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ABSTRACT:

We find and discuss the non-autonomous soliton solutions in the case of variable nonlinearity and dispersion implied by the
Ginzburg-Landau equation with variable coefficients. In this work we obtain non-autonomous Ginzburg-Landau solitons from
the standard autonomous Ginzburg-Landau soliton solutions using a simplified version of the He-Li mapping. We find soliton
pulses of both arbitrary and fixed amplitudes in terms of a function constrained by a single condition involving the nonlinearity
and the dispersion of the medium. This is important because it can be used as a tool for the parametric manipulation of these non-
autonomous solitons.

KEYWORDS: nonlinear, Ginzburg-Landau Equation, Non-Autonomous Solitons.

RESUMEN:

Se hallan y discuten soluciones de tipo solitones no auténomos en el caso de no linealidad y dispersion implicitas en la ecuacién de
Ginzburg-Landau con coeficientes variables. El principal objetivo del articulo es obtener de manera sistemdtica las soluciones de
dicha ecuacién mediante una versién simplificada del mapeo propuesto por He-Li a partir de las soluciones soliténicas auténomas
de la ecuacién de Ginzburg-Landau estindar de coeficientes constantes. Bajo este mapeo, se encuentran pulsos solitonicos de
amplitudes tanto fijas como arbitrarias que dependen de una funcién que es restringida por una tinica condicién que involucrala no
linealidad y la dispersion del medio. Esté resultado es importante porque puede usarse como una herramienta para la manipulaciéon
paramétrica de solitones no auténomos.

PALABRAS CLAVE: no lineal, ecuacién de Ginzburg-Landau, solitones no auténomos.

INTRODUCTION

As it is well known, dispersion and dissipation are extremely important for soliton pulse propagation in
nonlinear media. These two processes are the main cause for the distortion and losses of the signal (Agrawal,
2001; Hasegawa, & Matsumoto, 2003; Ablowitz, Prinari, & Trubatch, 2004), and have been studied since
the end of 1960’s, although it was not until 1980’s that people began to use amplifiers to compensate those


http://orcid.org/0000-0002-6785-2203
http://orcid.org/0000-0002-6785-2203
http://orcid.org/0000-0001-5909-1945
http://orcid.org/0000-0001-5909-1945
http://orcid.org/0000-0002-5715-0347
http://orcid.org/0000-0002-5715-0347
https://doi.org/10.30878/ces.v27n4a3
https://www.redalyc.org/articulo.oa?id=10463385005
https://www.redalyc.org/articulo.oa?id=10463385005

CIENCIA ERGO-suM, REVISTA CIENTIFICA MULTIDISCIPLINARIA DE PROSPECTIVA, 2020, vOL. 27, No. Esp.4, I...

losses (Hasegawa, & Matsumoto, 2003). In the amplification process, the silica doping of fibers is commonly
used (Ablowitz, Prinari, & Trubatch, 2004).

Theoretically, this kind of propagation is mainly described by the nonlinear Schrédinger equation (NLS),
but other equations can be used, such as the Sine-Gordon, Korteweg-de Vries, and Ginzburg-Landau
equations that can also describe this kind of soliton propagation (Agrawal, 2001; Hasegawa, & Matsumoto,
2003; Ablowitz, Prinari, & Trubatch, 2004).

Nowadays, there are significant advances in the description of pulses in nonlinear media and the way
they can be manipulated. The NLS equation with variable coeflicients, and its non-autonomous nonlinear
dynamical systems form (Malomed, 2006; He & Li, 2011; Pérez-Maldonado, & Rosu, 2015) are very
important in this context of variable dispersion and nonlinearity, which bring losses and gains during
the propagation. The manipulation of these pulses for optimal propagation is usually called “soliton
management”, or also for its specific use in optical devices as “dispersion management” (Malomed, 2006;
Porsezian et al., 2007; Centurion et al., 2006).

In the case of non-autonomous models, the soliton management is defined by four parameters (Zhao, Luo,
& He, 2010): 2) amplitude (or width), &) frequency (or velocity), ¢) phase and &) time position. It is possible
to control the soliton dynamics with a careful selection of their functional form of these parameters.

In this paper, we work out an extension of the method of non-autonomous NLS management (Pérez-
Maldonado, & Rosu, 2015) to the Ginzburg-Landau equation (GL), employing both fixed amplitudes and
arbitrary ones.

Compared to NLS, the GL equation has smaller damped terms and considerably bigger nonlinear terms
(Malomed, 1991), and thus it governs the amplitude evolution of the dissipative waves in finite spatial
neighborhoods over instabilities close to the critical points of the singularities (Akhmediev & Ankiewicz,
2005).

1. THE NON AUTONOMOUS MODEL

Soliton interaction between NLS non-autonomous solitons has been studied in a systematic way by Serkin
and coworkers (Serkin, & Hasegawa, 2000; Serkin, & Belyaeva, 2001; Serkin & Hasegawa, 2002; Serkin,
Hasegawa, & Belyaeva, 2004) who have been the pioneers in the discussion of the non-autonomous solitons
(Serkin, Hasegawa, & Belyaeva, 2007). They proved that the non-autonomous solitons can propagate within
nonlinear media when their amplitude and velocity are controlled (Serkin, Hasegawa, & Belyaeva, 2007).

The NLS equation governing the propagation of an optical soliton through an optical material with
engineered dispersion and nonlinearity is

i VED s po) PYED 4 ooy, 0P . )+ iy = 0. )

where f(z) and ¢(z) are the dispersion and nonlinearity management, respectively, and ¥(z) = ¥ 1 + 7z
, with ¥/, > 0, the constant loss parameter of the fiber, and 7z < 0 is the Raman gain parameter. If the
functions f{z), g(z), and ¥(z) are complex functions, then equation (1) is known as the complex nonlinear
Ginzburg-Landau equation (CGL) (Fang & Xiao, 2006).

We now apply the He-Li mapping (He & Li, 2011) of transforming the NLS equation with variable
coeflicients (NLS-CV) to a standard NLS equation of constant coefficients to the case of pulse propagation
in doped fiber amplifiers for which the one-dimensional cubic CGL equation (Agrawal, 1991)
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is considered as a good model. Here y(z, #) is the field envelope function, #is the retarded time and z the
propagation distance, p, measures the wave dispersion, p; the spectral filtering (p; < 0) of the amplifier,

which is important because it suppresses the Gordon-Haus jitter of the soliton central frequency; (1] g,and
g; > 0 represent the nonlinear coefficient and the nonlinear gain/absorption processes, respectively. We
noticed that the nonlinear gain helps to suppress the growth of radiative background (linear mode) which
always affects the propagation of nonlinear stationary pulses in real fiber links; 7, and ; are the linear gain
and the frequency shift, respectively (Fewo ez al., 2005). The parameters p, , p;, ¢ 4i » 7» » and y; are real
functions depending on the propagation coordinate. In many cases, this type of model is used for dispersion-
managed solitons (DMS) (Biswas, 2002; Hasegawa, 2000) in transmission lines employing a periodic map,
such that each period is built up by two types of fibers of generally different lengths and opposite group
velocity dispersion (Turitsyn ez al., 2003; Turitsyn, 1998; Turitsyn ez a/., 1999). On the other hand, a too
strong dispersion management could lead to system performances even worse than the conventional soliton
systems (Hirooka, Nakada, & Hasegawa, 2000).

Previously, some exact solutions were obtained by other methods. For example, the stability of chirped
bright and dark soliton-like solutions of the cubic CGL equation with variable coefficients has been
investigated in (Fang, & Xiao, 2006), but here we will use 2 modified He-Li mapping (He & Li, 2011; Pérez-
Maldonado, & Rosu, 2015).

1. 1. Autonomous mapping of the non-autonomous solitons in amplified dissipative

fibers

Firstly, we should look for the integrability of the equation (2) by finding a direct relationship with the
standard GL equation (Akhmediev & Afanasjev, 1995; Soto-Crespo ez al., 1997) (without quintic term),
given by

i% +[%7 iﬂ] % + (s — ie)|wl2y = ioy,

(3)

where ¥ is the envelope of the optical field, and z and # are the propagation distance and retarded time,
respectively. The parameters in (3) are all real parameters, namely, 9 stands for linear gain or loss, 8 for spectral
filtering, and ¢ for nonlinear gain. The parameters D and s may only take the values +1, i.e., when D = 1 the
dispersion is anomalous and when D = -1 the dispersion is normal, and s = 1 or s = -1 stands for positive or
negative Kerr effect (Facao & Carvalho, 2015), respectively. The proposed ansatz is similar to the Talanov
ansatz (Talanov, 1970),

w(t, z) = u(T, Z)e-id(t, 2), (4)

where the phase function describes the instability (Hasegawa, & Matsumoto, 2003). With 7'= 7z, #) and
Z = Z(z), the central task is to determine the specific expressions for p,, p;, g, q:, -, 7i ¢, T, and Z by
requesting #( 7, Z) to satisfy the standard autonomous GL equation (3). It is important to mention that for
rare-carth doped optical fibers, which are normally used by people for pulse amplification with retarded time
T=t-§, oy, (Agrawal, 1991), where 8 7 is related to the effective group velocity, we have a 7-dependent
Z. Therefore, by derivating the ansatz (4) and taking into account that dy/d¢ = ¢, and dy/dz = ., we obtain
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iy + [%7 j/)’jufﬁ (s — ie)|u|2u + (ky + ik)ur + (k3 + ika)u = iou,

(5)
from where one can see the following relationships between the parameters w2 4.0-4% g, (2) = sZ,, g; (2)
=-¢Z,yy,(2) =0Z,, with
D Tu Hpdr
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When k1 =k, =k 3 =0, we have the standard cubic CGL equation (3). For the complete description, we

need to solve the latter equations to find the specific functional form of each of the mentioned terms.

Taking r=1-p§0 -

o T d&
= o& dt =1le
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and substituting into (9)

(10)

(11)

(12)
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(13)

we can solve this system of equations, obtaining the following results

_ Is.c

1z, 6= F1(z) + k Ng(2) N 2k(t— wz) + 11, (14)
26)= (s.0) [ )= + £, (15)
$C 1) = — S—Dﬁln@k(t — w2+ 1), 16
where f'; and /' are integration constants, s. ¢ and D. ¢ are mapping complex quantities of the form
ce- 3% and - 4. These complex numbers are related to the nonlinear and dispersion €104 5 coeflicients of the
autonomous GL equation, respectively; also, w = #/88 (168 24+ D ?) and - +,%,) and so we can obtain the

transformation function F ;(z)

4ﬂ i?ff

()

Fi(9) = G + ] =< (g,

(17)

Therefore, we can express the function for the loss/gain with dependence on nonlinearity and dispersion
in the form

3D2 2
164p(=) ’ (18)

12)=s.c glz) -

so that we are able to obtain the integrability of the system.

2. EXACT SOLUTION FOR CGL EQUATION OF STANDARD COEFFICIENTS

There exist some exact solutions of the equation (3) (Akhmediev & Afanasjev, 1995; Soto-Crespo et 4l.,
1997; Facao & Carvalho, 2015; Conte & Musette, 1995) and for our mapping method we can use any of
these solutions. In this work, we make use only of the solution proposed by Soto-Crespo ez al. (1997) for
bright solitons with anomalous dispersion D = s = 1. This is because in the anomalous dispersion regime it
is possible to study the main properties of the soliton-like solutions of equation (3) by applying the well-
developed soliton perturbation theory of the NLS equation. There are two different solutions proposed by
Soto-Crespo ez al. (1997), one is for solitons with fixed amplitude and the other is for solitons with arbitrary
amplitude. In both cases, the soliton solution has the form

u(T, 2) = a(Dexpli d Infa(D)] - wZ], (19)

where 4(7) is a real function, and 4 and w are real constants with values
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- 3(1 + 2¢pD) + {91 + 26BD)2 + 8(s — 25D)?

2(c — 2BD) (20)
~8(1 — &P — 4BdD)
= 2(d-pD+ pd2 D) - (21)

We also consider the special stability conditions as proposed by Soto-Crespo ez al. (1997).
2. 1. The soliton with fixed amplitude

The solution for 2(7) is in this case
a(T) = CB sech (BT), (22)

where

_ 0
B_\ pd2+ Dd— p (23)
 [3d(1 + 452
€= 20— D) (24)

and 4 is given by equation (20) after choosing the plus (minus) sign in front of the square root if D is
negative (positive). The second value of & does not lead to a physical solution (Akhmediev & Afanasjev,
1995; Akhmediev, Afanasjev, & Soto-Crespo, 1996), as the expression under the square root for C becomes

negative.
Soto-Crespo et al. (1997) also provided the following condition of existence of the solution (22),

T U (25)
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FIGURE 1
Range of existence of solution (22)

Nota: The curve S (25) in the plane (¢, 8) where the solutions with fixed amplitudes (22) become singular, and where the classes
of special solutions with arbitrary amplitude (26) exist. This plot applies for cubic and quintic cases. The corresponding one
for the case of anomalous dispersion is also shown by the blue curve for comparison. Above the curve S, § must be positive for
solution (22) to exist, and negative below it. The red curve depicts § for D = + 1, similar to obtained by Soto-Crespo ez 4/. (1997).

As this solution exists almost everywhere in the (¢, 8) plane, we call it the general solution (Figure 1). The
curve S itself is the line where this solution becomes singular, i.e., its amplitude BC tends to infinity, while
the width 1/B vanishes.

2. 2. The solution with arbitrary amplitude

Another special solution proposed by Soto-Crespo ez al. (1997) is obtained if we also impose the condition
3 = 0. Then, the solution, valid only on the line (25), is

a(T) = GF sech (G1), (26)

where G is an arbitrary positive parameter, and 4, w and F are given by

ey )
N 24 (27)
_ o (+4p?) [1/12+ 482 - D) e —d J1+p-D @
7 A ((28)

12
F=

(d«l—l +5271)j”2 _ {(2+ 9p2) [T+ B2 (JT+ f2- D)
<8 28231+ B2 - D) ' ((29)
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The solution (26) represents the arbitrary amplitude soliton. The reason for the existence of the arbitrary
amplitude solutions is that, when § = 0, the cubic CGL equation becomes invariant relative to the scaling
transformation # > Gu, T > GT, Z > G * Z. Hence, if we know a particular solution of this equation, the
whole family can be generated using this transformation. Notice that all parameters of solution (26) except
G and the coefhcient ¢ are expressed in terms of j.

3. SoLUTION OF THE CGL WITH VARIABLE COEFFICIENTS

We will now use a specific case for the CGL equation with variable coefficients employed in the work of
Fangand Xiao (2006), to describe a fiber with inhomogeneities. They found solutions for chirped, bright and
dark solitons. Here, we work with their dispersion parameter and solve their CGL equation by the mapping
method.

First, we introduce their dispersion and nonlinearity parameters

PE) =~ po[1+ ausin(ez)lexp(-4z), (30)

8(2)= o[ + aasin(oz)]exp(~422), ((31)

where p, ,and g 5 are ideal fiber parameter; 2 | is a smal parameter that characterizes the amplitude of
the fluctuations; x ; is a small constant; is related to the variation period of the fiber parameters. In our case,
we only need the dispersion parameter and the frequency shift parameter ¥; (z) is set equal zero, so and we
can solve the problem analytically.

Now, taking into account all parameters, we obtain the complete solution, with the 7" equation (14), Z
equation (15) and ¢ equation (16) for both cases, where from (17)

Fro= 1+ 2] [52 L L g1+ sintotex(-u02) [1 + arsinfoylex(-u1). ©2)

It is possible to define more solutions, one is for bright solitons with 40 > 0 and another for dark solitons

when 30 < 0.
3. 1. The soliton solution for fixed amplitude

In accordance with the proposed solution by Soto-Crespo ez /. (1997) our solution is
w(t, z) = CB sech (BT)expli (d In[a(T)] — wZ - ¢(t, 2))], ((33)

which is displayed graphically in Figure 2.
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FIGURE 2
Non-autonomus soliton with fixed amplitude
Nota: 2) Soliton solution with fixed amplitude for bright solitons obtained from (33). ) Contour plot.

Figure 2 shows the graphs for the soliton solution of the nonlinear CGL equation with variable coefficients
with anomalous dispersion, i. . the coeflicient D = 1. We note that our solutions present similarities with
the solutions reported by Soto-Crespo ez al. (1997). The values of the parameters are the following: = 0.25,
0=-0.1,21=0.052,=0.1,0=0.05%1=x,=0.01,p¢=-0.5¢0=0.3,and s = 1, likewise those of Soto-
Crespo et al. (1997) and Fang, & Xiao (2006).

3. 2. The soliton solution with arbitrary amplitude

On the other hand, we obtain the following soliton solution with arbitrary amplitude,
w(t, z) = GF sech (GT)expli(d In[a(T)] — wZ — ¢(1, 2))], ((34)

with its graphic representation in the figure (3), where we have used the following values of the parameters:
G=1,8=01,2;=0052,=01,0=005x;=4,=001,pp=-05,¢0=03ands= 1.

70 4
60+ 35
504 3
c 40 25
304 2

L.5
1

01 2 3 4 5 6 7 8 910

FIGURE 3
Non-autonomus soliton with arbitrary amplitude
Note: 2) Bright soliton of arbitrary amplitude obtained from (34). 4) Contour plot.

Examination of the obtained solution in equation (19) shows that it is scalable in the amplitude and
the variable 77z, #), whereas the scaling in the Z(z) variable produces only a change of the phase of the
soliton solution, so essentially the solution (19) can be considered as scalable. The importance of the scaling
properties lies in the possibility to obtain a whole family of solutions once a particular solution is known,
just by varying the scaling parameter. In our case, each member of the family of solutions will have a different
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phase. Physically, changes in the scaling parameter can be achieved by varying the power of the source (laser)
of the pulses.

Furthermore, we can notice that under this transformation, the propagation function only depends on
the nonlinearity, as expected, because the nonlinearity is a characteristic of the medium where the pulse is
propagating. Indeed, the function 77z, #) has a direct dependence on the nonlinearity of the medium, but also
depends on the traveling variable and the dispersion of the medium as one can see from equation (14). This
is what assures the management of solitons through the compensation of the dispersion and nonlinearity
functions according to equation (18).

PROSPECTIVE

The mathematical treatment uses the simplified mapping of the He-Li method as a way to find solutions
of nonlinear equations of variable coeflicients, commonly used in nonlinear optics for modeling the
propagation of solitons in nonlinear media.

The method can be implemented for other nonlinear equations different from the ones treated here, taking
into account that it is only necessary to find the transformation equation that takes us to the mapping itself,
where we can use all the solutions of autonomous nonlinear equations already known.

CONCLUSION

Using a modified He-Li mapping approach we have been able to obtain the appropriate conditions that
assure the system integrability for the management of non-autonomous solitons in nonlinear media, such
as, fiber optics or waveguides, for the nonlinear Ginzburg-Landau equation with variable coefhicients. In
addition, it is possible to use all known solutions of the autonomous Ginzburg-Landau equation, because,
in our development we find a transformation function that maps the GL equation of variable coeflicients to
the autonomous GL equation, as well as we can use the stability conditions of the GL equation presented
in the literature.
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