

CIENCIA ergo-sum, Revista Científica Multidisciplinaria de Prospectiva

ISSN: 1405-0269 ISSN: 2395-8782

ciencia.ergosum@yahoo.com.mx

Universidad Autónoma del Estado de México

México

Identificación de cepas de *E. coli* productoras de betalactamasas de espectro extendido (BLEE) aisladas en el Centro Médico ISSEMyM de Toluca

Mejía-Argueta, Euridice Ladisu; Santillán-Benítez, Jonnathan Guadalupe; Mejía-Juárez, José Identificación de cepas de *E. coli* productoras de betalactamasas de espectro extendido (BLEE) aisladas en el Centro Médico ISSEMyM de Toluca

CIENCIA ergo-sum, Revista Científica Multidisciplinaria de Prospectiva, vol. 29, núm. 2, 2022 Universidad Autónoma del Estado de México, México

Disponible en: https://www.redalyc.org/articulo.oa?id=10470856011

DOI: https://doi.org/10.30878/ces.v29n2a5

Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante. NoComercial — Usted no puede hacer uso del material con propósitos comerciales. SinDerivadas — Si remezcla, transforma o crea a partir del material, no podrá distribuir el material modificado. No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Ciencias de la Salud Humana

Identificación de cepas de *E. coli* productoras de betalactamasas de espectro extendido (BLEE) aisladas en el Centro Médico ISSEMyM de Toluca

Identification of *E. coli* strains carrying extended-spectrum beta-lactamases (ESBL) isolated at Medical Center (ISSEMyM) in Toluca

Euridice Ladisu Mejía-Argueta Universidad Autónoma del Estado de México, México qfb.elma@hotmail.com DOI: https://doi.org/10.30878/ces.v29n2a5 Redalyc: https://www.redalyc.org/articulo.oa? id=10470856011

https://orcid.org/0000-0003-0137-498X

Jonnathan Guadalupe Santillán-Benítez Universidad Autónoma del Estado de México, México jonnathangsb@yahoo.com.mx

https://orcid.org/0000-0003-3574-1231

José Mejía-Juárez Universidad Autónoma del Estado de México, México jmejiajj_153@hotmail.com

https://orcid.org/0000-0002-6287-0170

Recepción: 01 Octubre 2019 Aprobación: 26 Febrero 2021

RESUMEN:

Se analizaron datos de E. coli productora de BLEEs aisladas de pacientes de diferentes áreas hospitalarias por medio de las interacciones que existen entre los antibiogramas y las áreas a través de análisis de varianza (ANOVA) de dos factores y la prueba de Bartlett para homocedasticidad. Se encontró una incidencia del 45% de *E. coli* y de 135 cepas muestreadas el 4.58% fue *E. coli* BLEE. Además, usando una prueba de Bartlett, se determinó que existe una diferencia significativa entre las áreas y en sus pruebas fenotípicas, por lo que se deben implementar medidas de capacitación, control y prevención en el sector salud para evitar en mayor medida la propagación de infecciones entre áreas de salud pública.

PALABRAS CLAVE: infección nosocomial, microbiología, resistencia bacteriana.

ABSTRACT:

Data on BLEE-producing E. coli isolated from patients in different hospital areas were analyzed using the interactions between antibiograms and areas through a two-factor analysis of variance (ANOVA) and Bartlett's test for homoscedasticity. We found a 45% incidence of *E. coli*, and out of 135 strains sampled, 4.58% were *E. coli* BLEE. In addition, using Bartlett's test, we determined a significant difference between the areas and in their phenotypic tests, so training, control, and prevention measures should be implemented in the health sector, avoiding the spread of infections between public health areas to a greater extent.

KEYWORDS: nosocomial infection, Microbiology, bacterial resistance.

Notas de autor

jonnathangsb@yahoo.com.mx

Introducción

Las infecciones asociadas a los cuidados de la salud, particularmente aquellas relacionadas con microorganismos multirresistentes son en la actualidad, de acuerdo con la Organización Mundial de la Salud (OMS) en el estudio de Shrivastava *et al.*, 2018, un problema que va incrementándose en el sector salud. El laboratorio de microbiología se ha convertido en una herramienta dentro de los programas de control o prevención de la transmisión de infecciones de microorganismos, ya que permite reducir el costo y uso de antibióticos, así como aumentar la eficiencia en la unidad hospitalaria al optimizar las alternativas de tratamiento contra dichas infecciones y disminuir los casos de contagio.

La sensibilidad de un microorganismo es determinada por la concentración mínima inhibitoria (CMI), que es la menor concentración del agente antimicrobiano, capaz de inhibir el desarrollo del microorganismo (Livermore *et al.*, 2005). Dicha concentración indica la capacidad de los antibióticos de inhibir el crecimiento bacteriano; es decir, entre más baja sea la CMI equivale a un mejor potencial antibiótico (Livermore *et al.*, 2005; Livermore *et al.*, 2007; Angel *et al.*, 2009).

Se ha demostrado que las bacterias tienen una gran capacidad de adaptación a la presencia de sustancias antibióticas que encuentran en su ambiente. Las mutaciones en ciertos genes, así como sus secuencias de inserción, explican la resistencia a diversos antibióticos. De hecho, se han registrado mutaciones que modifican las proteínas blanco para penicilinas, cloranfenicol, tetraciclina, etc., que determinan un fenotipo de resistencia a dichos antibióticos (Yanat *et al.*, 2017).

La mutación a nivel DNA plasmídico también se hace presente. En este caso las betalactamasas, enzimas que hidrolizan los anillos betalactámicos de antibióticos como la ampicilina, amoxicilina, etc., juegan un papel importante. A su vez, las betalactamasas de espectro extendido (BLEE) hidrolizan cefalosporinas de tercera y cuarta generación además de monobactámicos como el Aztreonam (por ejemplo, blaTEM, blaSHV, blaCTX-M) (Stewart y Costerton, 2001).

E. coli es la bacteria mayormente aislada dentro del Centro Médico ISSEMyM en la ciudad de Toluca, México, por lo que es indispensable conocer la microbiología local de cada una de las instituciones de salud, así como la distribución de microorganismos multirresistentes entre sus áreas operativas para el control de las infecciones asociadas a cuidados de la salud.

2. ESCHERICHIA COLI BLEE

En los años noventa, las principales BLEE eran TEM y SHV aislándose de *Klebsiella pneumoniae*. Hoy la prevalencia y distribución de bacterias productoras de BLEEs en el ámbito hospitalario y extrahospitalario ha cambiado notablemente. Es el caso de *E. coli* aislada de muestras urinarias extrahospitalarias, bacteria que contiene BLEEs del tipo cefotaximasas (CTX-M) (Martínez-Martínez y Calvo, 2010; Diestra *et al.* 2008; Livermore *et al.*, 2005; Livermore *et al.*, 2007; Fariñas y Martínez-Martínez, 2013).

Ciertos alimentos de origen animal, en especial aves, podrían ser la principal fuente de transmisión de BLEE, ya que incrementan su porcentaje de posible infección (Goossens y Grabein, 2005; Warren *et al.*, 2008; Smet *et al.*, 2008; Lavilla *et al.*, 2008). De hecho, el incremento en el número de aislamientos de bacterias BLEE en la actualidad se maneja en diversos estudios teniendo la presencia de TEM, SHV y OXA (menor proporción), por citar algunos ejemplos (Pitout *et al.*, 2015; Shaikhs *et al.*, 2015). En 1989 se describió una nueva familia de BLEE llamada CTX-M por conferir resistencia sobre todo a la cefotaxima. Así como esta familia BLEE, se conocen hasta la fecha otras 65 variantes de BLEE presentes en enterobacterias (Cantón y Cobo, 2009).

En estudios anteriores, por ejemplo, uno efectuado en el Hospital Dr. José Eleuterio González en Monterrey, México entre 2006 y 2009, ya se reportaba una alta presencia de *Klebsiella pneumoniae* (35-37%), *Enterobacter cloacae* (35-36%), *Escherichia coli* (29-30%) y *Serratia marcescens* (20-20.5%) (Meyer *et al.*,

2009; Garza-González *et al.*, 2011; Morfín-Otero *et al.*, 2013). En este mismo hospital, en 2012, se evaluaron los factores de riesgo de desarrollo de BLEE y se concluyó que la administración previa de cefalosporinas de amplio espectro fue el factor de riesgo más importante para la producción de estos microorganismos (Muro *et al.*, 2012).

De acuerdo con este contexto, el objetivo de este artículo es proporcionar información adecuada sobre la incidencia de *E. coli* productora de betalactamasas de espectro extendido en el Centro Médico ISSEMyM de Toluca y su diseminación entre las distintas áreas para crear estrategias de capacitación, concientización control y prevención dentro del hospital. Debido a esto, nos centramos en analizar las resistencias bacterianas por medio de los antibiogramas, la variabilidad de pruebas bioquímicas (identificación fenotípica), las interacciones entre áreas del hospital, además de observar la incidencia y prevalencia de cepas multirresistentes.

3. Métodos

Se diseñó un estudio observacional y retrospectivo en un periodo de seis meses (julio-diciembre de 2017). De 2 084 cultivos positivos a microorganismos bacterianos, se obtuvieron 135 cepas *E. coli* productoras de BLEE, de las cuales se examinaron los antibiogramas y pruebas bioquímicas (media, porcentajes del total de cepas sin distinción de áreas), se les dotó de un código para poderse comparar entre sí (se ordenaron las resistencias y se colocaron de manera binaria con la presencia o ausencia de las pruebas bioquímicas para registrar la concordancia o, en dado caso, el aumento de resistencia en cepas de mismas concordancias de las pruebas bioquímicas) y así observar su distribución en cinco áreas del hospital con mayor índice de pacientes (nefrología, cirugía general, medicina interna, urología y urgencias). Este proceso se llevó a cabo con el objetivo de evaluar la concordancia de cepas entre áreas y de realizar un análisis de varianza (ANOVA).

Estas cepas fueron aisladas de diferentes cultivos (hemocultivos, urocultivos, secreción por uso de sonda, secreción por absceso en pared abdominal, secreción de herida quirúrgica, líquido peritoneal, líquido ascítico, exudado bronquial) del Centro Médico ISSEMyM en Toluca, México.

Los datos fueron identificados por el equipo VITEK*2 Compact (BioMérieux) teniendo insertos con las pruebas bioquímicas (APPA: Ala-Phe-Pro-arilamidasa, ADO: adonitol, PyrA: L-pirrolidonilarilamidasa, IARL: L-arabitol, dCEL: D-celobiosa, BGAL: beta-galactosidasa, H₂S: producción de H₂S, BNAG: beta-N-acetil-glucosaminidasa, AGLTp: glutamilarilamidasapNA, dGLU: D-glucosa, GGT: gamma glutamiltransferasa, OFF: fermentación de glucosa, BGLU: beta glucosidasa, dMAL: D-maltosa, dMAN: D-manitol, dMNE: D-manosa, BXYL: beta xilosidasa, BAlap: beta alaninaarilamidasapNA, ProA: L-prolinaarilamidasa, lip: peroxidasa, PLE: palatinosa, TyrA: tirosina arilamidasa, URE: ureasa, dSOR: sorbitol, SAC: sacarosa, dTAG: D-tagatosa, dTRE: D-trealosa, CIT: citrato, MNT: malonato, 5KG: 5-ceto-D-gluconato, ILATK: alcalinización de L-lactato, AGLU: alfa glucosidasa, SUCT: alcalinización de succinato, NAGA: beta-N-acetil-galactosaminidasa, AGAL: alfa galactosidasa, PHOS: fosfatasa, GlyA: glicina arilamidasa, ODC: ornitina descarboxilasa, LDC: lisina descarboxilasa, IHISa: L-histidina, CMT: cumarato, BGUR: beta glucoronidasa, O129R: resistencia O/129 vibrio, GGAA: Glu-Gli-Argarilamidasa, IMLTa: L-malato, ELLM: Ellman, ILATa: L-lactato).

Adicionalmente, para los antibiogramas, se evaluaron a los antibióticos de las familias como aminoglucósidos, betalactámicos (cefalosporinas de tercera y cuarta generación), monobactámicos, carbapenémicos, quinolonas, sulfamidas, tetraciclinas, nitrofuranos, combinaciones de antibióticos (usadas para lograr sinergia antimicrobiana, para ampliar el espectro antimicrobiano o para prevenir la aparición de resistencia).

En este sentido, una cepa productora de BLEE será aquella que hidroliza betalactámicos (penicilinas y cefalosporinas de amplio espectro) y monobactámicos. Estos datos se analizaron estadísticamente en el paquete estadístico R-Studio versión 3.4.4 (2018) usando módulos para la construcción de modelos lineales

(aditivos y de interacción), así como sus herramientas de análisis de varianza (ANOVA) de dos factores, la prueba de Bartlett para homocedasticidad (sino existe diferencia entre varianzas) y el uso de gráficos para evaluar la interacción entre áreas y antibióticos.

En cuanto a criterios de exclusión del análisis, no fueron considerados cultivos con desarrollo polibacteriano, cultivos reportados como contaminados o en los que no se reportó antibiograma y que no fueran *E. coli* BLEE.

4. Resultados

En el Centro Médico ISSEMyM de Toluca se realizó un aislamiento total de microorganismos de 2 084 cultivos positivos a microorganismos en general. Al respecto, las enterobacterias tuvieron una incidencia de 57% como *E. coli, Escherichia fergusonii, Klebsiella pneumoniae, Klebsiella oxytoca, Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas alcaligenes, Pseudomonas fluorescens, Proteus spp., Serratia marcescens, Shigella spp., Salmonella spp., donde el 45% fue <i>E. coli* y del que 135 cepas (4.58%) fueron *E. coli* BLEE aisladas de diferentes cultivos (hemocultivos, urocultivos, secreción por uso de sonda, secreción por absceso en pared abdominal, secreción de herida quirúrgica, líquido peritoneal, líquido ascítico, exudado bronquial) del Centro Médico ISSEMyM Toluca.

Para el análisis de los datos dentro del hospital se tomaron medidas estadísticas de tendencia central. En resumen, la media de edad de los pacientes fue de 61 años (el 56.30% es femenino y el 43.70% es masculino). Las 135 muestras fueron aisladas de diferentes áreas hospitalarias, de donde se obtuvieron 37 casos de medicina interna, 28 de urología, 16 de urgencias, 14 de cirugía general, 12 de nefrología, 6 de geriatría, 5 de cuidados intensivos, 4 de traumatología, 3 de infectología, 3 de gastroenterología, 3 de trasplantes, 2 de reumatología, 1 de neurología y 1 de diálisis (cuadro 1 y anexo A).

Por ello, en el cuadro 1 y en el anexo A se muestra que las cepas de *E. coli* son multirresistentes (BLEE) a diferentes antibióticos (penicilinas y cefalosporinas de tercera generación), además de sus pruebas bioquímicas (fenotípicas) pertinentes que ayudaron a comparar si existen variaciones entre ellas por medio de la asignación de dos códigos (el primero usando los antibiogramas y el segundo por sus pruebas bioquímicas) para precisar si existía diseminación de las cepas aisladas entre las áreas del Centro Médico, así como en qué áreas y de qué tipo de cultivo fueron aisladas las cepas para tener una relación de éstas que tuviesen una concordancia del código de bioquímicas con el de resistencia antibiótica (anexo A).

Una vez codificadas las cepas de cada área, se llevó a cabo un ANOVA de dos factores para obtención del valor F y de esta manera observar si existía interacción entre las áreas hospitalarias y los antibióticos suministrados sin tomar en cuenta el tipo de muestra aislada. Al separar el experimento por áreas hospitalarias, se encontró que, para las áreas de cirugía general, urgencias y nefrología existe un valor de F = 1.1939 y p = 0.2227, mientras que en las áreas de medicina interna y urología hay un valor de F = 0.4905, p = 0.9462. En conjunto, las cinco áreas anteriores (cirugía general, urgencias, nefrología, medicina interna y urología) obtienen un valor de F = 1.1669 y p = 0.1866. Por ello, puede concluirse que no existen diferencias significativas (teniendo que 0.10 < p sería valor contundente para observar una diferencia significativa) en la prevalencia de E. coli productora de BLEEs entre las áreas comparadas.

La prueba de Bartlett para el conjunto de las cinco áreas mostró la existencia de homocedasticidad (es decir, diferencia de varianzas) y pone a la vista que existen diferencias estadísticamente significativas de homocedasticidad entre las áreas al obtenerse valores K = 16.862, p = 0.002056 en la prueba.

En relación con la bibliografía mexicana en 2015, la prevalencia de *E. coli* productora de BLEE en las infecciones urinarias fue del 7.1% frente al 14.6% en 2016 (Pérez Heras *et al.*, 2017).

En el anexo A se muestra la concordancia entre los códigos de bioquímicas al compararse entre sí y además con los códigos de la resistencia antibiótica. La hipótesis de este artículo es que la concordancia podría deberse a diversos factores como la difusión provocada por el acarreo de material sucio por parte del personal

afanador, pero aún necesitaría corroborarse con el monitoreo de cultivos ambientales dentro del hospital, además de observar y analizar si el tipo de muestra aislada influye en adición a las áreas estudiadas, entre otras medidas.

Para este estudio, sólo se puso en ejecución el análisis de cinco áreas (cirugía general, medicina interna, nefrología, urgencias y urología) por cada antibiótico usado para el antibiograma de las cepas aisladas con el objetivo de analizar interacción de antibióticos con las áreas del hospital. Esto permite saber en qué áreas el tratamiento comienza a ser deficiente, constante o adecuado (figura 1). Por ejemplo, para el caso de ampicilina y carbapenémicos, como existe una sensibilidad alta, se mantiene constante la dosis entre áreas en contraste con cefalosporinas de tercera generación, donde se requieren mayores concentraciones en las áreas de cirugía general y urgencias a fin de mantener un efecto similar.

Además, se identificaron diferencias en la fermentación de carbohidratos entre microorganismos de la misma cepa que podría deberse a la existencia de patotipos de este microorganismo; por ello, se recomendaría realizar la tipificación correspondiente, así como observar qué tipo de enzimas BLEE están presentes en estas cepas y si existe relación alguna con la resistencia bacteriana.

CUADRO 1
Porcentaje de inhibición antibiótica y porcentaje de pruebas bioquímicas de las 135 cepas de E. coli BLEE

0/ do inhibia:				% do inhibioión		Consilel	Intomorali
% de inhibición antibiótica	Resistente	Sensible	Intermedio	% de inhibición antibiótica		Sensible	Intermedio
Ampi	100.00	0.00	0.00	Amica	1.48	95.56	2.96
AmpSurba	63.70	10.37	25.93	Genta	49.63	49.63	0.74
PipeTazo	14.18	76.87	8.96	Tobra	49.63	35.56	14.81
Cefazo	97.04	2.96	0.00	Ciprof	87.41	11.11	1.48
Ceftri	97.04	2.96	0.00	Tige	0.00	100.00	0.00
Cepima	94.81	4.44	0.74	Nitrof	5.19	89.63	5.19
Aztreo	95.56	3.70	0.74	Trimet	65.19	34.81	0.00
Ertap	0.00	100.00	0.00	Merop	0.00	100.00	0.00
% en pruebas bioquímicas	Negativo	Positivo	% en pruebas bioquímicas	Negativo	Positivo		
APPA	100.00	0.00	SAC	15.56	84.44		
ADO	93.33	6.67	dTAG	81.48	18.52		
PyrA	100.00	0.00	dTRE	0.00	100.00		
IARL	100.00	0.00	CIT	100.00	0.00		
dCEL	100.00	0.00	MNT	100.00	0.00		
BGAL	1.48	98.52	5kg	80.00	20.00		
H_2S	99.26	0.74	ILATK	65.93	34.07		
BNAG	100.00	0.00	AGLU	100.00	0.00		
AGLTp	100.00	0.00	SUCT	60.74	39.26		
dGLU	0.00	100.00	NAGA	100.00	0.00		
GGT	96.03	2.22	AGAL	16.03	83.07		
OFF	2.22	97.78	PHOS	83.07	16.03		
BGLU	100.00	0.00	GLyA	74.81	25.19		
dMAL	4.44	95.56	ODC	25.93	74.07		
dMAN	0.00	100.00	LDC	8.15	91.85		
dMNE	0.00	100.00	IHISa	100.00	0.00		
BXYL	100.00	0.00	CMT	0.00	100.00		
BAlap	99.26	0.74	BGUR	15.56	84.44		
ProA	91.11	8.89	O129R	17.04	82.96		
lip	100.00	0.00	GGAA	100.00	0.00		
PLE	100.00	0.00	IMLTA	100.00	0.00		
TyrA	35.56	64.44	ELLM	21.48	78.52		
URE	100.00	0.00	ILATa	100.00	0.00		
dSOR	2.96	97.04					

Fuente: elaboración propia.

Nota: Ampi = Ampicilina, AmpSurba = ampicilina/sulbactam, PipeTazo = piperacilina/tazobactam, Cefazo = cefazolina, Ceftri = ceftriaxona, Cepima = cefepima, aztreo = aztreonam, Ertap = ertapenem, Amica = amicacina, Genta = gentamicina, Tobra = tobramicina, Ciprof = ciprofloxacino, Tige = tigeciclina, Nitrof = nitrofurantoína, Trimet = trimetroprim-Sulfametoxazol, Merop = meropenem, APPA = Ala-Phe-Pro-arilamidasa, ADO = adonitol, PyrA = L-pirrolidonil-arilamidasa, IARL = L-arabitol, dCEL = D-celobiosa, BGAL = beta-galactosidasa, H2S = producción de H2S, BNAG = beta-N-acetil-glucosaminidasa, AGLTp = glutamilarilamidasapNA, dGLU = D-glucosa, GGT = gamma glutamiltransferasa, OFF = fermentación de glucosa, BGLU = beta glucosidasa, dMAL = D-maltosa, dMAN = D-manitol, dMNE = D-manosa, BXYL = beta xilosidasa, BAlap = beta alaninaarilamidasapNA, ProA = L-prolinaarilamidasa, lip = peroxidasa, PLE = palatinosa, TyrA = tirosina arilamidasa, URE = ureasa, dSOR = sorbitol, SAC = sacarosa, dTAG = D-tagatosa, dTRE = D-trealosa, CIT = citrato, MNT = malonato, 5kg = 5-ceto-D-gluconato, ILATK = alcalinización de L-lactato, AGLU = alfa glucosidasa, SUCT = alcalinización de succinato, NAGA = beta-N-acetil-galactosaminidasa, AGAL = alfa galactosidasa, PHOS = fosfatasa, GlyA = glicina arilamidasa, ODC = ornitina descarboxilasa, LDC = lisina descarboxilasa, IHISa = L-histidina, CMT = cumarato, BGUR = beta glucoronidasa, O129R = resistencia O/129 vibrio, GGAA = Glu-Gli-Argarilamidasa, IMLTa = L-malato, ELLM = Ellman, ILATa = L-lactato.

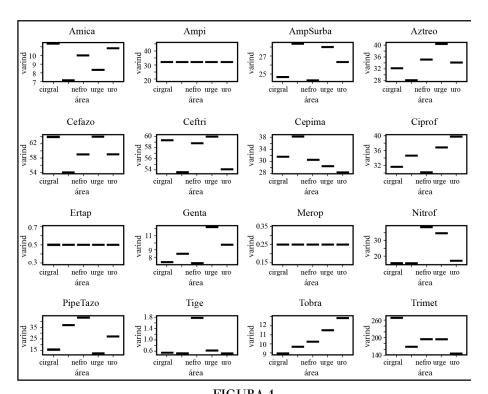


FIGURA 1 Diagrama de interacción entre antibióticos y áreas de servicio

Fuente: elaboración propia. Nota: varind = media inhibición en mm del antibiótico por área, cirgral = cirugía general, M. I. = medicina interna, nefro = nefrología, urge = urgencias, uro = urología, Amica = amicacina, Ampi = ampicilina, AmpSurba = ampicilina/sulbactam), Aztreo = aztreonam, Cefazo = cefazolina, Ceftri = ceftriaxona, Cepima = cefepima, Ciprof = ciprofloxacino, Ertap = ertapenem, Genta = gentamicina, Merop = meropenem), nitrof = nitrofurantoín0a, PipeTazo = piperacilina/tazobactam), Tige = tigeciclina), Tobra = tobramicina, Trimet = Trimetroprim-Sulfametoxazol.

5. Discusión

La presencia de microorganismos multirresistentes se incrementa cada día y tiene como principal mecanismo la portación de enzimas que hidrolizan a ciertos antibióticos de acuerdo con la OMS o WHO (2012). *E. coli* BLEE es a menudo uno de los microorganismos más implicados en enfermedades gastrointestinales causantes de diarrea y de infecciones urinarias, por lo cual el objetivo de este trabajo era conocer el patrón de resistencia local (Toluca) que facilitase la toma de decisiones clínicas para disminuir el incremento de multirresistencia bacteriana y con base en esto proporcionar al paciente un mejor tratamiento, aunado a una disminución del costo en el ámbito hospitalario.

De acuerdo con este preámbulo, *E. coli* es el microorganismo mayormente aislado en este hospital y que en una proporción produce BLEE, además de que a partir del análisis de sus pruebas bioquímicas y resistencias se pudo revisar que existe una posible diseminación entre áreas aumentando en las concordancias de cepas bacterianas la resistencia, aunque faltaría discutir si el tipo de muestras aisladas también está implicado, además del análisis entre áreas con los antibióticos suministrados que al menos en este estudio no tuvo diferencias significativas.

Dicho lo anterior, proponemos que en cada institución de salud exista un monitoreo de las cepas resistentes con mayor aislamiento, capacitación del personal médico, paramédico y afanador para evitar el esparcimiento de estas bacterias entre áreas, así como su adecuado desecho. También habría que considerar capacitaciones para garantizar inocuidad, prevenir la contaminación cruzada, evitar la rotación de sanitizantes en el personal

de limpieza y así disminuir las causas y casos de infecciones asociadas a los cuidados de la salud de acuerdo con los lineamientos de la OMS.

Algunas acciones de epidemiologia hospitalaria recomendadas para limitar la diseminación y control de infecciones asociadas a los cuidados de salud, como las causadas por microorganismos multirresistentes, son proveer a los pabellones de atención a pacientes una ventilación adecuada, restricción de visitantes y de personal, desinfección diaria y, al final de estadía, reducir al mínimo el traslado de personal y de pacientes dentro de un pabellón, detectar los casos sin demora, especialmente si son remitidos de otro hospital, aislar a los pacientes infectados o colonizados en una sola habitación o en unidad de aislamiento o formar cohortes con esos pacientes en un pabellón más grande, reforzar las disposiciones sobre lavado de las manos que debe cumplir el personal después del contacto con pacientes infectados o colonizados y considerar la posibilidad de usar un agente antiséptico para el lavado de las manos, entre otras medidas (como la NOM-017-SSA2-2012 para la vigilancia epidemiológica).

PROSPECTIVA

Debido al incesante incremento de cepas multirresistentes es necesario tomar cartas en el asunto, sobretodo en complementar información de todas las áreas dentro del hospital con monitoreo microbiologico constante en áreas de pacientes, además de un control epidemiológico y de tratamiento en conjunto con los médicos al prescribir medicamentos teniendo una vigilancia activa, capacitación y una optimización de la dosificación, aunado a un diagnóstico rápido y eficaz. En este sentido, las pruebas moleculares rápidas son necesarias para complementar las pruebas fenotípicas y de susceptibilidad antimicrobiana dado que se pueden identificar genes cromosomales o plasmídicos, disminuyendo el tiempo para el tratamiento adecuado y un costobeneficio para el sector salud y el paciente y sobretodo no seguir gestionando la multirresistencia bacteriana. Sumado a estas medidas, también sería importante que otros sectores como el agropecuario puedan regular las prescripciones de antibióticos en ganado de consumo humano.

AGRADECIMIENTOS

Para los revisores y árbitros por cada una de las retroalimentaciones hacia este artículo; asimismo, al Centro MédicoISSEMyM por permitir analizar los datos y las bacterias en el protocolo sometido al Comité de Bioética número 031/17.

REFERENCIAS

- Angel, M. D., Ramón, J. H., Martínez-Martínez, L., Rodríguez-Baño, J., & Pascual, Á. (2009). Extended-spectrum beta-lactamase-producing *Escherichia coli and Klebsiella pneumoniae* in Spanish hospitals: 2nd multicenter study (GEIH-BLEE project, 2006). Enfermedades infecciosas y microbiologia clinica, 27(9), 503-510. https://doi.org/10.1016/j.eimc.2008.09.006
- Cantón, R., & Cobo, J. (2009). Hospital antibiotic use and resistance: A relationship that is difficult to measure and complex to interpret. *Enfermedades infecciosas y microbiologia clinica*, 27(8), 437-440. https://doi.org/10.1016/j.eimc.2009.04.004
- Diestra, K., Coque, T. M., Miró, E., Oteo, J., Nicolau, C. J., Campos, J., & Oliver, A. (2008). Caracterización y epidemiología molecular de betalactamasas de espectro extendido en Escherichia coli y Klebsiella pneumoniae en once hospitales españoles (2004). *Enfermedades Infecciosas y Microbiología Clínica*, 26(7), 404-410. https://doi.org/10.1157/13125636

- Fariñas, M. C. y Martínez-Martínez, L. (2013). Infecciones causadas por bacterias gramnegativas multirresistentes: enterobacterias, *Pseudomonas aeruginosa*, *Acinetobacter baumannii y otros bacilos gramnegativos no fermentadores. Enfermedades Infecciosas y Microbiología Clínica, 31*(6), 402-409.
- Garza-González, E., Mendoza-Ibarra, S., Llaca-Díaz, J. (2011). Molecular characterization and antimicrobial susceptibility of extended-spectrum b-lactamase producing enterobacteriaceae isolates at a tertiary care centre in Monterrey, Mexico. *Journal of Medical Microbiology, 60*, 84-90. https://doi.org/10.1099/jmm.0.022970-0.
- Goossens, H., & Grabein, B. (2005). Prevalence and antimicrobial susceptibility data for extended-spectrum β-lactamase–and AmpC-producing Enterobacteriaceae from the MYSTIC Program in Europe and the United States (1997-2004). *Diagnostic Microbiology and Infectious Disease*, 53(4), 257-264. https://doi.org/10.1016/j.diagmicrobio.2005.10.001
- Lavilla, S., Gonzalez-Lopez, J. J., Miro, E., Dominguez, A., Llagostera, M., Bartolome, R. M., & Prats, G. (2008). Dissemination of extended-spectrum β-lactamase-producing bacteria: The food-borne outbreak lesson. Antimicrobial Agents and Chemotherapy, 61(6), 1244-1251. https://doi.org/10.1093/jac/dkn093
- Livermore, D. M., Canton, R, Gniadkowski, M., Nordmann, P., Rossolini, G. M., Arlet, G., & Woodford, N. (2007). CTX-M: changing the face of ESBLs in Europe. *Journal of Antimicrobial Chemotherapy*, 59(2), 165-74. https://doi.org/10.1093/jac/dkl483
- Livermore, D. M., & Hawkey, P. M. (2005). CTX-M: changing the face of ESBLs in the UK. *Journal of Antimicrobial Chemotherapy*, 56(3), 451-4. https://doi.org/10.1093/jac/dki239
- Martínez-Martínez, L., & Calvo J. (2010). The growing problem of antibiotic resistance in clinically relevant Gramnegative bacteria: current situation. *Enfermedades Infecciosas y Microbiología Clínica, 2*, 25-31. https://doi.org/10.1016/S0213-005X(10)70027-6
- Meyer, E., Lapatschek, M., Bechtold, A., Schwarzkopf, G., Gastmeier, P., & Schwab, F. (2009). Impact of restriction of third generation cephalosporins on the burden of third generation cephalosporin resistant *K. pneumoniae and E. coli* in an ICU. *Intensive Care Medicine*, 35(5), 862-870. https://doi.org/10.1007/s00134-008-1355-6
- Morfín-Otero, R., Mendoza-Olazarán, S., Silva-Sánchez, J., Garza-González, E. (2013). Characterization of Enterobacteriaceae isolates obtained from a tertiary care hospital in Mexico, which produces extended-spectrum b-lactamase. *Microbial Drug Resistance*, 19(5), 378-383. https://doi.org/10.1089/mdr.2012.0263
- Muro, S., Garza-González, E., Camacho-Ortiz, A., González, G. M., Llaca-Díaz, J. M., Bosques, F., & Rositas, F. (2012). Risk factors associated with extended spectrum b-lactamase-producing *enterobacteriaceae* nosocomial bloodstream infections in a tertiary care hospital: A clinical and molecular analysis. *Chemotherapy*, 58(3), 217-224. https://doi.org/10.1159/000339483
- NOM-017-SSA2-2012. (2013). NOM-017-SSA2-2012 para la vigilancia epidemiológica. Disponible en https://www.gob.mx/cms/uploads/attachment/file/68/NOM-017-SSA2-2012.pdf
- Pérez Heras, I., Sanchez-Gomez, J. C., Beneyto-Martin, P., Ruano-de-Pablo, L., & Losada-Pinedo, B. (2017). Community-onset extended-spectrum β-lactamase producing *Escherichia coli* in urinary tract infections in children from 2015 to 2016: Prevalence, risk factors, and resistances. *Medicine*, 96(50), e8571. https://doi.org/10.1097/MD.0000000000008571.
- Pitout, J. D. D., Nordmann, P., & Poirel, L. (2015). Carbapenemase-producing *Klebsiella pneumoniae*, a key pathogen set for global nosocomial dominance. *Antimicrobial Agents and Chemotherapy*, 59(10), 5873-5884. https://doi.org/10.1128/AAC.01019-15.
- Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. M. D., & Kamal, M. A. (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. *Saudi Journal of Biological Sciences*, 22(1), 90-101. https://doi.org/10.1016/j.sjbs.2014.08.002
- Shrivastava, S. R., Shrivastava, P. S., & Ramasamy, J. (2018). World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. *Journal of Medical Society*, 32(1), 76.

- Smet, A., Martel, A., Persoons, D., Dewulf, J., Heyndrickx, M., Catry, B., & Butaye, P. (2008). Diversity of extended-spectrum β-lactamases and class C β-lactamases among cloacal *Escherichia coli* isolates in Belgian broiler farms. *Antimicrobial Agents and Chemotherapy*, 52(4), 1238-1243. https://doi.org/10.1128/AAC.01285-07
- Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. *The lancet*, 358(9276), 135-138. https://doi.org/10.1016/S0140-6736(01)05321-1
- Warren, R. E., Ensor, V. M., O'neill, P., Butler, V., Taylor, J., Nye, K. ,& Hawkey, P. M. (2008). Imported chicken meat as a potential source of quinolone-resistant *Escherichia coli* producing extended-spectrum β-lactamases in the UK. *Journal of Antimicrobial Chemotherapy*, 61(3), 504-508.
- World Health Organization. (2012). The evolving threat of antimicrobial resistance: Options for action. World Health Organization.
- Yanat, B., Rodríguez-Martínez, J. M., & Touati, A. (2017). Plasmid-mediated quinolone resistance in Enterobacteriaceae: A systematic review with a focus on Mediterranean countries. *European Journal of Clinical Microbiology & Infectious Diseases*, 36(3), 421-435. https://doi.org/10.1007/s10096-016-2847-x

Anexo

Cepa	Bioquímica	Resistencia	Coincidencia	Área	Cultivo
7	000001000101011100000000110100000000001101110010	RRSRRRSSSRRRSSS	ö	Urología	Urocultivo
19	000000100010101110000000110100000000000	RRSRRRSSSRRRSSS	70	M. I.	Urocultivo
46	0000010001101101000000011010000000000	RRSRRRSSSRRRSSR	ö	Urgencias	Líquido peritoneal
71	0000010001101101000000011010000000000	RRSRRRSSSRRRSSR	70	C. G.	Líquido peritoneal
10	000001000101011100000010110100000001001	RRSRRRRSSSRRRSSS	ŏ	Urología	Urocultivo
48	000001000101011100000010110100000001001	RRSRRRSSSRRRSSS	70	Urología	Urocultivo
108	00000100010101110000001011010011010101001101110010	RRSRRRRSSSRRRSSR	ö	M. I.	N/D
109	00000100010101110000001011010011010101001101110010	RRSRRRSSSRRRSSR	2	M. I.	N/D
57	000001000101011100000101111000101010101101100010	RISRRRSSSSSSSSS	ö	Urología	Urocultivo
72	00000100010101110000010111100010101001101100010	RRSRRRSSSRRRSSS	70	Urgencias	Urocultivo
100	00000110011101110101010110100100001111010	RRSRRRRSSSSRSSSR	ö	C. G.	Líquido ascítico
119	00000100011101111000001011010010000111010	RRSRRRSSSSRSSR	īc	C. G.	Líquido ascítico
84	00000100011001100110000000110100000000	RISRRRSSSSSSSS	Cambio	M. I.	N/D
85	000001000101001100000000110100000000000	RRSRRRSSSSRRSSR	Resistencia	Urología	N/D
æ	000001000101011100000010010010010001001	RRRSSSSSSSSSR		M. I.	Urocultivo
22	000001000101011100000010010010010001001	RRIRRRSSSSRRSIR	Cambio Resistencia	Urología	Urocultivo
110	00000100011010111000000100100100010001	RRSRRRRISSRRRSSR		Urología	Urocultivo
16	0000010001010111000000010010010000010111011100110	RRSRRRSSSSSSSR	Cambio	C. G.	Secreción sonda
35	0000010001010111000000010010010000010111011100110	RRRRRRSSSSSSR	Resistencia	Urgencias	Urgencias Urocultivo
55	000001000101011100000001101000000011011	RRSRRRRSSSRRRSSS	Cambio	Nefrología	Nefrología Urocultivo
118	0000010001101110000000110100000001001101110000	RRSRRRSSSRRRSSR	Resistencia	Nefrología	Nefrología Urocultivo
2	00000100010101110000000110100000001001101110010	RRSRRSRSSSRRRSSS	Cambio	Urología	Urocultivo
∞	00000100010101110000000110100000001001101110010	RRSRRRSSSRRRSSR	Resistencia	Urología	Urocultivo

ANEXO A

21	00000100010101110000000110100000001001101110010	RISRRRSSSSSRSSR	Cambio	Urgencias	N/D
27	00000100010101110000000110100000001001101110010	RRSRRRSSIRRRSRR	Resistencia	M. I.	N/D
41	00000100010101110000000110100000001001101110010	RISRRRSSSSSSSR		Nefrología	Nefrología Urocultivo
49	00000100010101110000000110100000001001101110010	RSSRRRRSSSSSSIR	Cambio Resistencia	Nefrología	Nefrología Urocultivo
88	00000100010101110000000110100000001001101110010	RRIRRRSSSRIRSSR		Urología	Urocultivo
103	00000100010101110000000110100000001001101110010	RRSRRRRSSSSSRSSR	Cambio	Urología	Urocultivo
Ξ	00000100010101110000000110100000001001101110010	RISRRRSSSRIRSSR	Resistencia	Urología	Urocultivo
81	00000100010101110000000110100100001001101110010	RRIRRRSSSSSRSSR	Cambio	M. I.	N/D
112	00000100010101110000000110100100001001101110010	RISRRRSSSSSRSSR	Resistencia	C. G.	N/D
74	000001000101011100000001111000000010001001110010	RISRRRSSSSSRSSR		M. I.	N/D
98	000001000101011100000001111000000010001001110010	RISRRRSSSRIRSSR	Cambio Resistencia	M. I.	N/D
102	00000100010101110000000111100000001000101	RISRRRSSSRIRSSR		M. I.	N/D
14	000001000101011100000101101000000100100	RISRRRSSSSSRSSS	Cambio	M. I.	Urocultivo
33	000001000101011100000101101000000100100	RRSRRRSSSRRRSSR	Resistencia	Urología	Urocultivo
30	000001000101011100000010110100000001001	RSSRRRRSSSSSRSSR	Cambio	M. I.	N/D
73	00000100010101110000010110100000001001101110010	RRSRRRRSSSSSRSSR	Resistencia	M. I.	N/D
93	00000100010101110000001011010010010101001101110000	RSSRRRRSSSSSRSSR	Cambio	Urgencias	Secreción absceso en pared abdominal
96	0000010001010111000001011010010010101111	RRSRRRSSSRIRSSR	Kesistencia	Urgencias	N/D
133	00000100010101110000010110100110101010	RRSRRRSSSSSSSS	;	M. I.	N/D
134	00000100010101110000010110100110101010	RISRRRSSSSSSSS	Cambio Resistencia	M. I.	N/D
135	0000010001010111000001011010011010101010	RISRRRSSSIIRSSR		Urología	Urocultivo

