
PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative

Revista EIA
ISSN: 1794-1237
revista@eia.edu.co
Escuela de Ingeniería de Antioquia
Colombia

Fostering Motivation and Improving
Student Performance in an introductory
programming course: An Integrated
Teaching Approach

Solarte Pabón, Oswaldo; Machuca Villegas, Liliana
Fostering Motivation and Improving Student Performance in an introductory programming course: An Integrated
Teaching Approach
Revista EIA, vol. 16, no. 31, 2019
Escuela de Ingeniería de Antioquia, Colombia
Available in: https://www.redalyc.org/articulo.oa?id=149258931005
DOI: https://doi.org/doi.org/10.24050/reia.v16i31.1230

This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.

https://www.redalyc.org/articulo.oa?id=149258931005
https://doi.org/doi.org/10.24050/reia.v16i31.1230
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 65

Revista EIA, vol. 16, no. 31, 2019

Escuela de Ingeniería de Antioquia,
Colombia

Received: 01 April 2018
Accepted: 25 July 2018

DOI: https://doi.org/doi.org/10.24050/
reia.v16i31.1230

Redalyc: https://www.redalyc.org/
articulo.oa?id=149258931005

Fostering Motivation and Improving
Student Performance in an introductory

programming course: An Integrated
Teaching Approach

Fortaleciendo la motivación y mejorando el rendimiento de
estudiantes de un curso introductorio de programación: Un

enfoque de enseñanza integrado

Fomentar a motivação e melhorar o desempenho dos alunos
em um curso de programação introdutória: uma abordagem de

ensino integrado

Oswaldo Solarte Pabón
oswaldo.solarte@correounivalle.edu.co

Universidad del Valle, Colombia
Liliana Machuca Villegas

liliana.machuca@correounivalle.edu.co
Universidad del Valle, Colombia

Resumen: Este artículo es una extensión de una propuesta de enseñanza presentada
en Innovation and Technology in Computer Science Education Conference, en el
año 2016. La propuesta representa un enfoque de enseñanza integrado para mejorar
el rendimiento de los estudiantes en un primer curso de programación. El enfoque
se basa en cuatro componentes principales: el uso de Python como primer lenguaje
de programación, aprendizaje orientado a proyectos y basado en problemas, recursos
multimedia y rúbricas de evaluación. Para el desarrollo del curso estuvieron disponibles
materiales y recursos de aprendizaje en plataformas virtuales. Los hallazgos sugieren
que el enfoque mejoró el rendimiento académico de los estudiantes, evidenciado en sus
calificaciones, así como en una disminución en las tasas de deserción.
Palabras clave: Curso introductorio de programación, Enfoque de enseñanza, Python,
Aprendizaje orientado por proyectos y basado en problemas.
Abstract: is paper expands a teaching proposal presented at the Innovation and
Technology in Computer Science Education Conference, in 2016. e proposal
provides an integrated teaching approach for improving students’ performance in a
first programming course. e approach is based on four main components: the use of
Python as first programming language, project-oriented and problem-based learning,
multimedia resources, and assessment rubrics. Material and learning resources for the
course development are available on virtual platforms. Our findings suggest that the
approach enhanced students’ academic performance, as can be seen in their grades, as
well as a decrease in dropout rates.
Keywords: Introductory programming course, Teaching approach, Python, Project-
oriented and problem-based learning.
Resumo: Este artigo expande uma proposta de ensino apresentada na Conferência
de Inovação e Tecnologia em Ciência da Computação, em 2016. A proposta explica
uma abordagem de ensino integrado para melhorar o desempenho dos alunos em
um primeiro curso de programação. A abordagem baseia-se em quatro componentes
principais: o uso de Python como primeira linguagem de programação, aprendizagem
orientada a projetos e baseada em problemas, recursos multimídia e rubricas de avaliação.
Materiais e recursos de aprendizagem para o desenvolvimento do curso estavam

https://doi.org/doi.org/10.24050/reia.v16i31.1230
https://doi.org/doi.org/10.24050/reia.v16i31.1230
https://www.redalyc.org/articulo.oa?id=149258931005
https://www.redalyc.org/articulo.oa?id=149258931005

Revista EIA, 2019, vol. 16, no. 31, January-June, ISSN: 1794-1237

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 66

disponíveis o tempo todo em plataformas virtuais. Os achados sugerem que a abordagem
melhorou o desempenho acadêmico dos alunos, evidenciado em suas notas, bem como
em uma redução nas taxas de abandono escolar.
Palavras-chave: Curso de programação introdutória, Abordagem de ensino, Python,
Aprendizado orientado para projetos e com base em problemas.

INTRODUCTION

Attending a computer programming course for the first time might
be a challenging task for many students. In fact, programming courses
oen have considerable amounts of students who either fail or dropout
(Bennedsen and Caspersen, 2007), (Mason, Cooper and Raadt, 2012).
Moreover, this problem is not restricted to computer science students,
since students in other engineering majors must also take programming
courses. Students generally consider introductory programming courses
are difficult and low motivating subjects, as stated by (Chan Mow, 2008),
(Ali and Smith, 2014), (Koulouri et al, Lauria and Macredie, 2014),
(Alturki R. A. ,2016).

ese students’ perceptions influence their performance, since they
enroll on the courses with false preconceptions. is may derive from
a lack of motivation to learn programming, low final marks, and high
dropout rates. Other factors that feed such perceptions are related to a
shortage of successful methodologies for programming teaching (Salcedo
and Idrobo, 2011), (Gomes and Mendes, 2015), (Alturki R. A. ,2016).
Another reason, is the complexity of some programming languages that
are chosen for introductory courses (Koulouri, Lauria and Macredie,
2014). For these reasons, students find that introductory programming
courses are neither interesting nor relevant for their academic needs.

Nevertheless, learning to program is a required essential skill in all
fields of knowledge, as it may be applied to solve a vast array of problems
through the use of computers and algorithms. For instance, algorithms
and programming have been reported to be a great help in the fields of
biomedical science (Chapman et al., 2015), Civil, Electrical engineering
(Hoeck et al, 2016) and Mechanical engineering (Furman B & Wertz
E, 2010). Moreover, according to Van Roy et al, (2003), everyone should
learn programming. Programming is not just a specialised discipline
limited to computer science majors, it is a form of thinking that is useful
to everyone.

e Universidad del Valle, Cali, Colombia, offers a course in
Algorithms and Programming that is part of the curriculum for all
Engineering majors, and has to be attended by all first-year students.
During the last 8 years, the professors from this specific faculty have
constantly observed low academic performance from these students, as
well as high dropout rates, not just from the course but also from the
majors themselves.

Considering this problem, this paper proposes a promising integrated
teaching approach for introductory programming courses. is initiative
seeks, on the one hand, to reduce students’ failure and dropout

Oswaldo Solarte Pabón, et al. Fostering Motivation and Improving Student Performance in an introductory programming course: An Integrated
Te...

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 67

rates, and on the other hand, to improve students’ motivation
towards programming. is will help them to perceive the courses’
contents as meaningful and providing them with useful knowledge
that may be applied in their daily life. is approach is based on four
main components: the use of Python as first programming language,
project-oriented and problem-based learning, multimedia resources, and
assessment rubrics. e initial implementation of this approach has
yielded partial results, suggesting a positive impact on the academic
performance of engineering students.

e rest of this article is structured as follows: Section 2 presents related
works. Section 3 describes the proposed teaching approach. Section 4,
shows preliminary results. Finally, the paper ends with some conclusions
and further research issues.

2. RELATED WORKS

Teaching an introductory programming course is a considerable
challenge for any teacher, especially as many students regard this course
as a difficult subject and their motivation towards it is very low. For this
reason, several proposals have been developed (Yadin, 2011), (Chien-
An et al., 2015), all of which aim at improving students' performance
in introductory programming courses. In this article the proposals
are divided into two groups: e first group takes into account the
importance of programming language (Van Roy et al, 2003), (Enbody &
Punch, 2009), (Zelle, 1999). e second group contains proposals, that
in addition to the programming language, consider other aspects of the
teaching process such as pedagogical strategies or teaching aids (Yadin,
2011), (Koulouri, Lauria and Macredie, 2014), (Salcedo and Idrobo,
2011).

e proposal reported by Van Roy et al. (2003), describes the
role of different programming paradigms and languages in teaching
programming. ere are many programming paradigms: imperative
programming, object-oriented programming, logic programming,
and functional programming. ey all have their advantages and
disadvantages. Choosing an appropriate programming paradigm is a hard
decision. One way to solve it is to focus programming courses on concepts,
and the design process: how problem statements lead to well-organized
solutions. According to Vujošević-Janičić, M. and Tošić, D. (2008), tools
such as C language (Imperative) or Java language (Object-oriented) are
very difficult to learn on a first programming course because they have
complex syntax for novice programmer students. erefore, students
spend most of their time trying to learn the syntax of the programming
language instead of the most important concepts.

Zelle (1999) states that high-level scripting languages such as Python,
Perl, Tcl, and Rexx are better candidates for a first programming
course than traditional systems programming languages such as C, C
++, and Java. Scripting languages are simpler, safer and more flexible
than system languages. A first programming course should be designed

Revista EIA, 2019, vol. 16, no. 31, January-June, ISSN: 1794-1237

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 68

to provide an introduction to the field of computer science and focus
on problem solving. Considering these facts, scripting languages may
improve these goals because these languages offer simple syntax and
semantics. Moreover, in a first programming course students tackle
simple problems which should be solved simply.

Under this perspective, Stajano, F. (2000) explains how Python is an
excellent choice for introducing fundamental ideas about programming.
Python has a high level of abstraction, simplicity, conciseness, and
versatility. It is widely recognised as being easy to learn and to use for
beginners. Another Python strength is its community around the world,
which has encouraged the development of large number of modules and
packages for a wide variety of applications. For instance, a great tool
for educators is Jupyter Notebook. is is a web-based programming
environment for Python and facilitates code writing and execution.

According to Chien-An et al. (2015), Python should be taught as
the first programming language because it has simpler syntax and high-
level data structures that facilitate writing code for learners. Although
languages such as Java or C++ are effective for designing real applications
and therefore are popular in industry, these tools are not the ideal as
a first programming language. is is because some concepts, such as;
classes, methods, types, and complex syntax can be a challenge for novice
programmers and can make the learning process difficult. In order to
reduce learning difficulties and failures, the criteria for choosing a first
programming language should include: simple input/output statements,
readable and consistent code, and clear syntax. Bearing these criteria in
mind, Python could be a good option for novice programmers.

Enbody & Punch (2009) describe the experience and the impact of
replacing C++ language with Python in the first programing course at
Michigan State University. e impact of this change was measured
in two ways: First, they assessed students’ performance in the first
programming course using Python. Second, they assessed students’
performance in the second programming course which is taught in C
++. eir conclusions show that Python has useful features, such as,
readability and practicality which facilitate the learning process. It is also
considered as a viable alternative for a first programming course, even for
curriculums whose subsequent courses are based on a different language,
such as, C++ or Java.

e previously mentioned proposals are very important because
they analyze the importance of the programming language in a first
programming course. However, in the teaching process other aspects
such as pedagogical strategies that support the learning process must
be considered. at is to say, choosing an appropriate programming
language is not the only thing that can improve programming learning.
For instance, Yadin (2011), proposes a teaching strategy based on
three elements: the use of Python as programming language, the use of
visualization microworlds, and the assignment of individual tasks. is
strategy was applied over four semesters and students’ performance was
monitored in order to help them to face issues related to introductory

Oswaldo Solarte Pabón, et al. Fostering Motivation and Improving Student Performance in an introductory programming course: An Integrated
Te...

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 69

programming courses. is strategy allowed them to reduce their failure
rates by 77.4%.

Salcedo and Idrobo (2011) propose tools and methodologies for
programming languages learning using the Scribbler Robot and Alice.
Using these tools, the students have a friendly interface that allows them
to learn programming concepts in a more friendly and didactic way.
e authors express the need to create new alternatives for improving
pedagogical methods in the teaching of programming. e goal is to
motivate and encourage students’ performance using visual tools. is
proposal has been implemented at ICESI University, Colombia. e
results show a strengthening in the learning of programming concepts and
the development of algorithmic thinking.

Aris (2015) explores four approaches for improving students’
performance in an introductory programming course: attendance
monitoring, personalised attention during lab session, restructuring of
the content, and quantifiable distribution of examination questions.
ese changes have been implemented over four semesters, obtaining
positive results, which show that students marks have improved. In the
case of attendance monitoring, the author considers that this strategy is
viable if it is recorded. e personalized attention has allowed teachers
to discover that some students cannot perform the exercises proposed
and if they are not guided by a teacher, they will not ask for help either.
Following modifications to the content of the course, it was possible to
organize some topics at the end of the subject, since they are considered
more difficult for the students, specifically those related to modular
programming. Lastly, the final exam questions were assigned a percentage
according to the topics, for example, 40% for fundamental topics.

Echeverría et al. (2017) describe an approach to teach programming
to non-Computer Science majors based on collaborative method. is
approach is supported by the TASystem platform through which the
different joint-working scenarios can be configured. A collaborative
scenario is a learning scenario that has collaborative learning activities and
evaluation strategies. e Instructors can design collaborative learning
and assessment tasks. In the case of students, they can submit tasks,
write comments on classmates’ tasks, and rate other classmates’ tasks.
e results of the implementation of the approach show that students'
performance has improved and that social interactions also had a positive
effect on the process.

Additionally, a survey of literature on teaching in introductory
programming courses is presented by (Pears et al., 2007). is survey
focuses on searching for literature about curriculum, pedagogy, choice
of language and tools for teaching in this field. It presents a wide
range of research and works to be used as approaches to support the
teaching of a first course of program. (Gomes and Mendes, 2015) describe
a study related with the educational and motivational strategies used
to teach programming. In order to achieve this aim, interviews were
conducted with different teachers to collect their experiences in teaching
programming.

Revista EIA, 2019, vol. 16, no. 31, January-June, ISSN: 1794-1237

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 70

In the same way, (Koulouri, Lauria and Macredie, 2014) describe a
quantitative evaluation of different approaches which studied the effects
of three factors related with teaching introductory programming. It
suggests the combinations of different elements: choice of programming
language, problem-solving training and the use of formative assessment.
eir findings suggest that by using Python, teaching problem-
solving and formative feedback may facilitate students’ learning
of; programming concepts, improving students’ performance and
developing programming skills.

3. TEACHING APPROACH

In this section, an integrated teaching approach for a first programming
course is presented. It seeks to improve students motivation and
performance. is approach was structured on the basis of four
main components covering different perspectives: the use of Python
as first programming language (technological perspective), project-
oriented and problem-based learning (didactic perspective), multimedia
resources (technology enhanced learning perspective), and assessment
rubrics (evaluation perspective). According to our experience, teaching
programming for the first time, can be considered as a complex process
that involves the aforementioned perspectives, which can help to improve
the learning process of the students further.

3.1. Python as a first programming language

Choosing an appropriate programming language for an introductory
programming course is a challenging task. A simple syntax and a friendly
programming environment are desirable pre-requisites in order for
students to understand basic concepts and develop problem solving skills
(Guo, 2014). At Universidad del Valle, however, the use of Java for more
than ten years in introductory course showed that students perceived this
programming language as difficult. is translated into low motivation
towards learning, low academic performance, high rates of failure and
dropouts. With this in mind, Java was replaced by Python, which
complies with the desired characteristics. For example, Figure 1, shows a
simple algorithm to calculate the area of a triangle given its base and its
height. Python code is easier and more legible than Java code. Moreover,
Java code has complex syntax that demotivated students because they do
not understand many terms that Java is using to solve a simple problem.
Some Java terms such as “public class”, “public static void”, can turn a
simple problem into a complex problem and programming is perceived
as difficult task.

On the contrary, Python is more appropriate than Java for learning
how to program. It offers a high level of abstraction of programming
concepts. is makes learning easier and reduces students’ anxiety
towards other aspects that may not be relevant in this level, such

Oswaldo Solarte Pabón, et al. Fostering Motivation and Improving Student Performance in an introductory programming course: An Integrated
Te...

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 71

as, memory management and data types. In other words, the main
advantage of Python as a programming language is its high level of
abstraction, which is appropriate to introduce the fundamental concepts
of algorithms. According to Figure 1, Python only uses two simple
functions (input, print), in order to solve this problem. Python code allow
students to concentrate on problem-solving, instead of worrying about
understanding the syntax, as happened when the course was taught with
Java.

Figure 1
Figure 1. A simple algorithm in Java and Python code.

In addition to using Python, students follow a methodology (Figure
2), which facilitates the understanding of the problem they need to solve.
is methodology consists of a set of steps to guide the development of the
class: problem analysis, pseudocode design, coding, and testing. rough
this methodology, the professor can guide the work of the students
to develop proposed programming exercises in class. In the same way,
student can use this methodology in their lab sessions and class project.
Using this methodology is very important, because it helps students to
understand the problem and facilitates solution implementation step by
step.

Figure 2
Figure 2. A problem-solving methodology

3.2. Project-oriented and problem-based learning

e approach is grounded on a constructivist theory of learning,
specifically project-based and problem-based learning (Konecki and

Revista EIA, 2019, vol. 16, no. 31, January-June, ISSN: 1794-1237

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 72

Petrlic, 2014), (Soares, 2011). rough these approaches, students can
achieve meaningful learning and critical thinking while developing
computational skills. e learning activities are designed in order for
students to build a collaborative project, on one hand, and solve real-
life problems related to students’ academic needs on the other. rough
the design of the collaborative project, students enhance research abilities
related to the process of suggesting an idea and structuring a relevant
proposal in their academic field.

Similarly, some lab sessions have been integrated throughout the course
as a strategy to provide students with opportunities to develop problem-
solving skills. e goal of the project is for students to achieve more
motivation towards algorithms, so that they become acquainted with
their applicability in their Engineering majors. e lab sessions consist of
a set of exercises that directly relate to the course content that is being
taught at that moment. For each algorithm exercise, students are expected
to submit the analysis, design, implementation and algorithm test. Figure
3 illustrates some of the project and lab session activities.

Figure 3.
Figure 3. Final Project Examples

3.3. Multimedia Resources

In order to provide a high-quality teaching process, some strategies
of technology-enhanced-learning were promoted through didactic
multimedia resources. ese multimedia resources support learning
activities on our courses. ey comprise of pictures, slideshows, videos,
animation and tutorials, all of which were utilised to further strengthen
concepts and experiences in the learning of programming skills.

In addition, multimedia resources are very useful for students to
understand abstract concepts or ideas in a much easier way. Accordingly,
the School of Computer Sciences and Systems, at Universidad del
Valle, is currently designing new material that consists of recording the
introductory programming course classes, which will be shown on virtual
platforms. Using these resources, the material will be available all the time,
and students will be able to take different classes in a virtually. Some
of these videos, animation and multimedia resources are illustrated in
Figures 4 to 6.

Oswaldo Solarte Pabón, et al. Fostering Motivation and Improving Student Performance in an introductory programming course: An Integrated
Te...

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 73

Figure 4.
Figure 4. Virtual Campus for First Programming Course at Univalle

Figure 5
Figure 5. YouTube Channel for First Programming Course

https://www.youtube.com/channel/UCgok2gslPgwNzWBcnMMEblA

Figure 6
Figure 6. Screenshot of an animation

Revista EIA, 2019, vol. 16, no. 31, January-June, ISSN: 1794-1237

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 74

3.4. Rubrics for assessment

Assessment also is an important part of a teaching programming course
because it helps students and professors to review the process to enhance
students’ learning. Rubric is a scoring tool that lists the criteria for
a specific assignment and it describes the levels of quality for each
criterion. Using rubrics with detailed explanations of an assignment
and its assessment, can assist students in improving their performance.
Rubrics provide students with a much clearer picture of the kind of
performance that is expected from them and the requirements under
which they will be assessed. erefore, in our approach, assessment rubrics
for each activity were presented and explained to the students in advance.
An example is shown in Table 1.

Table 1
Table 1. Rubric example

Table 1 Table 1. Rubric example

is rubric portrays three main parts: class goals, relevance and
assessment levels. Class goals show students the skills that they are
expected to develop in a given activity. Relevance indicates the percentage
for each goal in the final mark. Finally, there are three assessment levels
(Level 1, Level 2, Level 3) that indicate the progress made by the student
in the development of a given activity. In this teaching approach, students
know previously the rubric for an assignment, therefore they know how
it will be scored. is represents a positive learning factor because it

Oswaldo Solarte Pabón, et al. Fostering Motivation and Improving Student Performance in an introductory programming course: An Integrated
Te...

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 75

motivates students to achieve the best grade because rubric describes how
to reach it

4. RESULTS

e proposed approach has been implemented by all the majors in the
Engineering Faculty at Universidad del Valle since 2015. Some initial
results are reported in (Machuca and Solarte Pabón, 2016) showing
an analysis of the final grades in programming courses from 2011 to
2015. In the last couple of years (2016 and 2017) the percentage of
students passing the first programming course has increased in around
13% (Figure 7). ese findings suggest a considerable improvement in
student performance. For instance, while in 2011 the percentage of
students who passed the course was 70% and those who failed was around
30%, in 2017 the percentage was 90% and 10% respectively. is is an
important achievement since it was possible to reduce the rate of failure
in the course.

Figure 7
Figure 7. Final programming course marks

Additionally, we carried out a survey, which was given to 100 students
from different engineering majors. Some students had previously failed
the course and some had previously studied Java or other programming
languages. With this in mind, the use of Java was compared with
Python. Figure 8 describes the perception towards the use of Python in
comparison to Java, in terms of level of difficulty. e results show that
most students considered Python as an easier programming language than
Java

Revista EIA, 2019, vol. 16, no. 31, January-June, ISSN: 1794-1237

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 76

Figure 8
Figure 8. Python vs Java

5. CONCLUSIONS AND FUTURE WORKS

is article presented a teaching proposal for an introductory
programming course. e proposal design aimed at improving students'
academic performance and motivating them in the use and application
of algorithms in different branches of engineering. e structure of the
approach facilitates the integration of different perspectives from the
pedagogical, technological, assessment and didactic points of view.

Teaching programming during the first year of a major can be a difficult
and challenging task because most of the students generally find it difficult
to learn the subject, which results in low academic performance and
high dropout rates. e teaching approach proposed in this article was
applied at Universidad del Valle, Colombia, obtaining positive results
in recent years. Aer applying this approach, we succeeded in reducing
dropout rates and increased student motivation. is was reflected in an
improvement in students’ grades and their perceptions of the course.

e teaching of computer programming depends not only on the
programming language but also on other strategies that support the
learning process, such as, the use of multimedia resources, project-
oriented and problem-based learning, and assessment rubrics. Making use
of these four perspectives can help students and professors to improve the
learning process.

e results obtained suggest that Python is a more suitable
programming language to teach an introductory programming course.
is is due to its simple syntax, simplicity in code debugging, as well as its
easy integration with other teaching tools.

Future work is planned to extend this teaching approach to other
universities and academic centers in Colombia through the creation of
a free-access platform in which all the material produced for this project
will be available. We also propos to carry out an experiment with a first
programming course using a blended learning methodology.

Oswaldo Solarte Pabón, et al. Fostering Motivation and Improving Student Performance in an introductory programming course: An Integrated
Te...

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 77

REFERENCES

Ali, A. and Smith, D. (2014) Teaching an Introductory Programming
Language in a General Education Course, Proceedings of the 2008
International Conference on Frontiers in Education: Computer
Science and Computer Engineering, FECS 2008, 13, pp. 236–
240. Available at: http://www.scopus.com/inward/record.url?eid=2-
s2.0-62649122836&partnerID=40&md5=ed1302320017b959ae9f4c7e10972080.

Alturki, R. (2016). Measuring and improving student performance in an
introductory programming course. Informatics in Education, 15(2), 183.

Aris, H. (2015, July). Improving students performance in introductory
programming subject: A case study. In Computer Science & Education
(ICCSE), 2015 10th International Conference on (pp. 657-662). IEEE.

Bennedsen, J. and Caspersen, M. E. (2007). Failure rates in introductory
programming, AcM SIGcSE Bulletin. ACM, 39(2), pp. 32–36.

Chan Mow, I. T. (2008). Issues and difficulties in teaching novice computer
programming, Innovative Techniques in Instruction Technology,
E-Learning, E-Assessment, and Education, pp. 199–204. doi:
10.1007/978-1-4020-8739-4-36.

Chapman, B. E. et al. (2015). Python as a First Programming Language for
Biomedical Scientists, (Scipy), pp. 12–17.

Chien-An L. YU-Tzu L., and Cheng-Chih Wu (2015). ¿Which programming
language should students learn first?. International Conference on
Learning and Teaching in Computing Engineering, Taiwan.

Echeverría, L., Cobos, R., Machuca, L., and Claros, I. (2017). Using
collaborative learning scenarios to teach programming to non-CS majors,
Computer Applications in Engineering Education, (November 2016), pp.
719–731. doi: 10.1002/cae.21832.

Enbody R.J., Punch W. (2009) Python CS1 as preparation for C++ CS2.
Conference Paper in ACM SIGCSE Bulletin·Chattanooga, Tennessee,
USA

Furman B., Wertz E., (2010). A First Course in Computer Programming for
Mechanical Engineers. Proceedings of 2010 IEEE/ASME International
Conference on Mechatronic and Embedded Systems and Applications
Pages 70-75.

Gomes, A. and Mendes, A. (2015). A teacher’s view about introductory
programming teaching and learning: Difficulties, strategies and
motivations, Proceedings - Frontiers in Education Conference, FIE,
2015–February(February). doi: 10.1109/FIE.2014.7044086.

Guo, P. (2014). Python is now the most popular introductory teaching language
at top us universities, BLOG@ CACM, July, p. 47.

Hoeck P., Dilon H., Albright., Lu W., Doughty T. (2016) Teaching
programming in the context of solving engineering problems. Frontiers in
Education Conference (FIE), IEEE. Pennsilvania, USA.

Konecki, M. and Petrlic, M. (2014). Main problems of programming novices
and the right course of action, in Central European Conference on
Information and Intelligent Systems, p. 116.

Revista EIA, 2019, vol. 16, no. 31, January-June, ISSN: 1794-1237

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 78

Koulouri, T., Lauria, S. and Macredie, R. D. (2014). Teaching Introductory
Programming: A Quantitative Evaluation of Different Approaches,
Trans. Comput. Educ., 14(4), p. 26:1–26:28. doi: 10.1145/2662412.

Machuca, L. and Solarte Pabón, O. (2016). Improving Student Performance in a
First Programming Course, in Proceedings of the 2016 ACM Conference
on Innovation and Technology in Computer Science Education, p. 367.

Mason, R., Cooper, G. and Raadt, M. De (2012). Trends in Introductory
Programming Courses in Australian Universities – Languages,
Environments and Pedagogy, 14th Australasian Computing Education
Conference, pp. 33–42.

Pears, a et al. (2007). A survey of literature on the teaching of
introductory programming, SIGCSE Bulletin, 39(4), pp. 204–223. doi:
10.1080/08993400500150747.

Salcedo, S. L. and Idrobo, A. M. O. (2011). New tools and methodologies
for programming languages learning using the scribbler robot and Alice,
Proceedings - Frontiers in Education Conference, FIE, pp. 1–6. doi:
10.1109/FIE.2011.6142923.

Soares, A. (2011). Problem based learning in introduction to programming
courses, Journal of Computing Sciences in Colleges. Consortium for
Computing Sciences in Colleges, 27(1), p. 36.

Stajano, F. (2000). Python in Education: Raising a Generation of Native
Speakers, in 'Proceedings of the 8th International Python Conference'

Van Roy P., Armstrong J., Flatt M., and Magnusson (2003). e role of
Language Paradigms in Teaching programming. SIGCSE February 19-23,
2003, Reno, Nevada, USA. ACM 1-58113-648-X/03/0002.

Vujošević-Janičić, M. and Tošić, D. (2008). e role of programming paradigms
in the first programming courses, e Teaching of Mathematics. Društvo
matematičara Srbije, (21), pp. 63–83.

Yadin, A. (2011). Reducing the dropout rate in an introductory programming
course, ACM inroads. ACM, 2(4), pp. 71–76.

Zelle, J. M. (1999). Python as a First Programming Language, J. Comput. Sci.
Coll., 29(6), pp. 153–154. Available at: http://dl.acm.org/citation.cfm?
id=2602724.2602754.

