixed to 0.98 just as in the GARCH 2 specification. The reason
for this behavior is that the correlation in the series comes from the correlation in the volatilities, which is
an increasing function of z. When 2 = 0.01, the correlation between #, and #, . is as low as 0.00083 and that
between #, and %, .19 as low as 0.00069.
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4. EMPIRICAL APPLICATION

In this section, we consider the log-returns of different stock and indexes, and the growth rate of some
exchange rates. We test for zero autocorrelation at lags 1, 5, and 10 with the usual Box-Pierce and Ljung-Box
tests, and with the robust tests studied in this paper: LNS, PR, FG. The empirical quantiles are determined,
as in our Monte Carlo experiment, with the 2y *() approximation using (8) with # as in (7). We report
the test statistic and its significance, coded with stars, as usual. The data for stocks and indexes has been
downloaded from Yahoo! Finance and includes the daily log-returns of the S&P500, NASDAQ composite,
CAC-40, DAX, NIKKEI-225, Exxon Mobile Corporation (XOM), Bank of America Corporation (BAC)
and Apple Inc (AAPL). The data spans the period from 2007-01-03 to 2018-06-15. The daily exchange rates
were downloaded from the Federal Reserve Bank of Saint Louis, through FRED, and include the following
exchanges: USD / EUR, CNY / USD, JPY / USD, USD / GBP, MXN / USD. The data covers the period
starting 2013 -01- 03 and ending 2018 -06 -15.

Table 2 shows the results of our application. The first thing to notice is that both traditional tests
employed,Box-Pierce and Ljung-Box, tend to reject at high significance levels where the robust tests do not.
For example,with the S&P500 index #) is rejected at 99% with the traditional tests; but all robust tests fail
to reject. In other instances, the robust tests lower the level of rejection from 99% to 90% as is the case of #
also for S&P500. In practical terms, since empirical work is usually carried out at least at a 95% confidence
level, this is equivalent to going from a sound rejection to a non-rejection. This discrepancy is due to the size
distortion experimented by the traditional tests under nonlinear dependence.
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TABLE 3
Tests for zero autocorrelation for stocks and indexes. Included are the
tests of Box-Pierce (BP), Ljung-Box (LB), Lobato-Nankervis-Savin (LNS),
Robsustified Pefia-Rodriguez(RPR) and Robistified Fisher Gallagher (RFG).

Lag Test S&P500 NASDAQ CAC40 DAX NIKKEI XOM BAC APL

1 BP 11.948%***  29.947***  (0.389 0.082 1.516 189.116%**  2.889* 4.047**
LB 11.950%***  29.954***  (.389 0.083 1.516 18.121%**  2.890* 4.048**
LNS  2.288 6.709***  (.173 0.038 0.381 2.367 0.267 1.590
RPR 11.948 29.947***  (.389 0.082 1.516 18.116 2.889 4.047
RFG 11.950 29.954***  (0.389 0.082 1.516 18.121 2.890 4.048

5 BP  47.541%%*% 44267*** 44 400*** 21.006%** 14.140%*  93.174*** 5]1.123%** 26.224%**
LB 47.552%%% 44279%** 44 436*** 2]1.023%** 14.145%* 93 207*** 5]1.155%** 26.237%***
LNS 7414 9.969* 16.981%**  7.987 3.722 18.070*%** 6.356 11.955**
RPR 39.274%* 40.548%*  20.010%* 9.206 10.732 75.792%*%* 20.177 16.637*
RFG 38.125% 38.986%*  19.555%* 9.188 19.655 69.630%** 20.381 16.637*

10 BP  57.640%** 50.995%** 50.552%** 24 743%** 27 623*** 103.150*** 77.689%** 34 786%**
LB 57.657*%* 51.015%** 50.597*** 24765%** 27.637*** 103.190%*** 77753%** 33 810%**

LNS 10.126 11.701 19.722%%* 9.564 8.506 21.601*%*  10.123 16.697*
RPR 47.701* 44.785% 34.705%**% 16.348 17.857 96.563*** 38113 23.563*
RFG 45934 43.123% 33.729%*%* 16.300 17.688 85.009*** 39210 23.612%*

Source: Own elaboration

Comparing the robust tests among them is more interesting, since it is these tests that are corrected for
dependence. In some cases, the tests offer no practical difference. For example, working at 5% with the
S&P500 series, all three tests agree that there is no correlation; or that there is correlation in NASDAQ or
order 1. Lag 5 of NASDAQ is an example of the robust PR and FG tests offering a different appreciation
than the robust Box-Pierce (LNS). In this case LNS does not reject #§ whereas both, PR and FG, do at 5%.
A similar situation is seen in lag 10 of CAC-40 and XOM where rejection goes from 95% in LNS to 99%
in both, PR and FG. Conversely, lag 5 of AAPL shows an instance in which the new tests do not reject #§
at 5% but LNS does. Similarly, for lag 5 of CAC-40, LN rejects at 99% when the robust PR and FG do
only at 95%.

We can see how the traditional tests of Box & Pierce (1970) and Ljung & Box (1978) lead to spurious
autocorrelation. Apparently, the robust Box-Pierce test of Lobato ez /. (2001) may be subject to the opposite
error when the actual correlation is small enough; but the PR and FG test seem quite sensitive to deviations
from the null. Thus, when using the traditional tests, we will be led, usually, to overparameterization of the
conditional mean of the series under study, that is, to overparameterized ARMA models with conditionally
heteroskedastic innovations. Of course, this is not desirable since the overparameterization would cause
the point forecasts not to be optimal (in mean squared error) and the confidence intervals for them to be
misleading. Another reason why spurious autocorrelation is to be avoided concerns a common use of the
econometric model: The estimation of risk measures in the context of dynamic risk management. In this
case, as explained in Chapter 4 of Embrechts ez 4/. (2005), conditional risk measures are estimated by means
of the representation

=+ 01 Zy,

where 7, is the (negative) log-return and (,, 5, ) stand for the conditional mean and volatility of the series.
Unnecessarily includingan ARMA component would lead to setting a working model for #; when in fact #,
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= 0, which would impact the estimation of the associated risk measures. For instance, the Value at Risk and
Expected Shortfall for period # + 1 based on the information available up to time # would be computed as

VaRj = i1+ 611 VaRy (Z),

ESL = fis 1+ 6101 ESa (D),

where 2:.1 and 4. are the one-step-ahead forecasts for the mean and the volatility, and Z is a random
variable with the same distribution as Z, . Incorrectly deciding to model {«, } as an ARMA process would
lead to biased estimators of both measures which implies that the VaR will not have the required level and
the expected shortfall will not accurately depict the conditional distribution of losses exceeding the rar/.

Table 3 shows the results of our application to exchange rates. We see that persistence in volatility and
nonlinear dependence does not seem to affect the traditional tests in some cases. For example, the null
hypothesis of zero autocorrelation is not rejected for the USD / EUR at all lags £ = 1, 5, 10 and all the tests.
This also happens with the exchange JPY/USD for lags 1 and 5. Another scenario is illustrated by CNY/
USD and USD/GBP, where volatility and nonlinear dependence alter the size of the traditional tests, both
of which favor rejection at 5%; but not for the robust versions which do not reject the null. Lastly, for MXN/
USD we see that all tests favor rejection at some level for lags 5 and 10. In the first case, the robust Box-Pierce
test (LNNS) rejects at 5% whereas the newly proposed tests (PR and FG) do only at 10%. In practical terms,
where decisions are usually taken at least at the 5% level, LNS favors rejection while PR and FG do not, so
that the later tests support the hypothesis that the exchange rate follows a random walk (when applied with
five lags). Lag 10 for this same exchange shows that the LN and FG tests favor rejection at 5% whereas PR
does only at 10%. In practical terms, LS and FG would imply, overall, that the exchange MXN/USD has
a statistically significant (short) memory, whereas PR would advise otherwise.

Finally, two things should be noticed about the proposed tests: First, when applied to strong white noise

they are equivalent to their non-robust counterparts. Indeed, since for strong white noise we have y, * (I') =
0 the limiting distribution of 4 is given by Bartlett’s formula so that the results in Fisher & Gallagher (2012)
and Pefia & Rodriguez (2006) apply. As noted earlier, this is not limited to strong white noise; but it is valid
whenever the squared process is uncorrelated. Second, the robust PR and FG tests exhibit a similar power
which is greater, in many cases, than that of the ZNS test. Since the FG statistic is computationally simpler,
we rephrase the advice of Escanciano & Lobato (2009) and recommend to routinely compute the modified
FG statistic when testing for zero autocorrelation in financial applications.

CONCLUSIONS

Testing for autocorrelation is deeply connected with some of the most common hypothesis in financial
theory, such as the Efficient Market Hypothesis, so that empirical financial econometrics require reliable
tests for the hypothesis of zero autocorrelation. Even though the existing literature provides with different
test statistics for autocorrelation, most of them are developed under the hypothesis of independence or even
Normality of the sequence under study. These hypotheses are inconsistent with financial data, making it
necessary to develop tests for autocorrelation specifically suited for financial applications. In this paper we
proposed and studied two such tests and the results make their use promising.

To begin with, both tests are based on recently proposed Portmanteau statistics which are more
powerful than the traditional tests of Box & Pierce (1970); Ljung & Box (1978) which suggests that their
robustification will also be more powerful. This intuition is corroborated by our Monte Carlo study at least
for two common alternatives, namely, the moving average and the GARCH in mean. It should also be noted
that the three tests that are compared are almost identical for lag one; but as the lag being tested increases,
the new tests are more sensitive than the modified Box test. Finally, since the limiting distribution can



NELSON OMAR MURIEL TORRERO. TESTING FINANCIAL TIME SERIES FOR AUTOCORRELATION: ROBUST TESTS

be approximated with a simple transformation of a y 2 distribution, its applicability does not impose high
computational costs.

The proposed generalizations differ from the one given in Lobato ez 4/. (2001) in that it is not the
statistic that we compute differently, but rather the limiting distribution. It should be realized that there is
a double approximation in this process: First, the linear combination of y * random variable is an asymptotic
distribution and, second, the terms appearing in this linear combination are, themselves, approximations
—being, as they are, consistent estimators of the actual terms involved. This imprecision is counteracted,
as usual, by larger sample sizes. In other areas, such as macroeconomics, requiring large samples can be
problematic; but not in finance, so that the tests are applicable without small-sample corrections. Future
research includes the generalization of our results to general weighted Portmanteau statistics, where the
weight functions may be fixed or random.
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