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Resumen:  En este trabajo se estudió el uso de un nuevo rasgo para la detección de fallas
en el devanado y la jaula de un motor de inducción, y presenta la validación experimental
de un esquema de detección e identificación utilizando Máquinas de Vectores Soporte
(SVM). Esta validación se realizó en un banco de pruebas usando motores de 2 HP, 4
polos en los que fueron inducidas las fallas de corto circuito en el estator y barras rotas,
por separado. Los rasgos en dominio tiempo y dominio de la frecuencia como la media
aritmética , valor RMS , frecuencia central , curtosis , valor RMS de la densidad espectral
de potencia fueron evaluados y validados a partir de datos experimentales para varias
condiciones de carga. El rasgo relación PSC/NSC (corriente de secuencia positiva /
corriente de secuencia negativa) tuvo un desempeño satisfactorio en la mayoría de los
clasificadores independiente del régimen de carga. Este nuevo rasgo se evaluó en términos
de detección de fallos y la discriminación entre los diferentes grados de severidad con
resultados satisfactorios.
Palabras clave: Clasificación de fallas, MCSA, Corriente de Secuencia Negativa,
Corriente de Secuencia Positiva, Máquinas de soporte vectorial.
Abstract:  is paper studied the use of a new stator current feature for detection of
winding and cage bars faults in an induction motor, and presents the experimental
validation of a detection and identification scheme using Support Vector Machines
(SVM). is validation was performed in a test bed using 2 HP, 4 pole motors in
which shorted winding and broken bars faults were induced, separately. Both time
and frequency domain features like arithmetic mean, RMS value, Central Frequency,
Kurtosis, RMS value of Power Spectral Density were assessed and validated using
experimental data for several load conditions. PSC/NSC (positive sequence current/
negative sequence current) ratio was successful in most of the classifiers despite the
load regime. is new feature was evaluated in terms of fault detection and severity
discrimination with satisfactory results.
Keywords: Fault classification, MCSA, Negative Sequence Current, Positive Sequence
Current, Support vector machines.
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Resumo:  Neste trabalho foi estudado o uso de um novo recurso para a detecção de falhas
nos rolamentos e na gaiola de esquilo de um motor de indução, e apresenta a validação
experimental de um esquema de detecção e identificação utilizando máquinas de vetores
de suporte (SVM). Esta validação foi realizada num banco de ensaios utilizando motores
de 2 HP, 4 polos nos quais foram induzidas as falhas de curto circuito no estator e
barras quebradas, separadamente. Os recursos em domínio do tempo e no domínio
da frequência como a média aritmética, valor RMS, frequência central, curtose, valor
RMS da densidade espectral de potência foram avaliados e validados a partir de dados
experimentais para várias condições de carga. O recurso relação PSC/NSC (corrente
de sequência positiva/corrente de sequência negativa) teve um desempenho satisfatório
na maioria dos classificadores independente do régime de carga. Este novo recurso foi
avaliada em termos de detecção de falhas e discriminação entre os diferentes graus de
severidade com resultados satisfatórios.
Palavras-chave: Classificação das falhas, MCSA, Corrente de sequência positiva,
corrente de sequência negativa, máquinas de vetores de suporte.

1. INTRODUCTION
Incipient faults in electrical machines can have a relatively small effect

in the motor performance, but they can affect at long term its longevity,
availability and reliability. erefore, one of the major concerns in
electrical machines research is fault detection and identification. Current
signal analysis, as suggested by the MCSA (Motor Current Signature
Analysis) technique is a non-intrusive fault detection and identification
method with increasing popularity. e monitoring of certain features
within the current signal both in time and frequency domain allows
determining whether a given fault exists or develops in a specific motor
component, given a baseline current signature.

e fault distribution percentage in induction motors, according to the
fault type is (ompson and Fenger, 2001): Stator related faults: 38%;
rotor related faults: 10%; bearing related faults: 40% and other faults:
12%. ese percentages justify the study of faults in stator windings, since
they account for one of the most common fault types.

Some studies carried on industrial facilities show satisfying results
regarding the fault detection and identification (ompson and Fenger,
2003; Bouzida, et al, 2011; Dias and Chabu, 2014). On the other
hand, it is important to mention that the success of the fault detection
depends upon the correct selection of fault indicators, which should
be independent from other abnormal conditions or harmonics and sub
harmonics present in the current signal.

e fault symptoms in the frequency domain are modeled by
theoretical approximations, using equations that relate the motor speed
and construction characteristics (as number of pole pairs, number of cage
bars, etc…) with frequency components that increase their energy once a
certain fault starts developing (Nordin and Singh, 2014; Teotrakool et
al., 2006; De Jesus et al., 2014; Bellini et al., 2006; Puche-Panadero et al.,
2009).

1.1. Rotor’s Broken Bars
(ompson, 1994) describes the rotor’s broken bar fault mechanism

as consequence of high starting currents, which produce mechanical and
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thermal fatigue in the cage bars. In addition, heavy-duty cycles and long
starting times increase the incidence of breakages in the bar-ring junction
region. e model for this type of fault (See Equation 1) represents the
fault related sidebands that appear once there is a broken bar fault:

[Equation 1]

Where fb is the sideband frequency,  and  is the motor supply
current frequency.

1.2. Stator’s Shorted Winding
is type of fault usually starts as a non-detected isolation loss between

two winding turns and progressively, because of high temperatures,
evolves into a short circuit, isolating a major number of winding turns
(Awadallah and Morcos, 2004). Equation (2) corresponds to shorted
winding fault model (Poncelas et al., 2008):

[Equation 2]

Where are the frequency values associated with shorted winding
fault,  is the supply current frequency, p is the number of pole pairs,

 and s is the motor’s slip.
2. Negative Sequence Component
e symmetric components method is a mathematical technique used

to describe unbalanced power systems. For a three-phase system, the
sequential components are described by equation (3):

[Equation 3]

Where , , and  are the zero component, positive sequence
component (PSC) and negative sequence component (NSC),  are
the phase currents and a is a phase rotation operator  or 120°.

A balanced three-phase system will only contain positive sequence
component. e negative sequence component is the system’s unbalance
(or asymmetry) indicator. Finally, the zero component is a measurement
of the current quantity that is not returning through the phase
conductors (Bollen and Gu, 2006; Bouzid and Champenois, 2013).
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t is important to mention the fact that asymmetries in an electrical
machine can be present due to several reasons, including short circuit
in the motor winding, inherent machine unbalances or instrumentation
unbalances, mechanical load fluctuations or unbalanced supply sources.
All of the above asymmetries will reflect in the machine’s stator current,
and consequently will affect the negative sequence current’s mean value.
For that reason, this current component has been used as a fault indicator
in the analysis of shorted winding related faults. For example, in (Quiroga,
2010) it was demonstrated a consistent increase in the mean value of the
negative sequence current in the presence of increasing shorted winding
faults in an electrical machine, under several load conditions.

3. Support Vector Machines for bi-class classification
Support Vector Machines are supervised learning algorithms used

to model a hyperplane in a multidimensional space to solve a given
classification problem. Taking a linear classification problem with
features  and classes  , the parameters  will be used to model the
classifier as Equation (4) (Ng, 2013; Scholkopf and Smola, 2002):

[Equation 4]

Where  if  otherwise. is notation allows dealing
separately with the intercept term, b. e vector  is then in the form

 .
Functional and Geometric Margin
Given a training example , the functional margin of  ,

regarding the training example can be written as:

[Equation 5]

If  , then the classifier prediction is reliable and correct if 
is a large, positive number (it is required that the functional margin is
large enough). In the same way, if , it is required  to be a large,
negative number. In this way, if  , then the prediction in the
example  will be correct. erefore, a large functional margin represents
a reliable classifier.

On the other hand, the geometric margin can be interpreted as the
distance from a given training example to the decision boundary and it
can be defined by Equation (6) (Ng, 2013):

[Equation 6]

In order to find the optimum separating hyperplane it is necessary
to maximize the margin (maximizing the margin implies increasing the
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classifier generalization capability) by solving (7) (Scholkopf and Smola,
2002):

[Equation 7]

Subject to the restriction:

When used in solving maximum and minimum problems, the
Lagrange multipliers (with ) convert the restricted problem into
the minimization of the Lagrangian L, the dual representation of L in
equation (8):

[Equation 8]

Once the solution is found, training points with  will be the
support vectors, which are the base of the class separation model.

In case that the example data are not linearly separable, it is possible
to transform the data set into a new dimensional space, where the data
can be linearly separable. For that purpose, a transformation or mapping
function  is defined in terms of the scalar product of the scalar
product in the original classifying space. us, instead of specifying the
transformation function, a Kernel function  is specified. A Kernel
function performs the space transformation and the scalar product in a
single step, which is a relevant fact, since the calculations in SVM are
expressed in terms of dot products. erefore, in order to solve a higher
dimension problem dot products are obtained as the result of kernel
functions. e most popular kernel functions are Radial Basis Function
(RBF) and polynomial function, expressed by equation (9) and equation
(10), respectively, for vectors  and  (Ng, 2013):

[Equation 9]

[Equation 10]

Where  , in Equation (9), is a parameter that controls the decay rate
for the kernel function as  moves away from  . On the other hand,
the polynomial degree n and the sum constant  must be specified for
polynomial function in Equation (10).
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It can be stated that the appropriate use of a Kernel function allows
using the same algorithms used for solving the problem stated in equation
(8) when solving a non-linear classification problem.

In addition, when elements belonging to different classes are mixed,
a strategy called so margin is commonly used. is technique allows
a relaxation in the optimization conditions. e so margin strategy
includes, among other variables, parameter C, which is an error penalty
related to the margin. e larger the constant C, the smaller the margin
is and as a consequence of that, the training error becomes smaller as
well. However, for this particular application, it is more desirable to
have a rather small value of C because it increases the margin width and
consequently, the algorithm’s generalization capability

4. Experimental setup
e test bed used in this work consists of a set of 2 HP induction

motors, 440/220V, 4 pole, 22 rotor bars, 1800 rpm, and 60 Hz. Fig.
1 shows a photo of the test bed components. It can be observed that
the motor load conditions (75% and 85% of the nominal current) were
obtained using a coupled 220 V.D.C. shunt generator connected to a
resistive variable load.

e data acquisition system was implemented using Matlab/ Simulink®
with WinDaq soware as an interface to the data aquisition hardware. A
DI-730 data acquisition system from DataQ® is used to record and display
the three line currents at 5 KHz. e current transducers consisted of
three 50mA to 120A AC/150A DC Hall Effect probes from the same
manufacturer. Because the fault detection scheme using MCSA relies
on the current’s frequency information, an appropriate power spectral
algorithm should be used to reliably identify the feature associated with
the fault. e Welch power spectral density was used for that purpose
because it provides a substantial noise reduction, facilitating the fault-
associated feature recognition.

4.1.Fault emulation and data acquisition
To emulate shorted winding fault, the stator windings of the induction

motor were reconstructed. e windings in one motor phase were
equipped with several accessible taps so that a stator winding short type
fault with varying severity could be introduced, emulating 2%, 5% and
10% shorted turns, corresponding to incipient, moderate and severe
faults, respectively. Finally, the data were analyzed in time and frequency
domain according to the motor current signature analysis technique.
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Fig. 1
Fig. 1. Test bed components diagram and laboratory setup

To emulate broken bars condition, the rotor’s bars were drilled
progressively until the bar material was completely worn out but the
discontinuity of the bar is guaranteed. e severity level is determined
by the number of drilled bars. us, three severity levels are induced,
corresponding to 1, 2, and 3 broken bars. e same induced levels are
labeled incipient, moderate and severe broken bar fault, respectively.

Finally, since the determination of the fault severity is based on the
isolation of a given fault, the architecture proposed in this work to
determine the type and severity of the fault is shown in Fig. 2. It is
important to mention that the features used in the severity estimation
for shorted winding fault were different from those used in broken bars
severity estimation. e blocks observed in Fig. 2 correspond to bi-class
classifiers; the classification method used was one versus one because
a certain set of features allowed correct classifying of the data with
acceptable error margin for each case.

4.2.Current signature analysis
e tests carried on using the test bed with shorted winding fault

demonstrated that the frequency domain components that were selected
as indicators are independent from any other fault related frequency
components. Additionally, the experiments showed the frequency
components are only suitable indicators under low load condition. us,
the MCSA technique is degraded by the increment of the load in the
motor affecting the amplitude of the selected frequency domain fault
indicator. Moreover, the frequencies associated with this type of fault
depend on the motor particular operation conditions.
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Fig. 2.
Fig. 2. Fault severity determination and diagnosis architecture.

e NSC (negative sequence current) monitoring technique was also
studied in dept. is method showed a reliable sensitivity when increasing
the shorted winding severity, under several load conditions. Previous
tests allowed concluding that there is a consistent increase in the NSC
indicator when the load is coupled to the motor (Oviedo et al., 2014), i.e.
the baseline for healthy condition depends on the load regime. Further
details about the use of the NSC as a motor fault indicator using the same
test bed can be found in (Oviedo et al., 2011)

In order to overcome the dependency of NSC magnitude with load
regime, the use of the PSC/NSC ratio is proposed as a fault indicator. As
it was stated, the negative sequence current is widely known as unbalance
indicator which is sensitive to the addition of load. In the same manner,
the value of the positive sequence current (PSC) magnitude increases
proportionally with the addition of load. erefore, the load effect can
be attenuated with the use of PSC/NCS ratio. Additionally, in order
to guarantee a reliable and robust fault detection, power quality must
be guaranteed in the motor supply network since the negative sequence
current indicator is produced by unbalances, not all caused by stator
shorted windings.

On the other hand, tests carried out with broken bar fault lead to
the conclusion that it is possible to perform reliable monitoring of rotor
bars condition using MCSA. As stated by equation (1), there will exist
frequency components with increasing power surrounding the supply
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frequency due to the fault condition. Moreover, when load is added
the motor slip s increases and thus, the faulty frequency component
(sidebands) move away from the supply frequency, facilitating the
identification of the fault and its severity. Fig. 3 presents the PSD
magnitude change in the 54,7 Hz sideband when increasing fault severity
at a 85% load.

Fig. 3
Fig. 3. PSD for several broken bar scenarios and 85% load.

However, the increase of mechanical load when there is a broken
bar condition leads to the development of sidebands around certain
frequencies related to other motor faults like air gap eccentricity. Due
to the previous fact, only the sidebands in the 56-66 Hz range were
considered as a reliable range for broken bar fault detection in frequency
domain. Further details about current signature analysis for broken bars
detection using the same test bed can be seen in (Oviedo et al., 2011).

4.3. Feature extraction and feature selection
With the aim of classifying motor faults, a set of representative

features must be chosen and those features should appropriately represent
the current signature (Ghate and Dudul, 2009). As it was previously
established, the MCSA (Motor Current Signature Analysis) technique
allows identifying the frequency components with increasing energy as
a fault consequence. Most common faults in previous studies include
shorted winding, bearing defects, air gap eccentricity, broken bars, with
outstanding results regarding broken bars detection using the power
spectral density (Penrose, 2004).

On the other hand, time domain features are mostly statistical features
that can be interpreted in terms of the data histogram (eodoridis and
Koutroumbas, 2009). For instance, skewness is a histogram symmetry
indicator while kurtosis is a measurement of how sharp is the histogram
distribution; entropy is a measure of the histogram uniformity, therefore,
the closer the histogram values are to each other, the higher the entropy
value is. e crest factor is the signal peak amplitude divided by rms value.
e purpose of using crest factor as a feature is to give an indication
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of how much certain abnormal condition is affecting the machine
signals with spikes. ose impacts are associated with faults in motors
and rotating machinery (Ghate and Dudul, 2011). Other time domain
features are mean and variance, which depending upon the type of
fault, can be successful features for discriminating abnormal conditions.
Furthermore, among the frequency features useful to describe changes
in the spectrum of a given signal. e frequency center is calculated as
the mass center of the spectrum  regarding the fundamental frequency
between frequency f1 and frequency f2, using sum intervals . A variation
in the center frequency is usually related to mechanical or electrical faults
in the rotating machine and is commonly used in vibration analysis. e
frequency center is calculated according equation (11) (Deraemaeker,
2006).

[Equation 11]

In general, previous works in the same field allow establishing the
initial set of features for the classification performed in this work (using
machine learning methods). In (Ghate and Dudul, 2009), for example,
the statistical features used include rms value, kurtosis and skewness
maximum and minimum values. In (Gordi and Roshanferk, 2010) the
area under the curve of power spectral density of fault related sidebands
and harmonics and the amplitude of the PSD using FFT were proposed
as the most important features. Finally, in (Widodo et al., 2007) a
SVM based fault classification system was elaborated using vibration
and current signals. For that end, the selected features were crest factor,
entropy, rms value, central frequency, skewness and arithmetic mean,
among others. e initial set of parameter for this work were established
based on previous works, but also on the results of motor current
signature analysis studies carried on.

Feature selection consists on reducing the initial feature set dimension
with the aim of reducing complexity and to avoid overfitting. To this end,
it is common to check individual features using statistical tools like t-
test of fisher discriminant ratio. In this work, the features discrimination
capability was assessed using t-test (p=0.05). is test provides an
indication of which features should be kept and which ones should be
discarded, especially if the classification is made up using several bi-class
classifiers, as in this case.

For the broken bars severity, the selected features in time domain were:
§ Arithmetic mean
§ Crest factor
§ PSC/NSC, proposed by the authors, is the positive sequence current-

negative sequence current ratio in order to normalize the current signal.
§ Kurtosis
§ Skewness, indicates the symmetry of the histogram distribution.
§ rms, root mean square.
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§ Entropy, which is a measure of the histogram’s uniformity. at
means that the more alike the histogram values are the higher entropy
value is for that particular distribution.

On the other hand, the frequency domain features where:
§ Central Frequency is a feature that allows determining the power

spectral density cumulated area center, between two frequency limits. In
the broken bars case, these frequencies were 55.98 Hz and 65.91 Hz. In
the case of shorted winding fault, those limits were 534.97 Hz and 545.04
Hz. Both calculations were made using  =0.1526 Hz.

§ rms of Power Spectral Density (PSD), which gives an indication of
the magnitude level of the power distribution. When a faulty condition
appears, there will be particular spectral components with higher power.

For shorted winding fault severity classifier the selected features were
PSC/NSC ratio and rms value of Power Spectral Density using the t-test
method for all possible fault severity bi-class scenarios (e.g. 2% shorted
winding fault vs. 5% shorted winding fault and so on). e features with
the majority of success outputs were chosen.

5. RESULTS AND ANALYSIS
5.1. Fault classification
is section describes the fault classification method and the results

of using John Platt’s SMO (Sequential Minimal Optimization) function,
adapted by Michael Mavroforakis for bi-class classification problems
(eodoridis, 2010). Some of the inputs were Matrix X, containing the
input data set; vector Y that contains the class labels (1 and -1); Tol
is a scalar that controls the algorithm’s precision. Once this number is
reached, the algorithm stops if it has not surpassed the step condition yet.
Meanwhile, the output parameters are: 1) e vector with the estimated
Lagrange multipliers, Alpha 2) e intercept term, b 3) e separating
hyperplane normal vector, w (only makes sense when using a linear
separator) 4) e number of times the norm is evaluated in the algorithm,
evals 5) e number of steps until convergence, stp.

In addition, the training error is calculated as the ratio between the
number of data outside the correct side of the classifier during the training
(including those on the correct side, but inside the margin) and the total
samples. Likewise, the validation error is the ratio between the number
of samples outside the correct side of the classifier during the validation
(including those on the correct side, but inside the margin) and the
total samples ratio. e penalty constant C and kernel parameters were
modified systematically and observing the training success percentage.
As previously stated, error counting is based on the samples outside
the correct class (including those points in the correct class, but inside
the margin). When a non-linear classifier was required in the proposed
classifying architecture the best results (in terms of convergence and
error) were obtained using the Radial Basis Function Kernel, also known
as Gaussian Kernel, expressed for vectors x and y by Equation (9).

In order to exploit the original data set in the training and validation
procedures a random set of 50% of the data set was used in the training
algorithm and the rest in the validation algorithm. en, the data were
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crossed and the algorithm performance is assessed averaging the two
results of the algorithms, in terms of error and support vectors. Two
folds were used in order to establish a tradeoff between the generalization
capability of each classifier and the limited training data. It is important
to mention that in this work, the induced levels of shorted windings were
labeled according to a specific severity level. us, 2% of shorted winding
corresponds to an incipient fault; 5% shorted winding correspond to a
moderate fault. Finally, 10% shorted winding corresponds to a severe
fault. e same labeling scheme was used for broken bar fault severity
classification; 1 broken bar corresponds to incipient fault, 2 broken bars
corresponds to moderate fault and 3 broken bars corresponds to severe
fault.

5.2. Fault type Classification
is type of classifier determines the class to which a given datum

belongs. e classifier consists in three learning machines that classify data
into one of three possible classes: 1) Healthy motor 2) Shorted winding
motor or 3) Broken bars motor.

Healthy motor- broken bars motor classification
is bi-class machine works using Mean, PSC/NSC, Central

Frequency and the RMS of Power Spectral Density as features. e
SVM training exercises showed the performance stated in Table 1. As
stated before, the results are measured using training error, test error (or
validation error) and the support vector count.

Table 1
Table 1. Parameters and response of fault type classifiers

Healthy motor – shorted winding motor classification
Table 1 Table 1. Parameters and response of fault type classifiers

Healthy motor – shorted winding motor classification
is bi-class machine works using Entropy and PSC/NSC as features.

e training and validation results are displayed in Table 1. As stated
before, the results are measured using training error, test error (or
validation error) and the support vector count. e machine training and
validation can be observed in a two dimensional graphic which depending
upon features observed, can give a performance indication. Fig. 4, shows
the machine response with Entropy (abscissa) and PSC/NSC (ordinate)
as features.
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Fig. 4.
Fig. 4. Healthy motor – shorted winding motor classifier response

Shorted winding motor – broken bar classification
is bi-class machine works using mean, PSC/NSC, central frequency

and power spectral density RMS value as features. e training and
validation performance results are showed in Table 1.

5.3. Fault severity classification
According to the fault classifier architecture proposed in this work,

once the fault type is identified, it must be determined whether the fault
is incipient, moderate or severe, depending on the established severity
levels for the induced faults. e addition of load makes it difficult to
identify the severity level because data form separated clusters depending
upon the load regime. Sometimes these clusters are closer to other data
corresponding to another severity level, so the learning machine must be
flexible enough to classify well.

Shorted winding severity classifier
is classification task was achieved using three support vector

machines that classify data into one of three possibilities: 1) incipient
short circuit fault 2) moderate short circuit fault, 3) severe short circuit
fault. is classifier uses PSC/NSC ratio and Power Spectral Density
RMS value in all machines.

Incipient short fault– moderate short fault machine
Table 2 shows the training constants used in this machine and

the performance parameters SV (support vectors), training error and
validation error.
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Table 2
Table 2. Parameters and response for shorted windings fault severity classifiers

Table 2 Table 2. Parameters and response for shorted windings fault severity classifiers

Moderate short fault– severe short fault machine and Incipient short
fault– severe short fault machine

Table 2 shows the training constants used in both bi-class machines
and the performance parameters SV (support vectors), training error and
validation error. Both are linear machines, and the scalar product did not
require a kernel function.

Broken bars severity classifier.
is classifier uses three support vector machines that classify data into

one of three possibilities: 1) incipient broken bars fault, 2) moderate
broken bars fault, 3) severe broken bars fault. is classifier uses Crest
factor, Mean, Entropy and PSC/NSC ratio as features.

Incipient broken bars- moderate broken bars machine
is bi-class machine works using Arithmetic mean, and Crest Factor

as features. e experiments using those features when training a SVM
showed the performance enounced in Table 3.

Table 3
Table 3. Parameters and response for broken bars fault severity classifiers

Table 3. Table 3. Parameters and response for broken bars fault severity classifiers

Moderate broken bars- Severe broken bars machine
is machine also uses Mean, and Crest factor as features (see Table 3).

e machine response in a two dimensional graphic is showed in Fig. 5
with Mean (abscissa) and Crest factor (ordinate) as features.
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Fig. 5
Fig. 5. Moderate broken bars fault– severe broken bars fault machine response

Incipient broken bars- severe broken bars machine
is bi-class machine works using Arithmetic Mean, PSC/NSC, Crest

Factor and Entropy as features. e experiments using those features
when training a SVM showed the performance enounced in Table 3.
ese results show that even though broken bars are mechanical faults,
it is feasible to use the proposed feature (PSC/NSC ratio) to determine
the severity of this type of fault in several load scenarios, since this feature
reflects in a very reliable way the asymmetries in the stator current when
bar breakage is present.

e above results demonstrate that, combining MCSA technique and
time domain features is a reliable way to detect and identify faults in
induction motors. Whereas MCSA allows predicting faulty components
in the current power spectral density, time domain features like Crest
factor allow measuring unbalances directly from the waveform, which is
useful for fault isolation purposes.

Finally, it can be stated that the PSC/NSC ratio performed well for
both identification of the type of fault and severity estimation. is ratio
allows normalizing the current signal in the presence of load and therefore
makes it possible to adapt classifiers

6. Conclusions
is work aimed to study the use of a new stator current feature for

detection of winding and cage bars faults in a 2 HP, 3 phase induction
motor, and the experimental validation of a detection and identification
scheme, as well as the extraction and selection of the most reliable set of
current signal features for this particular scenario.

e Positive Sequence Current/Negative Sequence Current (PSC/
NSC) ratio and the central frequency showed satisfying results in fault
type detection and fault severity identification. e main contributions
of this study are the results for the PSC/NSC ratio, since it performs
successfully with the addition of load. e influence of the motor’s load
regime on the behavior of the features associated to Motor Current
Signature Analysis can jeopardize the classification process. Nevertheless,
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frequency-related features such as central frequency and RMS value of
Power Spectral Density can be used in some dedicated learning machines
with satisfying results
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