

Tesis Psicológica ISSN: 2422-0450

Fundación Universitaria Los Libertadores

Pérez-Manrique, Ana; Gomila, Antoni
The role of previous visual experience in the acquisition of object permanence skills in bottlenose dolphins: a pilot study*
Tesis Psicológica, vol. 13, no. 2, 2018, July-December, pp. 118-132
Fundación Universitaria Los Libertadores

Available in: https://www.redalyc.org/articulo.oa?id=139061595006

Complete issue

More information about this article

Journal's webpage in redalyc.org

Scientific Information System Redalyc

Network of Scientific Journals from Latin America and the Caribbean, Spain and Portugal

Project academic non-profit, developed under the open access initiative

El papel de la experiencia visual previa en el desarrollo de habilidades de permanencia de objetos en delfines nariz de botella (Tursiops truncatus).

Ana Pérez-Manrique

Antoni Gomila

The role of previous visual experience in the development of object permanence skills in bottlenose dolphins (*Tursiops truncatus*)

Cómo citar este artículo: Pérez-Manrique, A. & Gomila, A. (2018). The role of previous visual experience in the development of object permanence skills in bottlenose dolphins (Tursiops truncatus). *Revista Tesis Psicológica*, 13(2), 1-19.

Revisado: septiembre 27 de 2018 Aprobado: noviembre 12 de 2018

Abstract

Object permanence, the ability to represent hidden objects, has not been extensively assessed in cetaceans and the available evidence is contradictory. Although bottlenose dolphins (Tursiops truncatus) are thought to be endowed with cognitive capacities required to pass complex object permanence tests, they have failed a series of tasks involving invisible displacements, which raises the question of whether they do master object permanence. Lack of understanding of containment or lack of experience tracking objects hidden from both sight and echolocation may explain such unexpected results. The goal of the current study was to test these two hypotheses in a series of visible and invisible displacement tasks with bottlenose dolphins. Our results suggest that dolphins are indeed able to succeed in complex object permanence tasks but only if they have previous visual experience with the movements of objects inside other objects. Thus, these outcomes point to an important visual experience in development of object permanence skills.

Keywords: object permanence development,bottlenose dolphins (*Tursiops truncatus*), invisible displacements, transpositions.

Resumen

La permanencia de los objetos, capacidad de representar objetos ocultos. no se ha evaluado ampliamente en los cetáceos y la evidencia disponible es contradictoria. Aunque se cree que los delfines nariz de botella (Tursiops truncatus) están dotados de las capacidades cognitivas necesarias para aprobar pruebas compleias permanencia de objetos, han fallado en una serie de tareas que involucran desplazamientos invisibles, lo que plantea la cuestión de si logran la permanencia de objetos maestros. La falta de comprensión de la contención o la falta de experiencia en el seguimiento de objetos ocultos tanto de la vista como de la ecolocación pueden explicar resultados inesperados. El objetivo del presente estudio fue probar estas dos hipótesis en una serie de tareas de desplazamiento visibles e invisibles con delfines botella. nariz de Nuestros que los delfines resultados sugieren pueden tener éxito en tareas complejas de permanencia de objetos, pero solo si tienen experiencia visual previa movimientos de objetos dentro de otros objetos. Por lo tanto, estos resultados apuntan a un papel importante de la experiencia visual en el desarrollo de habilidades de permanencia de objetos.

Palabrasclave:desarrollodepermanencia de objetos, delfines nariz debotella(Tursiopstruncatus),desplazamientosinvisibles,transposiciones.

Introduction

Object permanence, the understanding that objects continue to exist even when they are out of sight, is considered to be a fundamental element of spatial cognition (Piaget 1953), and has been a subject of interest in animal cognition. The of developmental origins object knowledge, including object permanence, is fundamental to cognitive science and has been a heavily debated topic. In general, we can distinguish three main views (Johnson, Amso, & Slemmer, 2003: Bremner, Slater. & Johnson, 2015). The first one is based on Piaget's constructionist account, according which infants develop object permanence through active manual exploration of objects (Piaget, 1953, 1955). Thus, the emergence of object representations is linked to children's motor development. Subsequent evidence challenged this Piagetian account by showing that much younger infants, and long before they can move and manipulate objects, may have an understanding of some elements of the object concept (Baillargeon, Spelke, & Wasserman, 1985; Baillargeon & Renée, 1987; Hespos & Baillargeon, 2001). This evidence comes from studies using

methods such as anticipatory looking or violation of expectation, that do not rely on active searching for objects. Four months old infants' success in these paradigms have led to postulates of innate object knowledge (Spelke *et al.*, 1992). An alternative view posits that theories based on innate knowledge may neglect the potential contributions of learning and previous visual experience to guide the acquisition of object knowledge (Johnson *et al.*, 2003). This account suggests that initial object concepts are learned from experience early in postnatal life (Johnson *et al.*, 2003).

Object permanence has also been a subject of interest in animal cognition. Although many studies of visible and invisible displacements have been conducted in non-human animals, findings on most animal species controversial (reviewed by Jaakkola, 2014). Most of the criticisms focus on methodological issues such as number of trials, training, lack of blinding protocols or control conditions, and number and disposition of containers (Jaakkola, 2014; Cacchione & Rakoczy, 2017). Due to these procedural differences across tasks, results on different species are not

usually directly comparable (Cacchione & Rakoczy, 2017). Furthermore, several cognitive skills are required to succeed in object permanence tasks, thus proper interpretation of results is often difficult (Cacchione & Rakoczy, 2017).

To succeed in visible displacement tasks not only requires a basic understanding of continuously existing objects but also to deal with several executive demands (visually track the object movements, planning behaviour, memory and inhibitory capacities) (Cacchione & Rakoczy, 2017). **Paradigms** involving invisible displacements further are complicated. These tasks not only require understanding that a hidden object still the exists and moves with moving container but also visually tracking its movements in presence of several distractors (Barth & Call, 2006). This implies that the spatial representations and positions of the hidden object must be updated constantly (Barth & Call, 2006).

Mastering invisible displacement tasks involves a conglomerate of: (1) executive demands (advanced inhibitory and memory capacities); (2) reasoning demands (advanced spatial reasoning skills, logical reasoning or coordinate

representation), and (3) sensitivity context factors (disposition of containers number of trials etc.) objects, and (Cacchione & Rakoczy, 2017). Children pass invisible displacement tasks around 18–24 months of age (Piaget, 1955). It is at this age when children also acquire other cognitive abilities related to the coordinate multiple capacity to representations of reality (language, instrumental problem-solving or selfrecognition) (Perner, 1991; Cacchione & Rakoczy, 2017). Non-human animals have been tested in invisible displacement tasks using different paradigms. Some of these paradigms have been called into question for not being properly blinded or for not including control conditions Therefore, 2014). (Jaakkola, positive species findings on most are still controversial. Overall, there consensus that only great apes and parrots able to reliably pass invisible displacement tasks (e.g. Pepperberg et al., 1997; Barth & Call, 2006; Collier-Baker et al., 2006; Auersperg et al., 2014).

One of the experimental paradigms used to assess invisible displacement tracking abilities is the transposition task. In this

task, the object is visibly placed inside one of several containers, and then the container is moved to another location. In the most demanding version of this task, the container in which the object is hidden switches locations with another container (Barth & Call, 2006). Spatial transpositions usually imply that multiple elements move at one time eliminating any potential bias toward particular containers that moved (Beran & Minahan. 2000). Two-year-olds found transposition tasks harder than Piaget's stage-6 invisible displacement task, whereas great apes performed equally well in both paradigms (Beran & Minahan, 2000; Call, 2003; Barth & Call, 2006). Unlike children, Goffin cockatoos (Cacatua goffini) found transposition tasks easier than Stage 6 tasks (Auersperg et al., 2014).

Object permanence has not been extensively assessed in cetaceans and the few existing studies have provided contradictory data. Bottlenose dolphins (Tursiops truncatus) succeeded at visible displacements tasks, but failed a series of involving invisible experiments displacements transposition like tasks (Jaakkola al. 2010). In et these

experiments, dolphins had to find object hidden in one of three opaque buckets. These are totally unexpected results due to the previous success of dolphins in tasks assumed to require cognitive capacities involved in object permanence (Mercado and DeLong 2010; Marino et al. 2007). Conversely, bottlenose dolphins seemed to follow the invisible movements of a disc in a visual display which involved object occlusion rather than containment (Johnson et al. 2015). In this study, the authors videotaped the dolphins' head moves while observing videos of a disk moving behind occluders to assess whether dolphins were able to anticipate the movements of the disk. This experiment, used thus. an anticipatory looking paradigm which try to infer what the individual understands on the grounds of her expectations. Therefore, these two conflicting evidences raise the question of whether dolphins do indeed master object permanence.

In this pilot study we aimed to test the two main hypothesis proposed by Jaakkola *et al.* (2010) to explain dolphins' general failure in invisible displacements tasks: (1) Lack of understanding of

containment, and (2) lack of experience tracking objects hidden from both sight and echolocation.

Dolphins live in aquatic environments in which objects often move differently than out of water. Given this aquatic environment and their reliance on echolocation, it is likely that dolphins lack previous visual experience with the invisible movements of objects hidden inside other objects. Furthermore, due to the different physical properties of air and aquatic environments, dolphins' early experience with moving objects underwater could not apply to what they observe out of water. Therefore, they may not have gained the necessary empirical experience to develop the capacity to track invisible displacements. In fact, two different experiments with infants and chicks highlighted the crucial role of early experience viewing objects undergoing different events for the development of object permanence skills (Johnson, Amso, and Slemmer 2003; Prasad 2015). In addition, infants seem to learn separately how occlusion and containment operate (Hespos and Baillargeon 2001, 2006), and likewise, lack of understanding of containment

could explain dolphins' failure on tasks involving containment and their success on tasks involving occlusion. For these reasons, dolphins are an ideal model to assess the role of previous visual experience in the acquisition of object permanence abilities.

The first aim of this pilot study was thus bottlenose dolphin's spontaneous testing ability visible to track simple and invisible displacements, giving them with "containment" some experience before the testing. If dolphins failed to spontaneously pass simple visible invisible displacement tasks, the second aim of the study was to assess the role of previous visual experience in dolphin's acquisition of object permanence skills. For this purpose, the dolphin received visual experience with an object visibly moving inside a container before being retested in an invisible displacement task. With this procedure, we aimed to see if previous visual experience influences the performance of dolphins in this type of tasks.

Material and methods

Subjects and apparatus

study participated two female Atlantic bottlenose dolphins housed at Marineland Mallorca. The dolphins lived in an outdoor pool conjoined to a medical pool, with a total volume of 1846.75 m³ of water. The age of the study subjects was 8 years (Stella) and 13-years-old (Blava). Both dolphins were captive born and shared the pool with a juvenile male. At the end of the study, they also shared the pool with two adult females and a The experiment was conducted calf. during the first training session of the day, before the park opened to the public. All applicable international, national and institutional guidelines for the care and use of animals were followed.

Two identical opaque grey plastic boxes (27.6 x 22 x 17 cm) were used as hiding devices. During the trials, the boxes were positioned about 23.5 cm apart on a wooden sliding platform (123 x 34 x 9 cm) located at the edge of the pool. A rubber frog (17 x 12.5 x 9.5 cm) served as the target object and fish were used as rewards. All sessions were videotaped using a waterproof camera SJCAM SJ4000.

Procedure

We used a simpler protocol than that of Jaakkola et al. (2010), by adapting to dolphins the one used by Call (2003) with This great apes. protocol includes different spatial transposition tasks with only two containers. The experimenter sat behind the sliding platform facing the dolphin, who stayed at the edge of the pool in front of the platform (see Fig. 1). beginning of each trial, the platform was in a slid-back position. Each trial when started the experimenter showed the object to the dolphin and placed it on the platform (inside or outside the boxes, depending on experimental condition). Then. the experimenter the pushed platform towards the subject allowing it to make a choice. The dolphin made its choice by touching a box or the object with its rostrum (see Fig. 1).

Fig. 1 Photographs depicting a testing session. (a) The object is located inside the right box and the dolphin waits to make a choice; (b) the dolphin makes a correct choice

If the subject chose the correct location (that in which the object was), the dolphin received positive reinforcements of fish and social interaction. If the dolphin chose the incorrect location, the experimenter retrieved the object and showed it to the dolphin. If, during a trial, the subject did not respond, swam away, chose location before or the experimenter slid the platform, the trial was repeated. If the subject performed any of these behaviours more than two times for the same trial, the trial was coded incorrect. During as the experimental sessions, any other dolphins present in the pool were kept busy by the trainers. If one of those dolphins approached the experimental subject, the

trial was aborted and resumed when the dolphin had returned to its trainer.

The study consisted of three phases:

1. Training. This phase had three aims: dolphin with (1) familiarize the apparatus: during the first session of training, the object and the boxes were put in the pool so dolphins had ample with opportunity inspect them echolocation and touch; (2) train the dolphins to always choose the object's location: the sliding platform was divided in three areas (left, right, middle) in which the object and boxes could be placed (9 different dispositions); and (3) give the dolphins some experience with "containment": during the training, boxes were always placed on their side so that the open sides were facing the subject and the object was still visible inside them. By the end of the training phase, training composition was standardized and randomized. Each training session consisted of some warming up trials in which the object was directly placed on the platform (at least one per location) followed by 9 training trials (one per disposition) including the object and the two boxes. Order of trials was semirandomized, with the constraints that the

object was never placed more than two consecutive trials in any particular location. The object's location was counterbalanced across trials. Our criteria for moving from training to testing were that the dolphin was correct on at least 8 out of 9 trials on two consecutive sessions.

- 2. Test. This phase consisted of several tasks that were administered in a specific order. The dolphin had to succeed in one task to move onto the next one. The reason for this experimental design is that each task assesses a prerequisite for the ability tested in the following task. Thus, all subjects underwent the tasks in the same order.
- a. Visible displacement task: This task tested dolphins' spontaneous ability to track the location of the object when both boxes were turned, hiding the object. The boxes' open ends faced the dolphin thus, the object was still visible inside them. The experimenter placed the object inside one box, and simultaneously turned both boxes in full view of the dolphin. Testing was divided into two sessions. Before each testing session, the dolphin received three warming up trials (object placed directly on the platform, one per location)

and two training trials (object still visible inside the box, one per box). If the dolphin missed one of these trials, testing was postponed to the next day. Each session consisted of two training trials (one per box) and eight visible displacement trials. The object's location was counterbalanced across trials. Order of trials was semi-randomized, with the constraints that the object was never placed more than two consecutive trials in any particular location. In one session, the experimenter's hand moved from right to left, and in the other, from left to right.

b. Transposition task: This task tested dolphins' ability to track the invisible displacement of the hidden object when substituted each other's both boxes starting locations, crossing each other's path. The procedure was identical to that of the visible displacement task but, once the boxes were turned, the experimenter grabbed both boxes (the right box with the right hand and the left box with the left hand) and switched their positions simultaneously. Testing was divided into two sessions. Before each testing session, the dolphin received three warming up trials (one per location) and two visible displacement trials (one per box). If the

dolphin missed one of these trials, testing was postponed to the next day. Each testing session consisted of eight transposition trials. Order of trials was semi-randomized. with the constraints that the object was never placed more two consecutive trials than in any particular location.

c. Visible transposition task: If a dolphin failed the transposition task, it received several sessions of a transposition task in which the object was still visible inside the box. The aim of this task was to give the dolphins visual experience with the movement of objects inside of other objects. This task was identical to the transposition task except that both boxes were not turned. By the end of this phase, the dolphin received sessions that consisted of two training trials, six visible displacement trials and six visible transposition trials. The object's location was counterbalanced across trials. Order of trials was semi-randomized, with the constraints that the object was never placed more than two consecutive trials in any particular location. Our criteria for moving from the visible transposition task to the second transposition task were that the dolphin was correct on at least 11 out

of 12 visible displacement trials and 11 out of 12 visible transpositions trials in two consecutive sessions.

- Transposition task: Dolphins were retested in of one session the transposition task.
- 3. Control tests. If a dolphin passed the second transposition task it received 5 control tests. The aim of these control tests was to rule out associative learning visible strategies. During the transpositions tasks dolphins could have learned some of these strategies. For example, to follow the hand that touched the box in which the object was seen last, or to use the crossing movement of the experimenter's hands as a cue indicating that they must select the box located on the opposite side of the area in which the object was last seen. Before each control test session, dolphins received two visible displacement trials visible and two transposition trials.

Dolphins were tested in the following control tests:

a. Up and down (1 test): The procedure was identical to the transposition task except that, instead of switching the boxes' location, the experimenter crossed her arms and moved the boxes up and down. Thus, the boxes remained in the same position.

b. Double transposition (1 test): The double transposition test involved two consecutive transpositions. Boxes switched positions twice, thus the object ended up at the same side to which it was initially located.

c. Sequential transpositions (3 tests): In these three control tests, the hidden object using new displaced sequential was movements rather than simultaneous movements. The experimenter always used her right hand to move the boxes after turning them with both hands. In the 3-step transposition, both boxes switched positions in three sequential displacements. The location of the boxes at the beginning of each trial was the same as in the previous conditions. In the 2-step transposition, both boxes were moved from their initial positions to new locations in two sequential displacements. In this control, the location of the boxes at the beginning of the trials was different from that of previous conditions. Boxes crossed each other's path. In the 1-step transposition, one of the boxes was moved to a new location. In this control,

the location of the boxes at the beginning of each trial was different from that of previous conditions. The object's start and final location changed. The box crossed the other's path.

A dolphin was coded as making a choice when its rostrum contacted a box or the object. All trials were videotaped and the dolphin's choices were scored by reviewing the video recordings. The dolphins' choice unambiguous; was therefore, no reliability coding was conducted.

Results

One of the two dolphins (*Blava*) was only tested in the visible displacement task since it was moved to the show pool and we were forced to terminate her testing. Only Stella performed above chance for visible displacements (binomial test, P< 0.05). Stella did not perform significantly above chance either in the transposition task or within the first two sessions of the visible transposition task (binomial test, P>0.05). It took about four sessions to reach criterion in this task (last two sessions, binomial test, P<0.001). After receiving the visible transposition sessions. Stella's performance in the transposition task was second above

chance levels (binomial test, P< 0.01). **Table 1** presents the proportion of correct responses per task for each dolphin. *Stella* performed above chance in the up and down control test and in the double

transposition test (binomial test, P< 0.05) but not in any of the controls involving sequential movements (binomial test, P>0.05).

Table 1 Proportion of correct choices per task for each individual (the total number of trials is indicated inside of parentheses).

Task	Individuals	
	Stella	Blava
Visible displacement task (16)	0.75*	0.44
Transposition task (16)	0.50	_
Visible transposition task (first sessions)	0.44	_
Second transposition task (8)	1*	_
Double transposition (8)	0.88*	_
Up-down (8)	0.88*	_
3-step transposition (8)	0.50	_
2-step transposition (8)	0.38	_
1-step transposition (8)	0.63	_

^{*} P < 0.05

Finally, we examined the dolphins' individual strategies for responding. We only identified two strategies: (1) correct responding, and (2) selecting a favored location (left or right). In the visible displacement task, *Blava* selected 13 times out of 16 the left box (binomial test, P < 0.01). In turn, *Stella* significantly selected the favored location (right) in the

two first sessions of the visible transposition task (binomial test, P < 0.01) and in the three control tests involving sequential movements (3-step transposition: binomial test, P < 0.01; 2-step and 1-step transposition: binomial test, P < 0.05).

Discussion

Both dolphins had difficulties with visible an invisible displacement tests even when they were tested in tasks involving the displacement of only two containers. Only one of the dolphins, Stella, succeed in the visible displacement task without previous training. Our findings in this task replicated those of Jaakkola et al. (2010). In their study, only three out of six dolphins passed the single visible displacement task and only one out of six dolphins passed the double visible displacement test. These results suggest that previous learning and experience with the procedure are necessary to solve simple object permanence tasks. Thus, some of the traditional object permanence tasks that seem intuitive and easy to solve from the human perspective, might not be as simple as previously thought.

Although *Stella* failed to spontaneously pass the first transposition task, after receiving visual experience with visible transpositions she succeeded in this test. Furthermore, she passed two control tests including a more complex double transposition task. These results support the hypothesis that learning and previous visual experience are crucial for the

development of object permanence abilities. This effect of previous visual experience in the performance of object permanence tasks was also reported in and chicks (Gallus infants gallus domesticus) (Johnson et al. 2003; Prasad 2015). In addition to the integration of visual and echoic information, dolphins might need to manipulate an object to construct a global representation of that object (Blois-Heulin et al. 2012). Thus, have difficulties dolphins may in constructing a spatial mental representation of never manipulated objects (Blois-Heulin et al. 2012). In this dolphins study, were allowed to manipulate both the object and the containers, procedure that could have also influenced dolphin's the subsequent performance in the transposition tasks as well.

Most of the criticisms made on possible successes of animal species in invisible displacements tasks focus on methodological issues such as lack of controls for sensory and associative cues social cueing (Jaakkola 2014: or Cacchione and Rakoczy 2017). In our study, the experimenter wore sun glasses to avoid giving eye-gaze cues to the

dolphin. Furthermore, due to *Stella*'s differential success across tasks, it seems unlikely that her successes were based on inadvertent social or sensory cues. Other possibility for Stella's success in the second transposition task is that, during visible transposition sessions, the could have learned some simple associational rules such as "whenever the experimenter crosses her hands, choose the opposite location to where the object was last seen" or "follow the hand that last touched the box containing the object". To rule out these associative learning explanations we tested dolphin in five different control tests. Stella succeeded in two of these control tests, the up and down and the double transposition task. If she was following the first rule, she could not have passed either of these two controls, and if she followed the second rule she could not have succeeded in the up and down control. However, Stella did not pass any of the controls involving sequential movements. In these tests, she chose the favored box in almost all trials. Although negative results are always hard three main hypotheses may interpret. explain these outcomes:

- (1) Greater difficulty: It has been proposed that success in object permanence tasks is directly dependent on the number of elements that change locations (Barth and Call 2006). Container crossing and substitution also performance in invisible affects displacement tasks (Rooijakkers et al. 2009). Furthermore, multiple displacements be seem to more challenging than single displacements in terms of visual tracking, memory inhibition capacities (Cacchione and Rakoczy 2017). Therefore, some of these factors could have added an difficulty to the sequential transpositions. In addition, while in the rest of the tasks the boxes were always about 23.5 cm apart, in some steps of the sequential transpositions the boxes were separated from each other only by a few This disposition may have centimeters. caused that the dolphin could not visually discriminate one box from the other, losing track of the object's subsequent movements and opting for always choosing the favored box.
- (2) Interference of previous training: An alternative hypothesis is that dolphins' might be able to track invisible

displacements but their previous training in the aquatic park could have influenced their performance across tasks. Trained dolphins associate each specific trainer's with specific behavioral signal a response. Any change in this signal change in the implies dolphin's response. Thus, it is possible that the dolphins interpreted any significant change of the elements or movements during the procedure as a change of task, and responded differently every time a modification was added new to paradigm.

(3) Lack of the ability to track invisible displacements: Finally, it could be possible that the dolphin's failure in the three new sequential transposition tasks was due to a lack of the ability to track invisible displacements. If this were the case, the dolphin should have succeeded in the second transposition task and in the two other controls by following some undetected lower-level strategies learned during the visible transposition sessions.

In any case, previous experience with the visible displacements of the object inside the box improved the dolphin's performance in the subsequent transposition tasks. This visual experience

allowed the dolphin to pass a spatial transposition task and a more difficult of version this test. the double **Spatial** transposition. transpositions require an understanding of the physical nature of objects and containers and how they relate through movement when the container moves holding the (Beran and Minahan 2000). Thus, it is reasonable that previous visual experience with this type of visual stimulus is necessary to understand the dynamics of objects' invisible displacements and apply this knowledge to solve spatial transpositions. Given that the same object has totally different movement dynamics in and out of the water, previous visual experience might be crucial for animals living in aquatic environments to solve transpositions. If so, dolphins' previous in invisible displacement tasks could be due to their lack of empirical experience with the movement dynamics of the elements used in these tasks. Furthermore, dolphins early failure in some visible displacement tasks (Jaakkola et al., 2010) also points to the necessity previous with experience procedures of the tasks to succeed in such tasks.

The dolphin's success in the control tests involving synchronous movements and its failure in the sequential ones, especially in the 1-step transposition, is puzzling. Interference with the dolphin' previous training, an inhibition control problem, a cognitive demand, greater the number of trials or some combination of the previous factors might explain the dolphin's failure in those controls. Another interpretation for dolphin's failure in the sequential controls is that the dolphin lacked the ability to track the displacements of hidden objects and it passed the other transposition tasks by identified learning not simple associational rules. Unfortunately, with our data, we were unable to clearly identify the critical factors influencing the dolphin's pattern of responses. Thus, more studies including a larger number of subjects are desirable to confirm the role of previous visual experience in the development of invisible displacement tracking abilities in dolphins and other species. This, ultimately, may shed light the debate of whether object permanence is a hardwired property of the visual system or learned during development through previous visual experience with moving objects.

Acknowledgments

This research has received the support of the Spanish Ministry of Economy and Competitiveness through project FFI 2013-44007-P. Ana Pérez-Manrique was supported by a FPU PhD scholarship from the Spanish Ministry of Education, Culture and Sport (AP2012-3501).

References

- Auersperg AMI, Szabo B, von Bayern AMP, Bugnyar T (2014) Object permanence in the Goffin cockatoo (Cacatua goffini). J Comp Psychol 128:88–98 . doi: 10.1037/a0033272
- Baillargeon R, Renée (1987) Object permanence in 3½- and 4½-month-old infants. Dev Psychol 23:655–664. doi: 10.1037/0012-1649.23.5.655
- Baillargeon R, Spelke ES, Wasserman S (1985) Object permanence in five-month-old infants. Cognition 20:191–208. doi: 10.1016/0010-0277(85)90008-3
- Barth J, Call J (2006) Tracking the displacement of objects: a series of tasks with great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, and Pongo pygmaeus) and young children (Homo sapiens). J Exp Psychol Anim Behav Process 32:239–252. doi: 10.1037/0097-7403.32.3.239
- Beran MJ, Minahan MF (2000) Monitoring Spatial Transpositions by Bonobos (Pan paniscus) and Chimpanzees (P. troglodytes). Int J Comp Psychol 13:1
- Blois-Heulin C, Crével M, Böye M, Lemasson A (2012) Visual laterality in dolphins: importance of the familiarity of stimuli. BMC Neurosci 13:9 . doi: 10.1186/1471-2202-13-9
- Bremner JG, Slater AM, Johnson SP (2015) Perception of Object Persistence: The Origins of Object Permanence in Infancy. Child Dev Perspect 9:7–13. doi: 10.1111/cdep.12098
- Cacchione T, Rakoczy H (2017) Comparative methaphysiscs: Thinking about objects in space and time. In: Call J (ed) Handbook of Comparative Psychology. American Psychological Association, Washington, pp 579–599
- Call J (2003) Spatial rotations and transpositions in orangutans (Pongo pygmaeus) and chimpanzees (Pan troglodytes). Primates 44:347–357 . doi: 10.1007/s10329-003-0048-6
- Hespos SJ, Baillargeon R (2001) Infants' Knowledge About Occlusion and Containment

- Events: A Surprising Discrepancy. Psychol Sci 12:141–147 . doi: 10.1111/1467-9280.00324
- Hespos SJ, Baillargeon R (2006) D??calage in infants' knowledge about occlusion and containment events: Converging evidence from action tasks. Cognition 99: . doi: 10.1016/j.cognition.2005.01.010
- Jaakkola K (2014) Do Animals Understand Invisible Displacement? A Critical Review. J Comp Psychol 128:1–15. doi: 10.1037/a0035675
- Jaakkola K, Guarino E, Rodriguez M, et al (2010) What do dolphins (Tursiops truncatus) understand about hidden objects? Anim Cogn 13:103–120 . doi: 10.1007/s10071-009-0250-z
- Johnson CM, Sullivan J, Buck CL, et al (2015) Visible and invisible displacement with dynamic visual occlusion in bottlenose dolphins (Tursiops spp). Anim Cogn 18:179– 193. doi: 10.1007/s10071-014-0788-2
- Johnson SP, Amso D, Slemmer JA (2003) Development of object concepts in infancy: Evidence for early learning in an eye-tracking paradigm. Proc Natl Acad Sci U S A 100:10568–10573. doi: 10.1073/pnas.1630655100
- Marino L, Connor RC, Fordyce RE, et al (2007) Cetaceans Have Complex Brains for Complex Cognition. PLoS Biol 5:e139. doi: 10.1371/journal.pbio.0050139
- Mercado III E, DeLong CM (2010) Dolphin Cognition: Representations and Processes in Memory and Perception. Int J Comp Psychol 23:344–378
- Piaget J (1953) The origins of intelligence in children. J Consult Psychol 17:467–467 . doi: 10.1037/h0051916
- Piaget J (1954) The construction of reality in the child (Trans. Cook)
- Prasad A (2015) Development of object permanence in a newborn visual system::

 University of Southern California Dissertations and Theses. University of Southern

 California
- Rooijakkers EF, Kaminski J, Call J (2009) Comparing dogs and great apes in their ability to

visually track object transpositions. Anim Cogn 12:789–96 . doi: 10.1007/s10071-009-0238-8

Spelke ES, Breinlinger K, Macomber J, Jacobson K (1992) Origins of knowledge. Psychol Rev 99:605–32