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KEYWORDS: Abstract Introduction: This research measures the differences in silent speech of the vowels
Voluntary signals, silent / a/ -/ u/ in Spanish, in students with different cognitive styles in the Field Dependence
speech, cognitive style, EEG, - Independence (FDI) dimension. Method: Fifty-one (51) adults participated in the study. Elec-
vowels troencephalographic (EEG) signals were taken from 14 electrodes placed on the scalp in the

language region located in the left hemisphere. Previously, the embedded figures test (EFT)
was applied in order to classify them into dependent, intermediate and field independent per-
sons. To analyse the EEG data, the signals were decomposed into intrinsic mode functions (IMF)
and a mixed repeated measures analysis was performed. Results: It was found that the Power
Spectral Density (PSD) in the vowels is independent of the cognitive style and its magnitude
depends on the position of the electrodes. Conclusions: The results suggest that there are
no significant differences in PSDs in the silent speech of vowels /a/-/u/ in persons of different
cognitive styles. Significant differences were found in the PSDs according to the position of
the 14 electrodes used. In our configuration, the silent speech of vowels can be studied using
electrodes placed in premotor, motor and Wernicke areas.

©2022 Fundacion Universitaria Konrad Lorenz. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

PALABRAS CLAVE: Habla silenciosa de las vocales en personas de diferente estilo cognitivo
Senales voluntarias, habla
silenciosa, estilo cognitivo,
EEG, vocales

Resumen Introduccién: La investigacion mide las diferencias en el habla silenciosa de las
vocales /a/-/u/ en espanol, en estudiantes de diferente estilo cognitivo en la dimension De-
pendencia - Independencia de campo (DIC). Método: En el estudio participaron 51 adultos.
Se tomaron sefales electroencefalograficas (EEG), a partir de 14 electrodos dispuestos sobre
el cuero cabelludo de la region del lenguaje ubicada en el hemisferio izquierdo. Previamente
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les fue aplicado el test de figuras enmascaradas EFT con el fin de clasificarlos en personas
dependientes, intermedios e independientes de campo. Para analizar los datos del EEG se
descompusieron las sefales en funciones de modo intrinseco (IMF) y se realizé un analisis mixto
de medidas repetidas. Resultados: Se hallé que la densidad espectral de potencia (PSD) en
las vocales es independiente del estilo cognitivo y su magnitud depende de la posicion de los
electrodos. Conclusion: Los resultados sugieren que no existen diferencias significativas en los
PSD en el habla silenciosa de las vocales /a/-/u/ en las personas de diferente estilo cognitivo.
Se hallaron diferencias significativas en los PSD de acuerdo con la posicion de los 14 electrodos
utilizados. En nuestra configuracion, el habla silenciosa de las vocales puede ser estudiada
mediante electrodos situados en las areas premotora, motora y de Wernicke.

© 2022 Fundacion Universitaria Konrad Lorenz. Este es un articulo Open Access bajo la licencia
CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

To study silent speech by means of electroencephalo-
graphic (EEG) signals, voluntary signals are used, which are
produced autonomously by the person, a method that is a
signal analysis alternative and is currently explored with-
in the Brain-computer Interface (BCI) research area. EEG
signals are easy to record. They have a high temporal res-
olution and are obtained non-invasively. Studies show that
silent speech tasks, such as thinking or imagining vowels,
syllables, or words mainly involve the Supplementary Motor
Area (SMA) (DaSalla et al., 2009; Igbal et al., 2015; Nguyen
et al., 2018; Qureshi et al., 2018) and the Language Areas
(Broca and Wernicke areas) located in the brain’s left hem-
isphere (lkeda et al., 2014; Morooka et al., 2018; Sarmiento
et al., 2021; Villamizar et al., 2021).

In this line of study, researchers seek to design and
develop communication systems using BCls, to favour the
quality of life of persons with some type of language disa-
bility (Callan et al., 2000; D’Zmura et al., 2009; DaSalla et
al., 2009; Fujimaki et al., 1994; Lee et al., 2021; Morooka
et al., 2018; Qureshi et al., 2018). Thus, the use of EEG to
study silent speech has gained momentum in recent years.

Research shows promising results in understanding and
explaining vowel, syllable, and word decoding, among oth-
ers (Cooney et al., 2018; Gonzalez-Castaneda et al., 2017;
Qureshi et al., 2018; Sarmiento et al., 2014; Yoshimura et
al., 2016). Some studies take into account the potentials
evoked in imagined silent speech tasks, which consist of
internally simulating a motor movement without moving
the body in any way (Fujimaki et al., 1994). In the case of
speech imagery, the person has to imagine moving parts
of the speech apparatus such as: tongue, lips, or lower jaw
(Graimann et al., 2010). This task requires high concentra-
tion and training time from the person, therefore, fatigue
in this type of tasks is frequent. In this line of work, evoked
potentials are used for the processing of EEG signals, which
include: Event Related Potential (ERP), Evoked Potential
(P300), Movement Related Cortical Potential (MRCP), and
Steady State Evoked Potentials (SSEP) (Rashid et al., 2020).

According to Martin et al. (2014), silent speech, im-
agined speech, covert speech, and inner speech are used in
the same way, when a person thinks of a vowel, syllable, or
word without the intentional movement of speech appara-
tus such as the lips or tongue. In this article we preferably
use silent speech (Martin et al., 2014). In silent speech, EEG
is used to decode the English vowels /a/ and /u/ (DaSalla et
al., 2009; Igbal et al., 2015), /a/, /i/, and /u/ (Nguyen et al.,
2018) and /a/, /el, /il, /o/, /u/ (Ghosh et al., 2019) ; Korean

vowels /a/, /el/, /i/, /o/, and /u/ (Min et al., 2016), syllables
/ba/ and /ku/ (D’Zmura et al., 2009); words /go/, /back/, /
left/, /right/, and /stop/ (Qureshi et al., 2018).

In contrast to this, other studies take into account the
processing of voluntary signals for the study of silent speech,
which is generated in the language area (Broca & Wernicke)
(Ikeda et al., 2014; Morooka et al., 2018; Villamizar et al.,
2021). Imagined speech is considered as the internal pro-
nunciation of phonemes, words, or sentences, regardless
of the movement of the phonatory apparatus and without
any audible output (Cooney et al., 2020). Thinking of silent
speech with electroencephalographic signals is character-
ised by the fact that persons do not require specific training
processes and tasks are almost always performed using the
native language. Therefore, it does not require high levels
of training and attention which fatigue a person. (Fujimaki
et al., 1994; Graimann et al., 2010). In this line of research,
EEG is used to decode Spanish vowels /a/, /e/, /il, /o/, /u/
(Sarmiento et al., 2014); Japanese vowels /a/, /i/ (Yoshi-
mura et al., 2016). and /a/, /i/, /u/ (lkeda et al., 2014). In
the present research, this brain signal was selected because
the person can generate this type of signal at will, unlike
evoked potentials such as P300 or SSVEP, which depend on
external stimuli.

Most studies developed based on EEG and BCls, to iden-
tify silent speech processing, conventionally use different
groups of brain rhythms in the frequency domain such as:
delta, theta, alpha, beta, and gamma with linear and sta-
tionary characteristics, which require algorithms to identify
based on brain signals (DaSalla et al., 2009; Matsumoto &
Hori, 2014; Riaz et al., 2015; Sarmiento et al., 2014). How-
ever, in this line of research, recent studies focus on the use
of methods which consider non-linear and non-stationary
signals; inherent to electroencephalographic signals.

To study these signals, the following methods are used:
empirical mode decomposition (EMD) (Hansen et al., 2019),
multivariate empirical mode decomposition (MEMD), and
recently, the method referred to as adaptive-projection
intrinsically transformed MEMD (APIT-MEMD) (Hemakom et
al., 2016; Villamizar et al., 2021; Yuan et al., 2018). Despite
the studies conducted, there is still no consensus among
the academic community regarding which brain rhythms are
the most appropriate for identifying and processing silent
speech or which signal processing methods are the most ef-
fective (Fujimaki et al., 1994; Morooka et al., 2018; Qureshi
et al., 2018).
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A clear understanding and explanation of the fundamen-
tal processes of silent speech processing has not yet been
achieved. It is likely necessary to consider some of the dif-
ferential characteristics of the subjects when they process
information, which may be associated with cognitive style,
and in this regard, studies show that there are individual
differences in cognitive information processing (Evans et
al., 2013; Lopez-Vargas et al., 2020; Solérzano-Restrepo &
Lopez-Vargas, 2019).

Specifically, it is noteworthy, that probably, the most
studied cognitive style is the one referred to as Field De-
pendence/Independence (FDI), proposed and developed by
Witkin and his colleagues (Witkin, H. A. et al., 1977). FDI
establishes a difference between persons with a tendency
towards an analytical-type processing, regardless of contex-
tual factors (field independent persons (Fl), and those with
a tendency to a global-type processing, highly influenced by
the context (field dependent persons (FD).

Fl persons follow an analytical information trend, fact
which allows them to break down the information into its
different components and restructure it according to their
needs. In addition, they have strategies to organise, classi-
fy, and store information, and they resort to different clues
in order to retrieve it later. For their part, FD persons are
more sensitive to external signals and tend to receive the
information as it is presented to them. In other words, they
prefer externally structured information and address its
global aspects (Lopez et al., 2012; Valencia-Vallejo et al.,
2019).

Within this area of research, electroencephalography is
promising. For example, using EEG, it was found that FI per-
sons exhibit less coherence between hemispheres, which
indicates a greater hemispheric specialisation (Oltman et
al., 1979; Zoccolotti, 1982). Also, when developing visual
tasks and exercises related to auditory and somatosensory
aspects, it was determined that FI persons show a great-
er neuronal activity for executive and inhibitory response
processing. These studies support the idea that Fl persons
possess better inhibitory control (Imanaka et al., 2017; Jia
et al., 2014).

Along these lines, few studies inquire into the possible
relationships that may exist between the processing of vol-
untary signals in imagined speech and a persons’ stylistic
characteristics when performing silent speech tasks using
vowels. Understanding and explaining a persons’ individual
differences, within the study of silent speech, may aid in
the design of BCls that favour the quality of life of people
with some type of language disability. Consistent with these
approaches, this study hereby poses the following research
question:

Are there any significant differences in silent speech
production using the vowels /a/-/u/ between persons with
different cognitive styles in the Field Dependence/Inde-
pendence (FDI) dimension?

This research proposes considering a subject’s cognitive
style in the FDI dimension and using intrinsic mode func-
tions (IMF) produced by APIT-MEMD to choose the signals
related to silent speech using vowels. Also, the combina-
tion of the APIT- MEMD method with power spectral density
(PSD) is used to analyse the data captured from EEG signals.
The APIT-MEMD method allows for multivariate separation,

over time, of brain signals that have non-linear and non-sta-
tionary characteristics.

In addition, the aim is to identify the best location for
the electrode that enables generating higher energy levels
in the PSDs of 14 electrodes placed on a neuroheadset and
arranged in a matrix especially designed for the language
region in silent speech tasks using vowels.

In this order of ideas, the objective of the research is
based on determining whether the cognitive style in the FDI
dimension of people, when performing silent vowel speech
tasks, generates significant differences in the energy levels
of the PSDs and also, to establish precisely the areas of the
language region where these energy levels are maximal in
order to take them into account when designing BCls.

Method

Participants

This study involved 51 undergraduate and postgraduate
students (21 women and 30 men), one group enrolled in a
university in the city of Bogota-Colombia and another group
enrolled in a university in the city of Popayan-Colombia.
Ages ranged from 18 to 41 years (M=24.76, SD=7.66). Par-
ticipants did not exhibit any type of medical or neurological
problem. All persons involved gave their written informed
consent and the experiment was approved by the Ethics
Committee of the Universidad Nacional de Colombia.

Experimental Protocol

The experiment was carried out in the Laboratory of
Cognition and Intelligent Systems of a public university in
the city of Bogota-Colombia, under controlled lighting con-
ditions of 80 Im/m? and minimum ambient sound (ASTM STC
63). First, the subjects were given an embedded figures
test (EFT) to determine their cognitive style in the FDI di-
mension. Subsequently, each of them was asked to sit in a
comfortable chair and was fitted with an EEG neurohead-
set, and the 14 electrodes were placed on the scalp located
over the Broca, Wernicke, and motor areas in the left hem-
isphere. Two reference electrodes were also placed on the
frontal region. An abrasive gel was used to clean the scalp
before placing each electrode.

The placement of the electrodes was done according to
the neurological models on language by: Geschwind (1965)
and Poeppel and Hickok (2004). To reference the neuro-
headset on each subject’s head, the T, and C, positions
were used according to the 10-20 system (Figure 1). Finally,
a light source was placed at a distance of one meter from
the person to signal the time to begin the task of think-
ing of a specific vowel with silent speech, and also, to end
the activity. During the experimental phase, persons were
asked to keep their eyes closed to reduce artifacts, such
as blinking and eye movement, while developing the task.

Signal Acquisition

Each person was told that as long as the light source
was turned on, they were to think about the corresponding
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Figure 1. Location of the neuroheadset, which contains 14
electrodes covering the left hemisphere (language, premotor,
and motor areas) plus two reference electrodes on the frontal
area.

vowel continuously and with silent speech. They were also
told that when the light source was turned off, they had to
stop thinking about said vowel and go into a state of bodi-
ly relaxation. During the experiment, the light source was
kept activated for four seconds and then, it was turned off
for three seconds. The procedure was repeated 25 times for
each of the two vowels. Between each silent speech task,
the subjects rested for 5 minutes before proceeding to the
next vowel change. The vowels were arranged in the follow-
ing order: first /a/; and second /u/. Although some authors
suggest that data collection in EEG signals should be taken
randomly (Li et al., 2018), other researchers suggest per-
forming the data collection of vowels or syllables with EEG
signals in an orderly and deterministic way (Cooney et al.,
2020; Pressel Coretto et al., 2017). The sampling intervals
in silent speech were (385-896, 1281-1792, ...) (Figure 2).

Figure 2. Time intervals for the experimental process. During
the intervals (385-896, 1281-1792, ...), the subject thought si-
lently about the corresponding vowel. During the intervals (1-
384, 897-1280, ...), the person was in a state of relaxation.

The signals were recorded with a 14-channel EMOTIV
EPOC+ amplifier, with a sampling frequency of 128 Hz, a
14-bit resolution with 1 LSB with 0.51 4 V in monopolar con-
figuration. The 14 electrodes of the EMOTIV EPOC+ device
were arranged on the neuroheadset (E1, ..., E14) consid-
ering the name of each electrode of the EMOTIV EPOC+
device. For this experiment, the electrodes are numbered
from E1 to E14 and the relationship with the name of the
Emotiv electrodes is as follows: E1 (AF,), E2 (F,), E3 (F,), E4
(FC,), E5 (T,), E6 (P,), E7 (O,), E8 (0,), E9 (P,), E10 (T,), E11
(FC,), E12 (F,), E13 (F,), E14 (AF,). The two reference elec-
trodes were placed on the subject’s forehead (Sarmiento et
al., 2021; Villamizar et al., 2021) (Figure 1).

To export the data in MATLAB’s Simulink, Xcessity Ep-
ocSimulinklmporter acquisition software was used. Brain
signal processing was performed with MATLAB R2016 soft-
ware (The MathWorks, Inc., Natick, MA). Subsequently, data
analysis was carried out using the Statistical Package for
the Social Sciences (SPSS) Version 25 software.

To filter the EEG signals, the APIT-MEMD method has
been selected, which is particularised by allowing the sep-
aration of multivariate, non-linear and non-stationary sig-
nals, into components called IMFs (Hemakom et al., 2016).
The central concept is based on assuming that the data or
signals are composed of simple intrinsic modes of oscilla-
tion that are characterised by having the same number of
extremes and the same number of zero-crossings. These
intrinsic modes of oscillation are called intrinsic modes of
function (IMF). The APIT-MEMD algorithm has got the fol-
lowing steps: First, it calculates the covariance matrix and
the eigenvalues of the multivariate signal; Second, it se-
lects the first principal component related to the highest
eigenvalues; Third, it develops a uniform Hammerseley se-
quence over an n-sphere; Later, it calculates the projection
of the vectors in order to calculate new mean enveloping
curves; Finally, with an iterative process, the designated
MFIs are found (Hemakom et al., 2016).

For this research, brain signals were processed with the
APIT-MEMD method, where p = 14 electrodes (E1, ... E14)
located over the left hemisphere. The results of this algo-
rithm are multivariate IMFs related to p electrodes, v vow-
els with silent speech, and m multivariate levels.

In other words, power spectral density (PSD) is a statis-
tical measure that quantifies the power of a signal based on
a finite group of data. One outstanding application of PSD
is the detection of signals immersed in noise (Sarmiento et
al., 2014). Subsequently, the power spectral density (PSD)
of each brain signal was determined, for which the periodo-
gram (Xf,v(f)) was used, which determines the energy lev-
els of each IMF using equation 1 (Li & Wong, 2013; Proakis
& Manolakis, 2007).

2

X2 )

A—1
> IMFE, m(n)e-s2fn
n=0

Based on the above equation, S is the person, v is the
vowel, p is the electrode, A is the width of the window, IMF
is the multivariate function resulting from the APIT-MEMD,
m is an IMF level, and n are the samples to be analysed. In
this case, the number of IMFs analysed was 10 (Figure 3).

Subsequently, through a mixed repeated measures anal-
ysis, each IMF was analysed to determine the brain rhythms
most related to silent speech and it was found that the
multivariate IMF with the greatest significant differences
corresponded to level 4. Finally, the PSD data were aver-
aged among the participants to obtain the overall PSD av-
erage and thus proceed with the mixed repeated measures
analysis (Figure 3).

Cognitive Style Test

The test used to determine cognitive style in the FDI
dimension was Witkin’s Embedded Figures Test (GEFT). This
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Figure 3. Shows the first 6 IMFs and their respective frequencies for the E3 electrode, with a sample of 1 second, for a FD subject
(blue color), an INT subject (green color) and a Fl subject (red color), in speech imagery tasks. The first column corresponds to
the IMFs of the silent speech /a/. The second column corresponds to the Fourier transform of the previous IMFs. The third column
corresponds to the IMFs of the silent speech /u/, and the fourth column corresponds to the IMFs Fourier transform of the silent
speech /u/. In the Fourier transform for IMF 4 of /a/ and /u/, delta and theta waves are presented among 2 to 8 Hz.

perception test requires the person to locate a simple, pre-
viously seen, figure within another figure with a complex
design. The test contains 18 complex figures. The task is
to find the simple figures in a given amount time. The test
lasts approximately 20 minutes. A version of the online
instrument has been given to Colombian students (Heder-
ich-Martinez et al., 2016). The test showed a Cronbach’s
alpha of 0.847.

Results

The samples’ EFT average was 10.59; the standard devi-
ation (SD = 3.656). Out of a maximum score of 18; the min-
imum value was 1 and the maximum value was 18 points.
The subjects were grouped into FD, intermediate (INT), and
Fl, defining terciles for the total test score. Thus, three

ranges of scores were identified, namely: (a) 17 FD persons
(first tercile), (b) 21 INT persons (second tercile), and (c) 13
Fl persons (third tercile).

A mixed repeated measures ANOVA analysis was used.
The two intra-subject variables are: (1) Thinking of vowels
with two values; /a/ - /u/ and (2) PSD recorded by EEG from
14 electrodes (E1, E2, ...E14). The inter-subject variable was
the cognitive style with three values; field dependent, in-
termediate, and independent. Table 1 shows a summary of
the descriptive statistics of the PSDs recorded for each vow-
el from the 14 electrodes, considering cognitive style.

Mauchly’s test indicated that the sphericity assumption
was not met. The data show that the main effect of PSDs on
electrodes is: (X?(90) =847.91, p< 0.05). Therefore, the de-
grees of freedom were corrected with Greenhouse-Geisser
(€ = .17). The multivariate tests indicate that there are sig-
nificant differences in silent speech using vowels /a/ - /u/
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Table 1. Silent Speech PSD results for vowels /a/ - /u/ from each electrode: Mean scores and standard deviations in parentheses

/a/
FDI N
E, E, E, E, E, E, E, E, E, E, E, E, E, E,
0.40 0.36 032 033 0.34 0.31 032 034 035 032 033 034 0.31 0.33
F 7 (0.36) (0.22) (0.16) (0.17) (0.17) (0.15) (0.17) (0.16) (0.17) (0.15) (0.16) (0.16) (0.15) (0.15)
0.43 042 036 037 040 033 035 039 040 038 041 0.40 0.38 0.39
NT 2 (0.28) (0.22) (0.18) (0.19) (0.19) (0.17) (0.20) (0.25) (0.25) (0.22) (0.27) (0.26) (0.25) (0.26)
i 3 0.48 044 043 042 044 043 044 048 049 044 047 048 0.46 0.46
(0.26) (0.23) (0.24) (0.25) (0.27) (0.32) (0.31) (0.34) (0.35) (0.33) (0.33) (0.34) (0.32) (0.34)
0.43 0.41 036 037 039 03 036 040 040 037 040 040 0.38 0.39
Total ! (0.30) (0.22) (0.19) (0.20 (0.21) (0.22) (0.22) (0.25) (0.26) (0.23) (0.26) (0.26) (0.24) (0.26)
/u/
0.27 0.27 025 025 028 024 024 027 027 025 027 026 025 0.26
FD 7 (0.17) (0.17) (0.16) (0.16) (0.19) (0.16) (0.16) (0.19) (0.18) (0.17) (0.18) (0.18) (0.17) (0.19)
INT )1 0.33 0.33 0.29 030 0.31 0.27 0.29 032 0.31 0.28 0.29 030 0.31 0.29
(0.20) (0.19) (0.16) (0.17) (0.17) (0.15) (0.16) (0.18) (0.17) (0.15) (0.17) (0.17) (0.18) (0.16)
0.28 0.27 0.26 0.27 0.28 026 026 027 0.28 0.26 0.27 0.28 0.26 0.27
fl B (0.15) (0.14) (0.14) (0.14) (0.15) (0.14) (0.14) (0.14) (0.16) (0.14) (0.13) (0.15) (0.13) (0.13)
0.29 0.30 0.27 0.28 0.29 026 026 029 029 0.26 0.28 0.28 0.28 0.27
Total ! (0.17) (0.17) (0.15) (0.16) (0.17) (0.15) (0.15) (0.17) (0.17) (0.15) (0.16) (0.16) (0.17) (0.16)

(Pillai’s Trace = 0.190, F (1,48) = 11.27, p=0.002, n? =0.190)
and electrode PSDs (Pillai’s Trace = 0.553, F (13,36) = 3.42,
p=0.002, n? =0.553). However, there are no significant
double interactions between the intra-subject variables
and between the intra-subject and inter-subject variables,
suggesting that the PSDs recorded from the 14 electrodes
depend on the silent speech of the vowels (Figure 4). In
figure 4, estimated marginal means is presented for vowels
/a/ and /u/. This figure shows that there are significant dif-
ferences for the 14 EEG electrodes. Figure 5 and 6 shows a
topographic map with the 14 electrodes, for a subject and a
sample of silent speech vowels /a/ and /u/. Colors between
0 (blue) and 0.4 (yellow) indicate the value of PSD. (Figure
5 and 6).

With regard to intra-subject contrast tests for the vow-
el variable /a/ - /u/, the data show that the average PSD
values for vowel /a/ (M =0.39) differ from the average PSD va-
lues for vowel /u/ (M = 0.277). This contrast is significant
(F (1,48) = 11.27, p =0.002, n? =0.190). Also, the Electrode
variable shows significant differences (F (2.16,103.43) = 4.74,
p =0.009, n? =0.090). For the Electrode variable, there are
significant differences in the following contrasts: The first
contrast (Level 2 vs. Level 3) is the average of the PSDs gen-
erated in electrode E2 (M = 0.35) with the PSD of electrode
E3 (M = 0.32). This contrast is significant (F (1,48) = 13.92,
p =0.001, n? =0.225). The second contrast (Level 4 vs. Level
5) shows an average PSD from electrode E, (M = 0.32) with the
PSD of electrode E5 (M = 0.34). This contrast was also signif-
icant (F (1,48) = 8.22, p =0.006, n?* =0.146). The third contrast
(Level 5 vs. Level 6) indicates an average PSD from elec-
trode E5 (M = 0.34) with the PSD of electrode E6 (M = 0.31).

Figure 4. PSD estimated marginal means for vowels /a/ - /u/
from each electrode

This contrast was significant (F (1,48) = 20.15, p <0.001,
n? =0.296). A fourth contrast (Level 9 vs. Level 10) indicates
an average PSD from electrode E9 (M = 0.35) with the PSD of
electrode E10 (M = 0.32). This contrast was also significant
(F (1,48) = 36.29, p <0.001, n?* =0.431). The fifth contrast
(Level 10 vs. Level 11) indicates an average PSD from elec-
trode E10 (M = 0.32) with the PSD of electrode E11 (M =
0.34). This contrast shows significant differences (F (1,48) =
11.58, p =0.001, n? =0.194). Finally, a sixth contrast (Level
12 vs. Level 13) indicates an average PSD from electrode
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Figure 5. Topographic map of PSD overall average, done with
cubic splines, for all persons during silent speech tasks for the
vowel /a/. In the figure, the yellow color’s intensity represents
the highest PSD levels (uV2/Hz) and the blue color’s intensity
represents the lowest PSD values. The location of the electro-
desis denoted by E, E,, ..., E,

4

Figure 6. Topographic map of the PSD overall average, made
with cubic splines for all persons during silent speech tasks
for the vowel /u/. In the figure, the yellow color’s intensity
represents the highest PSD levels (uV?/Hz) and the blue color’s
intensity represents the lowest PSD values. The location of the
electrodes is denoted by E , E,, ..., E,,

E12 (M = 0.35) with the PSD of electrode E13 (M = 0.33). This
contrast indicates significant differences (F (1,48) = 9.49, p
=0.003, n? = 0.165).

Multiple comparisons according to Bonferroni indicate
statistically significant differences (p<.05) between the
PSDs of the following electrodes: (a) The E2 (M = 0.35) elec-
trode is significantly larger than E3 (M = 0.32), E4 (M = 0.32),
and E6 (M = 0.31), (b) E6 (M = 0.31) electrode, is significantly
lower than E5 (M = 0.34), E8 (M = 0.35), E9 (M = 0.35), and
E12(M = 0.35). (c) E7 (M = 0.32) electrode, is significantly
lower than E8 (M = 0.35), E9 (M = 0.35), and E12(M = 0.35),
and finally, (d) E10 (M = 0.32) electrode, is significantly low-
er than E8 (M = 0.35), E9 (M = 0.35), and E12(M = 0.35).

Regarding the test of inter-subject effects, the data show
that there are no significant differences in silent speech us-
ing vowels /a/ - /u/, in the PSDs generated from the differ-
ent electrodes due to the subjects’ cognitive styles (F (2,48)
=0.75, p =0.477, n? =0.030) (Figure 7).

Figure 7. Effect of cognitive style on PSD estimated marginal
means from each electrode

Discussion

The results show that PSDs in silent speech of the vowels
/a/ and /u/ are not associated with a person’s cognitive
style in the FDI dimension. The study’s analyses indicate
that there are no significant differences between field in-
dependent, intermediate and dependent persons. Silent
speech tasks using vowels /a/ - /u/, with eyes closed, likely
differ from completing visual tasks and exercises related
to somatosensory aspects, where Fl persons were found to
show increased neuronal activity for executive and inhibi-
tory response processing (Imanaka et al., 2017; Jia et al.,
2014).

The characteristics of a silent speech task with eyes
closed, so as to reduce artifacts such as blinking and eye
movement, ostensibly allowed field dependent persons to
exhibit a greater attentional control. This preventing irrele-
vant or distracting aspects from arising within their percep-
tual field, which could alter their attention on thinking of
silent speech using vowels /a/ - /u/, while completing the
task. In this regard, field dependent, intermediate, and in-
dependent persons would have the same capacity for atten-
tion. Regarding field intermediate persons, it is noteworthy,
that their relative functional mobility allows them to get
a little closer to FI persons. However, it is not possible to
assert that the former are under the same condition as the
latter; but it is possible to assert that the former are closer
to the level reached by the latter, as reported in other stud-
ies (Evans et al., 2013).

In this area of research, there are previous studies that
addressed the classification of EEG signals through imagined
speech, where a persons’ task was to imagine vocalising
and pronouncing the vowels (DaSalla et al., 2009; Igbal et
al., 2015; Min et al., 2016; Nguyen et al., 2018). In these
investigations, the signals were studied in the time domain,
where advanced decoding algorithms are designed and
validated to classify them. The present study is based on
thinking of silent speech using vowels /a/ - /u/, where the
object of study is the neuronal activity that takes place in
the language region of the left hemisphere.



Silent speech of vowels in persons of different cognitive styles

27

In this line of research, some studies have focused on the
development of specialised algorithms for the classification
of vowels (Sarmiento et al., 2014). Another study compared
functional magnetic resonance imaging (fMRI) and EEG sig-
nals to identify the locations on the brain related to vowel
production in silent speech (Yoshimura et al., 2016). Also, in
the work by lkeda et al. (2014), it was found that the study
of Japanese vowels /a/, /i/, /u/, is related to the premotor,
lower frontal gyrus, upper temporal gyrus, and motor are-
as. This research supplements these results insofar as the
areas corresponding to electrodes 2,5,8, 9, and 12 are relat-
ed to the areas found by Ikeda and collaborators.

For several years, motor imagery or movement process-
es have been the object of study by different researchers.
In these studies, regions of the motor cortex (pre-central
gyrus) and/or the somatosensory cortex (post-central gyrus)
are activated, finding that motor imagination tasks are re-
lated to mu and Gamma waves (D’Zmura et al., 2009; DaSal-
la et al., 2009; Igbal et al., 2015).

Within the studies of silent speech with non-invasive
methods, it has been chosen to use delta, theta, alpha,
beta, gamma and high gamma brain rhythms. For vowel
recognition with silent speech, the following rhythms have
tended to be used: theta, alpha and beta (Chi et al., 2011);
delta, theta and alpha (Sarmiento et al., 2014); alpha, beta
and gamma (Riaz et al., 2015); delta, theta, alpha, beta and
gamma (Matsumoto & Hori, 2014) and delta, theta, alpha,
beta, gamma and high gamma (Matsumoto & Hori, 2013).
In the case of syllable recognition with silent speech, the
following rhythms have been used: delta, theta and alpha
(D’Zmura et al., 2009); theta, alpha and beta (Wang et al.,
2013) and high gamma (Jahangiri & Sepulveda, 2019). In this
sense, more research is needed to determine the frequen-
cy ranges for the different elements of language in speech
imagery.

In contrast, this study found that the Delta and Theta
waves related to IMF 4 are the most suitable rhythms for
the study of silent speech using vowels /a/ - /u/ (Figure 3).
These results require further study to be able to assert that
these brain rhythms are the most relevant. In this vein, the
development of research on the language region is a prom-
ising line of study to understand and explain EEG signals
in thinking of silent speech tasks, whether using vowels,
syllables, or words.

On the other hand, the study’s data show that multivar-
iate IMFs, resulting from applying the APIT-MEMD method
(Hemakom et al., 2016), evidence greater significant differ-
ences in different persons’ IMF 4, obtaining the best results
in the PSD of this IMF. However, these results are not con-
clusive and, therefore, other studies on silent speech using
different language units, such as syllables, consonants, or
words, are required to corroborate that delta and theta
brain rhythms are generalisable to other language units. In
this regard, brain signal processing by means of the APIT-
MEMD method together with the PSD, is a potential analysis
alternative for identifying the signals related to thinking of
silent speech.

The method used in this research considers non-line-
arity, non-stationarity, and existing correlations between
the voluntary signals, which are more consistent with the
nature of brain signals (Hemakom et al., 2016). By using
these models, better results may likely be achieved when

identifying and interpreting different brain processes. How-
ever, further in-depth studies are needed to contrast these
results with methods based on linear and/or stationary sys-
tems, where different filters and transformations are used
to identify brain rhythms (Delta, Theta, Alpha, Beta, and
Gamma) while completing thinking of silent speech tasks.

Finally, when observing the different levels of PSDs from
the 14 electrodes used, it is possible to identify that elec-
trodes E2, E5, E8, E9, and E12 located in the premotor, mo-
tor, and Wernicke areas, exhibit significant differences that
allow identifying vowels /a/ - /u/. Based on these results,
it is possible to assert that identifying vowels with silent
speech may be studied through the use of electrodes lo-
cated in the premotor, motor, and Wernicke areas. These
results are consistent with the spatial positions proposed in
(Geschwind, 1965; Poeppel & Hickok, 2004) models. Hence,
future studies on silent speech tasks should focus the spa-
tial location of electrodes on the areas proposed above in
order to enable the design of BCls that relate specific tasks
to the thinking of a specific vowel, consonant, or word.

Conclusions

It is possible to conclude that there are no significant
differences in the PSDs, in the silent speech of vowels /a/
and /u/, due to the effect of the cognitive style in the FDI
dimension of the participants. This result is promising in the
design of BCls, since it is an initial approach in establishing
that people’s stylistic characteristics are not determining
factors in the design and implementation of technological
devices.

Also, the study shows that the APIT-MEMD method, to-
gether with the PSD, is a promising alternative for identi-
fying voluntary signal processing related to the thinking of
silent speech. Finally, to study silent speech using vowels
/a/ - /ul/, it is possible to suggest positioning the electrodes
in the premotor, motor, and Wernicke’s areas.
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