

Revista EIA ISSN: 1794-1237 revista@eia.edu.co Escuela de Ingeniería de Antioquia Colombia

Actividad antiplasmodial in vitro de metabolitos secundarios de Solanum nudum provenientes de dos regiones de Colombia.

López Barrios, Ena Patricia; Pabón Vidal, Adriana Lucía; Morales Morales, Paula Andrea; Blair Trujillo, Silvia; Peláez Jaramillo, Carlos Alberto; Araque Marín, Pedronel

Actividad antiplasmodial in vitro de metabolitos secundarios de Solanum nudum provenientes de dos regiones de Colombia.

Revista EIA, vol. 15, núm. 30, 2018 Escuela de Ingeniería de Antioquia, Colombia

Disponible en: https://www.redalyc.org/articulo.oa?id=149259394002

Actividad antiplasmodial in vitro de metabolitos secundarios de Solanum nudum provenientes de dos regiones de Colombia.

Antiplasmodial activity in vitro of secondary metabolites of Solanum nudum from two regions of Colombia.

Actividade in vitro antiplasmódica de metabolitos secundários de Solanum nudum a partir de duas regiões da Colômbia.

Ena Patricia López Barrios enapatri@gmail.com *Universidad de Antioquia, Colombia*Adriana Lucía Pabón Vidal adriana.pabon@udea.edu.co *Universidad de Antioquia, Colombia*Paula Andrea Morales Morales paula.morales@udea.edu.co *Universidad de Antioquia, Colombia*Silvia Blair Trujillo silviablairt@gmail.com *Universidad de Antioquia, Colombia*Carlos Alberto Peláez Jaramillo carlos.pelaez@udea.edu.co *Universidad de Antioquia, Colombia*Pedronel Araque Marín pedronel.araque@eia.edu.co *Universidad EIA, Colombia*

Revista EIA, vol. 15, núm. 30, 2018

Escuela de Ingeniería de Antioquia, Colombia

Recepción: 29 Noviembre 2016 Aprobación: 24 Abril 2018

Redalyc: https://www.redalyc.org/articulo.oa?id=149259394002

Resumen: Solanum nudum es una planta nativa de Colombia, reconocida y usada para el tratamiento de la fiebre asociada a la malaria, específicamente en la zona pacífico del departamento de Nariño. En la presente investigación se realizó un estudio fitoquímico comparativo de la producción de los compuestos esteroidales de S. nudum provenientes de dos regiones de Colombia y su respectiva actividad antiplasmodial. La colección de las hojas de S. nudum se realizó en los municipios de Cocorná (Antioquia) y Tumaco (Nariño) en los meses de noviembre 2010 y junio 2011. La extracción de los metabolitos esteroidales presentes en las hojas colectadas de S. nudum se efectuó con solventes de baja, media y alta polaridad. El contenido de los metabolitos esteroidales se determinó por cromatografía líquida de alta resolución en fase reversa. La actividad antiplasmodial de los extractos fue evaluada en la cepa 3D7 de Plasmodium falciparum y su posible citoxicidad en la línea celular HepG-2. El contenido de compuestos esteroidales y la actividad antiplasmodial fue superior para los extractos de las regiones y los meses donde la precipitación promedio del lugar fue alterada debido al fenómeno de La Niña. Los extractos con mayor efecto antiplasmodial y citotóxico citotoxicidad fueron los obtenidos en el municipio de Tumaco.

Palabras clave: Solanum nudum, malaria, Plasmodium falciparum, metabolitos esteroidales, Cocorná, Tumaco.

Abstract: Solanum nudum is a plant native to Colombia, is recognized and is used for the treatment of fever associated with malaria, specifically in the peaceful area of Nariño department. In this research a comparative study of phytochemical production of steroidal compounds of S. nudum from two regions of Colombia and their respective antiplasmodial activity was carried out. The collection of the leaves of S. nudum was conducted in the municipalities of Cocorná (Antioquia) and Tumaco (Nariño) in the months of November 2010 and June 2011. The extraction of steroid metabolites present in the leaves were collected from S. nudum was performed with solvents low,

medium and high polarity. The content of steroidal metabolites was determined by high resolution liquid chromatography in reverse phase. The antiplasmodial activity of the extracts was evaluated in 3D7 strain of Plasmodium falciparum and its potential cytotoxicity on the cell line HepG-2. The content of steroidal compounds and antiplasmodial activity was higher for the regions extracts and months where the average precipitation of the site was altered due to the phenomenon of La Niña. The extracts more antiplasmodial effect and cytotoxicity were obtained in the municipality of Tumaco.

Keywords: Solanum nudum, malaria, Plasmodium falciparum, steroidal metabolites, Cocorná, Tumaco.

Resumo: Solanum nudum é uma planta nativa da Colômbia, é reconhecido e é usado para o tratamento da febre associada à malária, especificamente na área pacífica do departamento de Nariño. Nesta pesquisa um estudo comparativo da produção fitoquímico de compostos esteróides de S. nudum de duas regiões da Colômbia e sua respectiva actividade antiplasmódica foi realizado. A coleta das folhas de S. nudum foi realizado nos municípios de Cocorná (Antioquia) e Tumaco (Nariño), nos meses de novembro de 2010 e junho de 2011. A extração de metabólitos esteróides presentes nas folhas foram coletadas de S. nudum foi realizada com solventes de baixa, média e alta polaridade. O teor de metabolitos esteróides foi determinada por cromatografia líquida de alta resolução em fase reversa. A actividade antiplasmódica dos extractos foi avaliada em 3D7 estirpe de Plasmodium falciparum e a sua citotoxicidade potencial na linha de células HepG-2. O teor de compostos esteróides e atividade antiplasmódica foi maior para os extratos regiões e meses em que a precipitação média do site foi alterada devido ao fenômeno do La Niña. Os extratos mais efeito antiplasmódica e citotoxicidade foram obtidos no município de Tumaco.

Palavras-chave: Solanum nudum, malária, Plasmodium falciparum, metabólitos esteroides, Cocorná, Tumaco.

1. Introducción

Solanum nudum es un arbusto que se distribuye desde México hasta Paraguay incluyendo las islas del Caribe y se encuentra desde cero hasta 2500 msnm. En Colombia se encuentra en 16 de los 32 departamentos, habitando principalmente en áreas abiertas o intervenidas como: caminos, carreteras y rastrojos (Orozco, et al. 2015). Es una planta reconocida y usada para el tratamiento de la fiebre asociada a la malaria por las comunidades humanas de la costa pacífica donde es localmente conocida como "zapata" o "zapatico", especialmente en el departamento de Nariño donde el uso de esta planta por médicos tradicionales del municipio de Tumaco ha despertado el interés por estudiar su composición química y actividad biológica (Blair y Madrigal, 2005).

De la planta se han aislado compuestos esteroidales llamados Tumacona A (SN-1), Tumacona B (SN-2), Tumacosido A (SN-3), Tumacosido B (SN-5), Tumaquenona (SN-4) y la Diosgenona (Saez, et al. 1998). Estos metabolitos mostraron actividad antiplasmodial in vitro sobre Plasmodium falciparum (Pabón, et al. 2002). Así mismo, se ha reportado que los esteroides aislados de S. nudum no presentan actividad mutagénica (Pabón, et al. 2003), clastogénica (Álvarez, et al. 2004) ni tóxica (Londoño, et al. 2006). Además, extractos acuosos de S. nudum presentan actividad antimalárica in vivo en ratones infectados con Plasmodium berghei (Echeverri, et al. 2001).

Otros estudios indican que los esteroides de S. nudum disminuyen el desarrollo esporogónicos de Plasmodium vivax en Anopheles albimanus y en células hepáticas HepG2 (Londoño, et al. 2006). Sin embargo, se ha establecido que el tiempo entre la colecta, el almacenamiento y el procesamiento del material afectan la composición química y acción biológica de la planta (López, et al. 2011), infiriendo las diferencias en la actividad antiplasmodial podrían estar relacionadas con la degradación biológica de la planta (Stafford, et al. 2005; Christos, et al. 2010).

Diferencias en los aspectos ecológicos de poblaciones distantes de S. nudum (producción de frutos, diversidad de visitantes florales, herbívoros y parásitos asociados), así como diferencias en su hábitat (composición del suelo, temperatura, humedad relativa y luminosidad), pueden afectar la actividad biológica (Morales, 2011), dado que factores ambientales como la altitud, temperatura, humedad y el tipo de suelo, generan alteraciones en las rutas bioquímicas de las plantas, produciendo un incremento y/o disminución de metabolitos como ácidos grasos, compuestos volátiles, entre otros (Boira y Blanquer, 1998). Un ejemplo de este efecto es los estudios sobre la composición química del romero (Rosmarinus officinalis) en el cual la localidad como la fecha de colecta (Celiktas, et al. 2007) afectan la producción de aceites esenciales y su correspondiente actividad antimicrobiana.

En la presente investigación se realizó un estudio fitoquímico comparativo de la producción de los compuestos esteroidales (SN-1, SN-2, SN-3, SN-4, SN-5 y Diosgenona) de la planta S. nudum provenientes de dos regiones de Colombia y su respectiva actividad antiplasmodial in vitro.

2. Materiales y métodos

Reactivos

Los solventes: hexano, diclorometano, metanol y dimetilsulfoxido (DMSO) de Pueza ≥ 99% fueron obtenidos de Merck. Los medios RPMI-1640 (Roswell Park Memorial Institute), DMEM (Dulbecco's Modified Eagle Medium), SFB (Suero Fetal Bovino) y el reactivo MTT [bromuro 3-(4,5-dimetiltiazol-2-ilo)-2,5-difeniltetrazolio)] fueron obtenidos de Sigma-Aldrich Chemical Co. Ltd., Proanalysis.

Recolección del material vegetal

Con el fin de disminuir el efecto de los tiempos de procesamiento del material vegetal en los análisis, se colectó S. nudum en dos localidades distantes de Colombia, de forma que el tiempo transcurrido entre en la colecta y procesamiento fuera el mismo.

La colección de las hojas de S. nudum se realizó en dos localidades con condiciones climáticas y fisiográficas diferentes y en dos épocas del

año. Los lugares de colecta fueron en la vereda la Piñuela, municipio de Cocorná (Departamento de Antioquia, región Andina, 6°00'18" N; 75°08'16" W, 1150 m de altitud) y la vereda Inguapí el Guadual, municipio de Tumaco (Departamento de Nariño, en la región Pacífica 1°41' 03" N; 78°47' 01"W, 12 m altitud). La colecta del material vegetal se realizó en noviembre 2010 y junio 2011 en ambos lugares. De cada localidad fue colectado un Voucher, los cuales se encuentran depositados en el Herbario de la Universidad de Antioquia (HUA) bajo los registros de herbario N° 179201 y 179202.

Tabla 1 Tabla 1

Parámetros ambientales	Tumaco	Cocorná
Luminosidad	15392,8 ± 0,1 lux	25299,8 ± 0,1 lux
Temperatura ambiente	31,04 ± 0,05°C	29,28 ± 0,05°C
Temperatura del suelo	19,42 ± 0,05C	15,68 ± 0,05°C
Humedad relativa*	56,89 ± 0,02%	51,94 ± 0,02%
Carbono presente en el suelo*	1,28 ± 0,01%	3,26 ± 0,01 %
Insectos herbívoros	49 especies	44 especies
Insectos parásitos permanentes	24 especies	17 especies
Otros insectos (huéspedes temporales)	90 especies	69 especies
Visitantes florales	3 especies	17 especies
Cantidad de frutos	238,5± 0,1	611,2 ± 0,1
Califidati de Irtitos	frutos/mes	frutos/mes

Condiciones ambientales y ecológicas de las localidades donde fue colectada la planta S. nudum. Tabla 1 Condiciones ambientales y ecológicas de las localidades donde fue colectada la planta S. nudum.

Obtención de extractos de S. nudum

El material vegetal se secó al ambiente y a la sombra (aproximdadmente a 22 °C), durante 10 días y se molió hasta tener un tamaño de partícula de 5 mm. Se tomaron 20 gramos del material vegetal seco y molido y se sometieron a extracción sucesiva por el método Soxhlet durante cinco horas, empleando 250 mL de solvente de baja, media y alta polaridad: hexano (0,08 Debye a 20°C), diclorometano (1,14 Debye a 20°C) y metanol (1,69 Debye a 20°C). Posteriormente los extractos fueron concentrados a presión reducida por rotaevaporación.

Cuantificación de esteroides en extractos de S. nudum

La cuantificación de los metabolitos esteroidales presentes en las hojas colectadas de S. nudum se realizó por cromatografía liquida de alta resolución (HPLC) en fase reversa, utilizando un cromatógrafo líquido Agilent Technologies 1200 Series (Agilent Technologies, Wilmington, USA), con degasificador G1322A, bomba cuaternaria G1311A, inyector automático G1329A y detector de arreglo de diodos (DAD) G1315DHPLC. Las condiciones cromatográficas fueron:

columna LiChroCART® 250-4 cartridges LiChrospher® 100 RP-18 (5 µm), a una temperatura de columna de 25°C, volumen de inyección de 20 µL, longitud de onda de 254 nm, flujo de 1,0 ml.min-1 y como fase móvil acetonitrilo/agua por programación de gradientes. Los extractos fueron filtrados por medio de filtro de nylon de 0,45 µm (López, et al. 2014). Como compuestos patrones se usaron los metabolitos esteroidales de S. nudum almacenados en el Laboratorio del Grupo Malaria con previa caracterización molecular mediante un análisis espectroscópico de resonancia magnética nuclear, en el que se compararon las señales presentes en los espectros con los datos reportados en la literatura por Saez et al. (1999). Se utilizó un espectrómetro Bruker, 300 MHz para 1H y 75 MHz para 13C, en 1D (RMN-13C, RMN-1H), utilizando como solvente cloroformo deuterado (CDCl3).

El tiempo de corrido fue de cuarenta minutos para los cuales la fase móvil acetonitrilo/agua fue programada para los siguientes gradientes: primeros diez minutos de acetonitrilo/agua en relación 35:65, continuando cinco minutos con cambio de gradiente acetonitrilo/agua de 35:65 a 80:20, para este gradiente eluyeron los compuestos SN-4, SN-5 y SN-3 con tiempos de retención de 12,317; 14,145 y 14,850 minutos respectivamente. Luego siete minutos de acetonitrilo/agua en relación 80:20, en este gradiente eluyeron los compuestos SN-2 y SN-1 con tiempos de retención de 16,568 y 17,657 minutos. Posteriormente trece minutos con cambio de gradiente acetonitrilo/agua de 80:20 a 90:10 y finalmente cinco minutos de acetonitrilo/agua en relación 90:10, donde eluyó la Diosgenona con un tiempo de retención de 37,492 minutos. Por medio de la aplicación de estos gradientes se pueden clasificar los patrones de esteroides en tres grupos: polaridad alta (SN-4, SN-5 y SN-3) polaridad media (SN-2 y SN-1) y polaridad baja (Diosgenona).

Para la construcción de la curva de calibración, se prepararon seis niveles de concentraciones desde 0,5 ug/ml – 160, para los compuestosµg/mL para los compuestos SN-1, SN-2, SN-3 y SN-5 y para SN-4 y diosgenona las concentraciones evaluadas fueron: 3,0, y 160 µg/mL. Cada concentración se preparó a partir de una solución madre de 1000 µg/mL de cada compuesto.

Evaluación de la actividad antiplasmodial in vitro

De cada extracto se prepararon soluciones concentradas para la evaluación de la actividad antiplasmodial de 10 mg/mL en dimetilsulfóxido (DMSO). A partir de esta solución se tomaron 50 μL y se ajustaron hasta 1000 μL con medio RPMI-1640 completo sin hipoxantina, obteniendo una concentración final de 0,5 mg/mL.

La actividad antiplasmodial in vitro de los extractos obtenidos de la planta S. nudum se realizaron en placas de 96 pozos de fondo plano marca Falcon°. Se evaluaron 7 concentraciones de cada extracto (100; 50; 25; 12,5; 6,25; 3,125 y 1,56 µg/mL), preparadas a partir de diluciones seriadas de la solución concentrada de 0,5 mg/mL. Cada concentración fue evaluada por duplicado (Bravo, et al. 1999; Desjardins, et al. 1979).

La actividad c antiplasmodial se evaluó en la cepa 3D7 de P. falciparum, la cual es un clon obtenido a partir de un aislado de paciente en Holanda. Esta cepa es sensible a cloroquina, pirimetamina, cicloguanil y atovacuona; pero es resistente a sulfadoxina (Walliker et al. 1987). Para llevar a cabo los experimentos se preparó una una suspensión de glóbulos rojos parasitados con un hematocrito del 2%, parasitemia del 1% e hipoxantina tritiada por pozo de 0,8 µCi.mL-1, siguiendo la metodología descrita por Desjardins, R et al. 1979

El cultivo con los tratamientos de los diferentes extractos se incubó a 37 °C durante 48 horas en atmósfera de 5% CO2, 5% O2 y 90% de N2. El plato se llevó a -20 °C y posteriormente se descongeló para provocar la hemólisis de los eritrocitos, lo cual permite la liberación de los ácidos nucleícos del parásito marcados con hipoxantina tritiada. Estas muestras fueron depositadas en un papel filtro de fibra de vidrio diseñado para contener muestras biológicas (PerkinElmer*) con ayuda de un colector semi-automático (PerkinElmer*) y la reactividad, la cual es dependiente de la parasitemia en cada tratamiento fue leídos en un contador de centelleo beta Perkin Elmer, 2450 microplate counter. La lectura se expresó en cpm (cuentas por minuto). Los porcentajes de parasitemia se analizaron mediante una regresión no lineal dependiendo de la pendiente, con el programa GraphPad Prism™ versión 5.01, para hallar la concentración que inhibe el 50% del crecimiento parasitario (IC50).

Evaluación de la actividad citotóxica

La evaluación de la toxicidad de los extractos obtenidos de la planta S. nudum, se determinó mediante la medición de la viabilidad y proliferación in vitro de la línea celular HepG-2, como modelo para evaluar el potencial efecto tóxico sobre los hepatocitos, que constituyen la primera célula hospedera para el P. falciparum en el humano y la única célula que invade el parásito en este hospedero con capacidad de dividirse.

Para cada ensayo se preparó una solución patrón de cada extracto a una concentración de 20 mg/mL en DMSO al 96% (2 mg de cada extracto en 100 µL de DMSO). En medio DMEM F-12 completo (10% de SFB), se prepararon siete diluciones seriadas a partir de la solución patrón.

En cámara de Neubauer se contaron las células HepG-2 y se sembraron en una placa de 96 pozos de fondo plano 2 x105 células/mL en 100 μ L de medio DMEM-F-12 suplementado con SFB al 10% y se incubaron a 37°C durante 24 horas en atmosfera de 5% de CO2 para permitir la formación de la monocapa. Luego las células fueron lavadas con solución salina al 0,85% y se agregaron 100 μ L de cada una de las cuatro concentraciones de los extractos. Cada concentración del extracto y los controles se evaluaron por triplicado en 2 ensayos. Posteriormente, las placas se incubaron a 37°C durante 48 horas, se eliminó el medio de cultivo y las células se lavaron con solución salina a 0,85%, se agregaron 30 μ L de MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) a una concentración de 2 mg/mL preparado en medio de cultivo y las células se incubaron nuevamente por 4 horas. Después de

la incubación, se agregaron 130 µL de DMSO al 96%. La lectura de la viabilidad celular se realizó mediante la medición de la producción de formazán (producido a partir del metabolismo del MTT), la cual se midió en un espectofotómetro Multiskan Spectrum Thermo scientific medido a 570 nm de exitación y 595 nm de emisión (Mosmann, 1983). Las densidades ópticas obtenidas se analizaron con el programa GraphPad Prism 5 para hallar la concentración tóxica para el 50% de las células de prueba (TC50).

Análisis estadístico

Para comparar las concentraciones de los compuestos en cada uno de los extractos y entre las diferentes fechas de colecta se empleó la prueba ANOVA. Cuando se encontraron diferencias estadísticamente significativas se aplicaron los test de comparaciones múltiples por parejas de compuestos; se usó el test de Tukey cuando las varianzas fueron iguales y el Test de Games Howell cuando las varianzas fueron diferentes. Para comparar las concentraciones de los compuestos y las actividades biológicas de los extractos entre los dos municipios se usó la prueba T de Student para muestras independientes. En todos los casos se usó un valor p de significancia menor a 0,05. Estas pruebas se hicieron con el programa estadístico SPSS versión 19 y para las curvas de calibración se usó el software STATGRAPHICS Centurión 5,0.

3. Resultados y Discusión

Recolección del material vegetal

En la tabla 2 se presentan los datos geográficos de los lugares de colecta, las cuales fueron realizadas en la vereda la piñuela del municipio de Cocorná y la vereda Inguapí el Guadal del municipio de Tumaco. Nótese que ambas localidades también difieren en varios aspectos ecológicos y microclimáticos, descritos previamente en la tabla 1.

Tabla 2

Colecta	Municipio	Vereda	Coordenadas	msnm
Nov- 2010 Jun-2011	Cocomá	La piñuela	6°00'18" N; 75°08'16" W	1150
Nov- 2010 Jun-2011	Tumaco	Inguapí el Guadual	1°41'13" N; 78°46'43" W	12

Parámetros de colecta de las hojas de S. nudum. Tabla 2 Parámetros de colecta de las hojas de S. nudum.

Extractos de S. nudum

El porcentaje promedio en masa de los extractos totales obtenidos de la planta S. nudum fue de 33 \pm 5 %, para el cual el 1,7 \pm 0,5 % corresponde la extracción realizada con hexano; 5,2 \pm 0,6 % a la realizada con diclorometano y 26 \pm 5 % a la realizada con metanol. En la tabla 3 se expresan los porcentajes de extracto de la planta de S. nudum proveniente de los municipios de Cocorná y Tumaco.

Tabla 3 Tabla 3

Municipio	Vereda	Fecha de colecta	Tipo de extracto	Porcentaje de extracto (m/m)
			Hexano	1,19
	La piñuela	Nov-2011	Diclorometano	5,21
Cocomá			Metanol	31,37
			Hexano	1,70
		Jun-2011	Diclorometano	4,81
			Metanol	28,54
	Inguapí el Guadual		Hexano	1,52
		Nov-2010	Diclorometano	4,71
Tumaco			Metanol	23,10
Tumaco			Hexano	2,41
		Jun-2011	Diclorometano	6,06
			Metanol	19,84

Extractos obtenidos de la planta S. nudum. Tabla 3 Extractos obtenidos de la planta S. nudum.

Cuantificación de esteroides en extractos de S. nudum

Los análisis estadísticos de los patrones esteroidales (SN-1, SN-2, SN-3, SN-4, SN-5 y Diosgenona) se muestran en la tabla 4. Los valores obtenidos presentan una correlación estadísticamente significativa (p-valor = 0,001), con un nivel de confianza del 95%, los coeficientes de correlación para los modelos lineales fueron de 0,999; indicando buena proporcionalidad entre la concentración y el área (López, et al. 2014).

Tabla 4 Tabla 4

Compuesto	Rango Lineal (μg/mL)	Ecuación	r2	LD (μg/mL)	LC (μg/mL)	TR (min)
SN-1	0,5 - 160	A = 24,7 *C	0,999	0,10	0,33	17,657
SN-2	0,5 - 160	A = 27,4 *C	0,999	0,09	0,30	16,568
SN-3	0,5 - 160	A = 16,8 *C	0,999	0,14	0,46	14,850
SN-4	3,0 - 160	A = 15,7 *C	0,999	0,75	2,50	12,357
SN-5	0,5 - 160	A = 20,5 *C	0,999	0,15	0,50	14,145
Diosgenona	3,0 - 160	A = 21,5 *C	0,999	0,82	2,73	37,492

Parámetros cromatográficos para la cuantificación de esteroides de S. nudum Tabla 4. Parámetros cromatográficos para la cuantificación de esteroides de S. nudum

> A: área, C: concentración, r2: coeficiente de determinación, LD: límite de detección, LC: límite de cuantificación y TR: tiempo de retención.

> En la figura 1 se muestra el cromatograma de los patrones a una concentración de 120 µg/mL, donde se observa una definición y resolución de los picos sin problemas de coelución entre ellos.

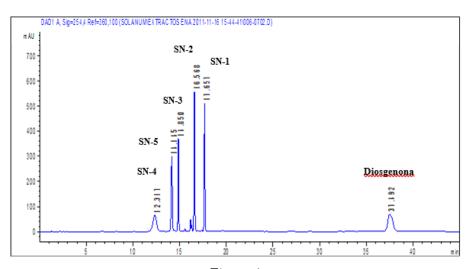


Figura 1

En la figura 1 se muestra el cromatograma de los patrones a una concentración de 120 µg/mL, donde se observa una definición y resolución de los picos sin problemas de coelución entre ellos. Figura 1. Cromatograma de la mezcla de patrones: SN-1, SN-2, SN-3, SN-4, SN-5, Diosgenona

Efecto de la región en la composición de esteroides en Solanum nudum

En la tabla 5 Se evidencia que en los extractos obtenidos con solvente

hexano hay presencia de los esteroides de polaridad media (SN-1 y SN-2) y polaridad baja (Diosgenona). Los compuestos de polaridad alta como SN-4, SN-5 y SN3, no fueron detectados. Para los extractos obtenidos con

diclorometano y metanol de detectaron todos los esteroides de interés, predominando los compuestos de polaridad media (SN-1 y SN-2) en diclorometano y los compuestos de polaridad alta (SN-4, SN-5 y SN3) en metanol.

El contenido de los compuestos esteriodales en los tres extractos de los dos municipios, conserva la tendencia, respecto al efecto de la polaridad del solvente en la extracción, difiere significativamente en la cantidad de los compuestos, es decir SN-1, SN-2, SN-3 y SN-4 son menores en Tumaco que en Cocorná, pero SN-5 y Diosgenona son mayores en Tumaco.

Tabla 5

	~		_
Extracto	Compuesto	Cocomá	Tumaco
	SN-1	35,7 ± 0,2	$3,2 \pm 0,2$
	SN-2	22,5 ± 0,4	6,2 ± 0,3
Hexano	SN-3	ND	ND
	SN-4	ND	ND
	SN-5	ND	ND
	Diosgenona	85 ± 1	111 ± 3
	SN-1	96 ± 1	$9,7 \pm 0,3$
Diclorometano	SN-2	191 ± 11	85 ± 3
	SN-3	98,6 ±	17,1 ±
	ר-אזמ	0,2	0,5
Dictorofficiano	SN-4	89 ± 2	64 ± 3
	SN-5	$9,7 \pm 0,5$	38 ± 1
	Diosgenona	12,7 ± 0,4	55 ± 2
	SN-1	22 ± 1	1,63 ± 0,07
	SN-2	33 ± 2	$9,6 \pm 0,6$
	SN-3	107,2 ± 0,5	23,3 ± 0,7
Metanol	SN-4	114,1 ± 0,7	71 ± 2
	SN-5	16 ± 1	56,5 ± 0,9
	Diosgenona	5,5 ± 0,3	12,3 ± 0,9

Contenido de compuestos esteroidales en extractos de S. nudum (µg/mg) de las colectas realizadas en Cocorná y Tumaco en el mes de noviembre de 2010 Tabla 5 Contenido de compuestos esteroidales en extractos de S. nudum (µg/mg) de las colectas realizadas en Cocorná y Tumaco en el mes de noviembre de 2010

Las diferencias en la cantidad de compuestos esteroidales entre las dos regiones estudiadas puede ser una consecuencia de la interacción de las plantas con su respectivo entorno biótico (herbívoros y polinizadores) y abiótico (composición química del suelo y microclima). La diferencia en el contenido esteroidal entre los extractos de Cocorná y Tumaco puede explicarse por las diferencias encontradas en algunos aspectos ecológicos de las plantas en su respectivo ambiente. Previamente se había

reportado que las plantas de S. nudum en Cocorná presentaron una mayor cantidad de especies de visitantes florales y frutos/mes. Además, se encontró una menor prevalencia de insectos (hervíboros, parásitos y huéspedes temporales) en las plantas de Cocorná comparado con las provenientes de Tumaco (Tabla 1).

Para el caso de compuestos químicos tipo esteroides se ha reportado que su pico máximo de biosíntesis se da en la floración de las plantas y que estos pueden ser tóxicos para microorganismos, insectos y otros animales, actuando como defensa contra depredadores, parásitos y herbívoros (Díaz, 2009), pero estos compuestos también pueden actuar como sustancias atrayentes de polinizadores, favoreciendo de este modo las ventajas competitivas de la planta frente a otras en cuanto a la mayor probabilidad de generación de frutos (Díaz, 2009). De esta manera, la producción de metabolitos secundarios influye indirectamente sobre la sobrevivencia de la planta y la dinámica ecológica de esta planta en su ecosistema (Granados, et al. 2008; Wink, 2003). Sin embargo, la supervivencia de las plantas bajo condiciones de ataque depende de la capacidad de las mismas de percibir el estímulo, generar y transmitir las señales correspondientes y así iniciar los cambios fisiológicos y químicos necesarios para la biosíntesis de metabolitos (Zobayed, et al. 2007).

En este sentido, se ha reportado que los metabolitos que actúan como defensa contra los depredadores de las plantas reducen el rendimiento, la supervivencia y la reproducción de estos atacantes y, por tanto, se espera que las plantas que tengan la capacidad de producir mayor cantidad de estos metabolitos sean menos atacadas por este tipo de plagas (Steppuhn, et al. 2004; Kamel y Souad, 2009).

Respecto a la luminosidad, las plantas de Cocorná tienen una mayor disponibilidad de luz en su entorno, lo que permite que los procesos fotosintéticos se lleven a cabo de manera favorable y consecuentemente aporten, en mayor medida, al crecimiento y desarrollo de la planta y a la producción de sus metabolitos (Briskin yGawienowski, 2001; Mosaleeyanon, et al. 2005) si se compara con las plantas de Tumaco (Tabla 1).

Para los compuestos SN-1, SN-2, SN-3, SN-4, SN-5 y la Diosgenona aislados inicialmente de la planta S. nudum colectada en Tumaco se ha planteado una ruta biosintética (Saez, et al. 1998), como se ilustra en la figura 2, donde el compuesto SN-2 es considerado un metabolito sustrato, SN-1, SN-3 y SN-4 metabolitos intermediarios, SN-5 metabolito sustrato e intermediario y finalmente la Diosgenona como metabolito producto.

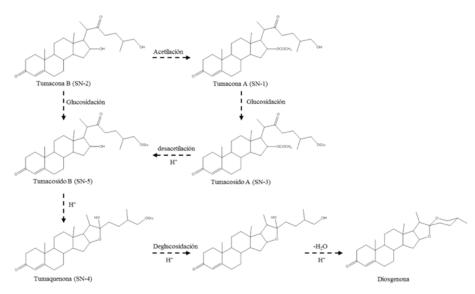


Figura 2 Figura 2

Ruta biosintética de esteroides de S. nudum proveniente de Tumaco.

En la figura 3 se ilustra una posible ruta biosintética del metabolismo de los compuestos esteroidales de la planta de S. nudum colectada en Cocorná, donde el compuesto SN-2 es considerado un metabolito sustrato, SN-1, SN-5 y SN-4 metabolitos intermediarios, SN-3 y Diosgenona son metabolitos producto.

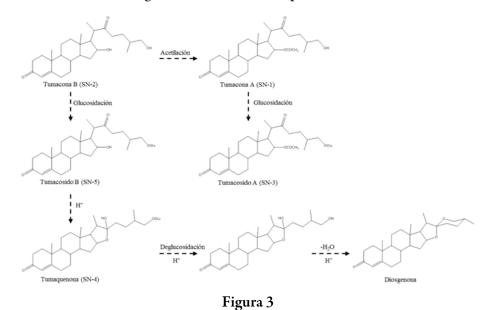


Figura 3
Posible ruta biosintética de esteroides de S. nudum proveniente de Cocorná Fuente: autores

Efecto del mes de recolección de S. nudum en la composición de esteroides

En los meses de noviembre de 2010 y junio de 2011 correspondientes a las colectas del material vegetal coincidieron con la presencia del fenómeno

de La Niña para algunas regiones de Colombia; "La Niña" se manifiesta principalmente por un enfriamiento de las aguas del Océano Pacífico Tropical central y oriental frente a las costas del Perú, Ecuador y sur de Colombia, "La Niña" favorece el incremento de las lluvias en gran parte del país en particular sobre las regiones Caribe y Andina (IDEAM, 2010). Monitoreos realizados por el IDEAM, indicaron que en noviembre de 2010 se evidenció la fase de maduración del fenómeno de La Niña, y se registraron lluvias moderadamente por encima del promedio para la zona de Cocorná, mientras que para la zona de Tumaco se registraron un régimen de lluvias moderadamente por debajo de lo normal. Según el IDEAM, el mes de junio de 2011, correspondió a la finalización de la primera temporada de lluvia. Sin embargo, para la zona de Cocorná se registraron lluvias ligeramente por encima de lo normal, mientras que para Tumaco se observó lo contrario (IDEAM, 2011).

En la tabla 6 se puede apreciar el contenido de esteroides para las colectas de S. nudum realizada en el mes de noviembre del 2010 y junio del 2011 en los municipios de Cocorná y Tumaco.

Tabla 6Tabla 6

		Cocomá		Tumaco	
Extracto	Compuesto	Nov- 2010	Jun-2011	Nov- 2010	Jun-2011
	SN-1	35,7 ± 0,2	5,2 ± 0,3	3,2 ± 0,2	10,2 ± 0,8
	SN-2	22,5 ± 0,4	$3,4 \pm 0,3$	$6,2 \pm 0,3$	14 ± 1
Hexano	SN-3	ND	ND	ND	ND
	SN-4	ND	ND	ND	ND
	SN-5	ND	ND	ND	ND
	Diosgenona	85 ± 1	12 ± 1	111 ± 3	179 ± 2
	SN-1	96 ± 1	$9,4 \pm 0,1$	$9,7 \pm 0,3$	22 ± 1
	SN-2	191 ± 11	105,4 ± 0,6	85 ± 3	115 ± 3
	SN-3	98,6 ± 0,2	97 ± 2	17,1 ± 0,5	10,9 ± 0.9
Diclorometano	SN-4	89 ± 2	95 ± 2	64 ± 3	47 ± 3
	SN-5	9,7 ± 0,5	18,6 ± 0,9	38 ± 1	28 ± 3
	Diosgenona	12,7 ± 0,4	3,9 ± 0,2	55 ± 2	61,9 ± 0,7
Metanol	SN-1	22 ± 1	1,51 ± 0,02	1,63 ± 0,07	5,9 ± 0,4
	SN-2	33 ± 2	3,19 ± 0,08	9,6 ± 0,6	29 ± 3
	SN-3	107,2 ± 0,5	66 ± 4	23,3 ± 0,7	13 ± 3
ivicianoi	SN-4	114,1 ± 0,7	147 ± 2	71 ± 2	46 ± 2
	SN-5	16 ± 1	24,3 ± 0,7	56,5 ± 0,9	44 ± 2
	Diosgenona	5,5 ± 0,3	1,01 ± 0,08	12,3 ± 0,9	25 ± 2

Contenido de esteroides en extractos de S. nudum en los municipios de Cocorná y Tumaco (µg/mg de extracto). Tabla 6 Contenido de esteroides en extractos de S. nudum en los municipios de Cocorná y Tumaco (µg/mg de extracto).

El mayor contenido de metabolitos en los extractos de S. nudum fue encontrado en noviembre para el municipio de Cocorná y en junio para el municipio de Tumaco. Posiblemente el cambio fisiológico inducido por el estrés provocado por las variaciones de temperatura y precipitaciones asociadas al fenómeno de La Niña, promueve producción de metabolitos secundarios probablemente para la restauración de mecanismo de defensa. Así también, la tasa de transpiración de la hoja está significativamente influenciada por la temperatura contribuyendo al aumento en las concentraciones de los compuestos químicos de la planta (Zabayed, et al. 2005).

Respecto al municipio de Cocorná para los extractos de la colecta del mes de noviembre, los compuestos esteroidales como Diosgenona es mayoritario en el extracto de hexano, SN-1 y SN-2 en el extracto de diclorometano y SN-3, SN-4 y SN-5 en el extracto de metanol. Sin embargo, entre los meses de colecta los compuestos SN-4 y SN-5 fueron mayores para el mes de junio en los extractos de diclorometano y metanol.

Para los extractos de la colecta del mes de junio del municipio de Tumaco, los compuestos esteroidales como Diosgenona fue mayoritario hexano, SN-1 y SN-2 en el extracto de diclorometano y SN-3, SN-4 y SN-5 en el extracto de metanol. Sin embargo, entre los meses de colecta los compuestos SN-4 y SN-5 fueron mayores para el mes de noviembre en los extractos de diclorometano y metanol.

Actividad antiplasmodial de los extractos obtenidos de la planta S. nudum

En la tabla 7 se presentan la actividad antiplasmodial (IC50 < 50 μg/mL) de los extractos de la planta S. nudum colectada en Cocorná y Tumaco.

Tabla 7 Actividad antiplasmódica de los extractos (µg/mL) de S. nudum colectada en Cocorná y Tumaco.

TUMACO	TUMACO COCORNÁ					
Extractos	Noviembre	Junio	P valor*	Noviembre	Junio	P valor*
	Me ±DS	Me ±DS		Me ±DS	Me ±DS	
Hexano	40,44 ± 0,71	17,46 ± 1,35	0,0001	23,99 ± 3,69	100,00 ± 0,00	<0,0001
Diclorometano	39,06 ± 4,12	21,22 ± 1,30	0,001	23,43 ± 1,56	88,00 ± 20,79	0,032
Metanol	47,56 ± 7,45	29,74 ± 1,50	0,022	50,29 ± 1,60	64,79 ± 13,50	0,203

* Prueba t-student p < 0.05, se compararon las concentraciones inhibitorias 50 (IC50) de cada extracto entre los meses de noviembre y junio en los municipios de Tumaco y Cocorná.

Me (promedio) y DS (desviación estándar)

Tabla 7 Prueba t-student p < 0.05, se compararon las concentraciones inhibitorias 50 (IC50) de cada extracto entre los meses de noviembre y junio en los municipios de Tumaco y Cocorná.

Me (promedio) y DS (desviación estándar)

* Prueba t-student p < 0.05, se compararon las concentraciones inhibitorias 50 (IC50) de cada extracto entre los meses de noviembre y junio en los municipios de Tumaco y Cocorná.

Me (promedio) y DS (desviación estándar)

Se observan diferencias estadísticamente significativas en la actividad antiplasmodial (p < 0,05), entre los meses de colecta. Para Cocorná, los extractos con mayor efecto antiplasmodial (IC50 más baja) fueron los de hexano (IC50 Hexano 24 \pm 4 $\mu g/mL)$ y diclorometano (IC50 Diclorometano 23 \pm 2 $\mu g/mL)$ de la colecta noviembre, los cuales no presentaron diferencia estadísticamente significativa (p < 0,05), atribuyendo a los compuestos SN-1 y Diosgenona la actividad antiplasmodial, dado que comparando las actividades entre los extractos de diclorometano en los dos meses de colecta, para los cuales el extracto de noviembre que es 10 veces más activo, no se presentó diferencia estadísticamente significativa entre los componentes SN-3 y SN-4 con el extracto de la colecta de junio

Respecto a Tumaco se presentó mayor efecto antiplasmodial en los extractos de la colecta de junio (IC50 Hexano: $17 \pm 1 \mu g/mL$; IC50 Diclorometano $21 \pm 1 \mu g/mL$; IC50 Metanol $30 \pm 2 \mu g/mL$), para los cuales se tiene un mayor contenido de compuestos SN-1 y diosgenona, principalmente Diosgenona la cual se presenta en mayor cantidad (tabla 6).

Una mejor actividad antiplasmodica en Cocorná y Tumaco se observó en los periodos de lluvia de cada localidad, cuando se presentó la mayor concentración de los compuestos SN-1 y Diosgenona (Tabla 8), a los cuales se les atribuye la actividad antiplasmodial (Pabón, et al. 2002; López, et al. 2009).

La actividad antiplasmodial del extracto de diclorometano de Cocorná colecta noviembre (IC50 Diclorometano 23 \pm 2 μ g/mL) y el extracto de diclorometano de Tumaco colecta junio (IC50 Diclorometano 21 \pm 1 μ g/mL) no presentaron diferencias estadísticamente significativa (p-valor = 0,001), teniendo en cuenta que SN-1 fue mayor para Cocorná y Diosgenona para Tumaco (Tabla 8).

Tabla 8 Tabla 8

Extracto	Compuesto	Cocomá Nov- 2010	Actividad antiplasmódica (µg/mL)	Tumaco Jun- 2011	Actividad antiplasmódica (µg/mL)
	SN-1	96 ± 1		22 ± 1	
Diclorometano	SN-2	191 ± 11		115 ± 3	
	SN-3	98,6 ± 0,2	23 ± 2	10,9 ± 0.9	21 ± 1
	SN-4	89 ± 2		47 ± 3	21 ± 1
	SN-5	9,7 ± 0,5		28 ± 3	
	Diosgenona	12,7 ± 0,4		61,9 ± 0,7	

Actividad antiplasmódica (μg/mL) de los extractos de S. nudum colectada en Cocorná y Tumaco.

Tabla 8 Actividad antiplasmódica (µg/mL) de los extractos de S. nudum colectada en Cocorná y Tumaco.

Actividad citotóxica de los extractos obtenidos de la planta S. nudum

En la tabla 9 se presentan la actividad citotóxica de los extractos de la planta S. nudum. Se observa diferencias estadísticamente significativas (p < 0,05), tanto en las localidades como entre los meses de colecta.

Tabla 9 Concentración citotóxica 50 (CC50) de los extractos (de S. nudum colectada en Tumaco y Cocorná en el mes de noviembre y junio.

TUMACO			cocor	NÁ			
Extractos	NOVIEMBRE	JUNIO	P VALOR*	NOVIEMBRE	JUNIO	P VALOR *	
	Me ±DS	Me ±DS	•	Me ±DS	Me ±DS	•	
Hexano	46,46 ± 8,92	19,87 ± 0,81	0,028	61,31 ± 0,77	200,00 ± 0,00	<0,0001	
Diclorometano	36,38 ± 6,88	41,02 ± 5,31	0,326	17,48 ± 2,76	136,15 ± 32,08	<0,0001	
Metanol	126,43 ± 21,92	92,65 ± 5,65	0,051	84,55 ± 8,71	111,37 ± 17,79	0,054	

^{*} Prueba t-student p < 0,05; se compararon las concentraciones tóxicas 50 (TC50) de cada extracto entre los meses de noviembre y junio en los municipios de Tumaco y Cocorná.

Me (promedio) y DS (desviación estándar)

Tabla 9 * Prueba t-student p < 0,05; se compararon las concentraciones tóxicas 50 (TC50) de cada extracto entre los meses de noviembre y junio en los municipios de Tumaco y Cocorná.

Me (promedio) y DS (desviación estándar)

Los extractos con mayor efecto citotóxico (TC50 < 100 ug/mL), fueron los obtenidos con hexano y diclorometano provenientes de la localidad de Tumaco colecta del mes de junio. Para Cocorná los extractos con mayor efecto citotóxico fueron los obtenidos con hexano y diclorometano de la colecta noviembre 2010. Aunque los extractos de Cocorná de la colecta de junio 2011 no presentaron actividad cititóxica (TC50 > 100 ug/mL), estos no tienen actividad antiplasmodial.

4. Conclusiones

La diferencia en la composición de los extractos obtenidos de de S. nudum se debe a las diferencias en algunos aspectos ecológicos de las plantas en su respectivo ambiente. A demás el contenido de compuestos esteroidales y la actividad antiplasmodial fue superior para los extractos de las regiones Cocorná y Tumaco en los meses de noviembre 2010 y junio 2011 donde la precipitación promedio del lugar fue alterada debido al fenómeno de La Niña el cual promovió la producción de los metabolitos esteroidales.

El incremento de las lluvias en los municipios de Cocorná y Tumaco favorecieron la productividad de los componentes SN-1, SN-2, SN-3 y Diosgenona, sin embargo, es importante resaltar que en el periodo donde

no estuvo presente el fenómeno de la Niña, los compuestos SN-4 y SN-5 fueron los mayoritarios

Aunque se ha reportado que los esteroides aislados de S. nudum no presentan actividad tóxica, posiblemente la toxicidad encontrada en los extractos que presentaron mayor actividad antiplasmodial puede deberse a componente diferentes a los compuestos estereoidales trabajados en este estudio. Los extractos obtenidos con metanol tanto para Cocorná y Tumaco en los meses de noviembre 2010 y junio 2011, presentaron menor actividad antiplasmodial, comparados con los otros extractos, pero fueron menos citotóxicos.

5. Referencias

- Alvarez, G; Pabón, A; Carmona, J; Blair, S. (2004). Evaluation of clastogenic potential of the antimalarial plant Solanum nudum. Phytother Res, 18(10) octubre, pp. 845-848.
- Blair, S; Madrigal, B. Plantas antimaláricas de Tumaco: Costa Pacífica Colombiana, in: E.U.d. Antioquia (Ed.), Medellín, 2005, pp. 266-270.
- Boira, H; Blanquer, A. (1998). Environmental factors affecting chemical variability of essential oils in Thymus piperella L. Biochem Syst Ecol. 26 diciembre, pp. 811-822.
- Bravo, B; Sauvain, M; Gimenez, T; Muñoz, O; Callapa, J; Le Men, O; Massiot, G; Lavaud, C. (1999). Bioactive phenolic glycosides from Amburana cearensis. Phytochemistry. 50 enero, pp. 71-74.
- Briskin, D.P.; Gawienowski, M.C. (2001). Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiol. Bioch, 39 dicienbre, pp. 1075-1081.
- Celiktas, O; Kocabas, E; Bedir, E; Sukan, F; Ozek, T; Baser, K. (2007) Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations, Food Chem. 100, pp. 553-559.
- Christos N. Hassiotis , Diamanto M. Lazari. (2010). Decomposition process in the Mediterranean region. Chemical compounds and essential oil degradation from Myrtus communis. International Biodeterioration & Biodegradation, 64 junio, pp. 356-362.
- Desjardins, R; Canfield, C; Haynes, D; Chulay, J. (1979). Quantitative assessment of antimalarial activity In Vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother, 16 diciembre, pp. 710-718.
- Diaz, L. (2009). Interacciones moleculares entre plantas y microorganismos: saponinas como defensas químicas de las plantas y su tolerancia a los microorganismos, Estudios Transdisciplinarios. 1 junio, pp. 32-55.
- Echeverri, M; Blair, S; Carmona, J; Perez, P. (2001). Effect of Solanum nudum extracts on the liver of mice infected with Plasmodium berghei. Am J Chin Med. 29 septiembre, pp. 477-484.
- Granados, D; Ruiz, P; Barrera H. (2008). Ecologia de la herbivoria, Chapingo. 14 enero, pp. 51-64.
- IDEAM, Boletín informativo sobre el monitoreo de los fenómenos de "El Niño" y "La Niña", in, 2010.

- IDEAM, Boletín informativo sobre el monitoreo de los fenómenos de "El Niño" y "La Niña", in, 2011.
- Kamel, A; Souad, E. (2009). Is there a relationship between the level of plant metabolites in Cucumber and Globe Cucumber and the degree of Insect Infestation?, Not. Bot. Horti Agrobo. 37, pp. 144-156.
- Londoño, B; Arango, E; Zapata, C; Herrera, S; Saez, J; Blair, S; Carmona, J. (2006). Effect of Solanum nudum Dunal (Solanaceae) steroids on hepatic trophozoites of Plasmodium vivax. Phytother Res, 20, abril, pp. 267-273.
- López, E; Barbosa, C; Mesa, A; Araque., P. (2011). Actividad antiplasmodial de extractos etanólicos Solanum nudum dunal: efecto en el proceso descomposición del material vegetal.
- López, E; López, C; Araque, P; Blair, S; Pabón, A. (2014). Simultaneous quantification of antimalarial steroids in solanum nudum extracts by High Performance Liquid Chromatography (HPLC). Revista Politecnica, 10(18) enero, pp 23-33.
- López, M.L.; Blair, S; Saez, J; Segura, C. (2009). Effect of Solanum nudum steroids on uninfected and Plasmodium falciparum-infected erythrocytes. Mem. Inst. Oswaldo Cruz. 104, pp. 683-688.
- Mosaleeyanon, K; Zobayed, S; Afreen, F; Kozai, T. (2005). Relationships between net photosynthetic rate and secondary metabolite contents in St. John's wort. Plant Sci, 169 septiembre, pp. 523-531.
- Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65 diciembre, pp. 55-63.
- Morales, P. Aspectos ecológicos de Solanum nudum (Dunal 1816), una planta promisoria contra la malaria, trabajo de pregrado en Biología, Universidad de Antioquia, Medellín, 2011, pp. 1-85.
- Orozco, C.I.; Alba, A; Beltrán, G; Orejuela, A; Sarmiento, Y; Vélez, J.M. Solanum nudum Dunal En Bernal, R., S.R. Gradstein & M. Celis (eds.). 2015. Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá.
- Pabón, A; Carmona, J; Maestre, A; Camargo, M; Blair, S. (2002). Inhibition of P. falciparum by steroids isolated from Solanum nudum. Phytother Res, 16 febrero, pp. 59-62.
- Pabón, A; Blair, S; Carmona, J; Zuleta, M; Saez, J. (2003). Evaluation of the mutagenicity of antimalarial products isolated from Solanum nudum (Solanaceae). Pharmazie. 58(4) abril, pp. 263-267.
- Reed, G; Lynn, F; Meade, B. (2002). Use of coefficient of variation in assessing variability of quantitative assays. Clin Diagn Lab Immunol. 9 noviembre, pp.1235-1239.
- Saez, J; Cardona, W; Espinal, D; Blair, S; Mesa, J; Bocar, M; Jossang, A. (1998). Five new steroids from Solanum nudum, Tetrahedron, 54 septiembre, pp. 10771-10778.
- Stafford, G.I.; Jäger, A.K.; van Staden. J. (2005). Effect of storage on the chemical composition and biological activity of several popular South African medicinal plants. Ethnopharmacology. 97 febrero, pp. 107-115.
- Steppuhn, A, Gase, K; Krock, B; Halitschke, R; Baldwin, I. (2004). Nicotine's defensive function in nature. Plos Biol, 2(8) agosto, pp.1074-1080.

- Walliker, D; Quakyi, I.A; Wellems, T. E; Mccutchan, T. F; Szarfman, A; London, W. T; Carter, R. (1987). Genetic Analysis of the Human Malaria Parasite Plasmodium falciparum. American Association for the Advancement of Science Stable, 236(4809), 1661–1666.
- Wink, W. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64 septiembre, pp. 3-19.
- Zobayed, S; Afreen, F; Kozai, T. (2005). Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John's wort. Plant Physiol. Bioch, 43 octubre, pp. 977-984.
- Zobayed, S; Afreen, F; Kozai, T. (2007). Phytochemical and physiological changes in the leaves of St. John's wort plants under a water stress condition. Environ Exp Bot. 59 marzo, pp. 109-116.

