

Revista EIA ISSN: 1794-1237 revista@eia.edu.co Escuela de Ingeniería de Antioquia Colombia

Modelos de Inventario Administrado por el Vendedor (VMI): Síntesis de In-vestigación 2012-2017

Solano Payares, Cristian José; García Barrios, David Andrés; Mendoza Mendoza, Adel Alfonso; Palencia Castro, Daniel Andrés

Modelos de Inventario Administrado por el Vendedor (VMI): Síntesis de In-vestigación 2012-2017 Revista EIA, vol. 17, núm. 34, 2020

Escuela de Ingeniería de Antioquia, Colombia

Disponible en: https://www.redalyc.org/articulo.oa?id=149264860018

DOI: https://doi.org/10.24050/reia.v17i34.1358

Modelos de Inventario Administrado por el Vendedor (VMI): Síntesis de Investigación 2012-2017

Vendor Managed Inventory (VMI) Models: Research Synthesis 2012-2017.

Modelos de inventário gerenciado pelo fornecedor (VMI): Resumo da pesquisa 2012-2017.

Cristian José Solano Payares cristianjsolano@mail.uniatlantico.edu.co Universidad del Atlántico, Colombia David Andrés García Barrios davidagarcia@mail.uniatlantico.edu.co Universidad del Atlántico, Colombia Adel Alfonso Mendoza Mendoza adelmendoza@mail.uniatlantico.edu.co Universidad del Atlántico, Colombia Daniel Andrés Palencia Castro dapalencia@mail.uniatlantico.edu.co Universidad del Atlántico, Colombia

Revista EIA, vol. 17, núm. 34, 2020

Escuela de Ingeniería de Antioquia,

Recepción: 02 Agosto 2019 Aprobación: 18 Junio 2020

DOI: https://doi.org/10.24050/reia.v17i34.1358

Redalyc: https://www.redalyc.org/articulo.oa?id=149264860018

Resumen: Este artículo presenta una síntesis de las publicaciones científicas sobre el diseño de modelos de Inventario Administrado por el Vendedor (VMI) entre los años 2012 y 2017. Para esto se utilizó el procedimiento metodológico propuesto por Cooper, Hedges y Valentine, que involucró una serie de pasos de recopilación, análisis e interpretación de la información con la tarea de producir una completa descripción del estado acumulativo de las investigaciones sobre este tema. Además de una caracterización de las publicaciones, los principales resultados de este estudio se componen de la consolidación de un conjunto de criterios y lineamientos para el desarrollo de estos modelos. Estos lineamientos fueron enlazados con objetivos a corto, mediano y largo plazo que involucran distintos focos de priorización y barreras a considerar en los diseños. Finalmente, esta síntesis revela que este tipo de modelos siguen siendo un tema de interés en las investigaciones concernientes con la gestión de inventario y los modelos colaborativos, ofreciendo una información confiable que funciona como punto de partida para la consulta y formulación de modelos para futuros investigadores en este campo.

Palabras clave: Inventario, VMI, Logística, Gestión de la cadena de suministro, Síntesis de investigación.

Abstract: This paper presents a synthesis of scientific publications on the design of Vendor Managed Inventory (VMI) models between 2012 and 2017. For this, the methodological procedure proposed by Cooper, Hedges and Valentine was used, which involved a series of steps of collection, analysis and interpretation of the information with the task of producing a complete description of the cumulative state of research on this topic. In addition to a characterization of the publications, the main results of this study consist of the consolidation of a set of criteria and guidelines for the development of these models. These guidelines were linked to short, medium and long-term objectives that involve different prioritization focuses and barriers to be considered in the designs. Finally, this synthesis reveals that these types of models continue to

be a topic of interest in research concerning inventory management and collaborative models, offering reliable information that functions as a starting point for consultation and model formulation for future researchers in this field.

Keywords: Inventory, VMI, Logistics, Supply chain management, Research synthesis. **Palavras chave:** Inventário, VMI, Logística, Gerenciamento da cadeia de suprimentos, Síntese de pesquisa

1. Introducción

La competitividad empresarial ha obligado a las organizaciones a buscar nuevas formas para satisfacer las necesidades de los clientes, por lo que cada vez es más frecuente considerar la implementación de herramientas colaborativas para obtener resultados más productivos y rentables en la gestión logística. Una de estas herramientas es el Inventario Administrado por el Vendedor, o VMI por sus siglas en inglés (Vendor Managed Inventory), el cual se puede definir como un medio para optimizar el rendimiento de la cadena de suministro en el que el vendedor tiene acceso a los datos de inventario del cliente y es responsable de mantener el nivel de inventario requerido por el mismo Blackstone. (2002). Por su parte, el Council of Supply Chain Management Professionals (2013) define este concepto como una práctica en la que una empresa, principalmente minorista, otorga a sus proveedores, la responsabilidad de determinar el tamaño y el calendario de los pedidos, a partir de las órdenes y los datos de inventario de los puntos de venta.

El VMI posee una serie de etapas que convergen en el acuerdo entre el comprador y el vendedor. Primeramente, se inicia una comunicación de las expectativas y requerimientos de las empresas involucradas, después le sigue el establecimiento y la sincronización de la información que será compartida, establecimiento de políticas y recursos, diseños de esquemas para funciones de revisión, seguimiento y control, pruebas pilotos, y evaluación y retroalimentación del proceso Ganesh, et al. (2016). Los acuerdos VMI han sido usados en la industria desde 1980, desde que la organización de bienes de consumo Procter & Gamble y la minorista Wal-Mart introdujeron el VMI en su línea de pañales desechables. Wal-Mart comenzó implementando una estrategia de rápida respuesta y al adoptar el VMI, no solo disminuyó considerablemente sus inventarios, sino también el de sus proveedores para el logro de una respuesta competitiva Yan, et al. (2014).

El VMI para el comprador podría traer consigo beneficios como la reducción en los costos de pedido y el aumento de la productividad del espacio minorista, dado que a medida que se reducen tanto el inventario general como los niveles de existencias de seguridad, surge la posibilidad de aumentar la gama de bienes ofrecidos, por otra parte, en el caso del vendedor, los beneficios giran en torno a una producción alineada a la demanda del cliente y la disminución de los costos de transporte Hammer & Bernasconi. (2016).

La evolución de la investigación sobre el VMI se ha dirigido hacia el diseño de modelos de inventarios que en su mayoría se representan desde formulaciones matemáticas. Sin embargo, como cualquier otro campo

de investigación, este puede abarcar diversas propuestas que constituyen pasos necesarios en el desarrollo ordenado del conocimiento científico y la innovación. Entonces, el valor de un determinado estudio estará definido por la dirección investigativa que proporciona, y por sus hallazgos. Los nuevos investigadores primero necesitan conocer que se ha investigado previamente o qué campos aún no han sido explorados con el fin de implantar algún valor agregado. Por otro lado, otro de los problemas se encuentra en las limitaciones de tiempo que hacen que sea imposible para la mayoría de los científicos mantenerse al día con nuevos estudios, excepto en algunas áreas temáticas de especial interés. Entonces, la necesidad de síntesis de investigaciones pasadas cobra gran importancia.

Por lo anterior, existen diferentes estudios de revisión de literatura relacionado con los modelos VMI que incluyen los trabajos de Marquès, et al. (2010), Villa, et al. (2011), Arango, et al. (2013), Govindan. (2013), Akhbari, et al. (2014) y el desarrollado por Lee, et al. (2015). Sin embargo, además de que estos trabajos no consideran publicaciones entre los años 2015 – 2017, obvian la implementación de un procedimiento sistemático que sintetice todas las investigaciones acumuladas en el periodo de estudio y se basan en la forma narrativa tradicional. En otras palabras, no hacen una síntesis de investigación. Las síntesis de investigación tienen el objetivo de integrar estudios pasados para extraer conclusiones generales (generalizaciones) de investigaciones que abordan hipótesis idénticas o relacionadas. El objetivo del sintetizador de investigación es presentar el estado del conocimiento sobre la relación de interés y destacar cuestiones importantes de la investigación Cooper. (2017).

Por lo tanto, este artículo cuenta con tres propósitos principales: Realizar una síntesis de investigación que permita presentar las principales generalidades de las publicaciones científicas sobre el diseño de modelos de inventario administrado por el vendedor (VMI) entre los años 2012 y 2017; presentar un conjunto de focos de priorización y lineamientos que son indispensables para el diseño de dichos modelos según la revisión llevada a cabo y finalmente, ofrecer una síntesis confiable para ayudar a los profesionales y a los responsables de diseñar modelos de inventario VMI en la formulación de sus propuestas y tomar decisiones críticas.

Para llevar a cabo lo anterior, se utiliza la metodología propuesta por Cooper, Hedges y Valentine. (2009) que más tarde fue profundizada por Cooper. (2017) para realizar una síntesis de investigación. La cual se enfoca en seguir una serie de pasos secuenciales, aplicando los principios básicos de recopilación, análisis e interpretación, con la tarea de producir una integración completa de investigaciones pasadas sobre un tema. Los resultados de la síntesis de investigación llevada a cabo proporcionan información sobre varios tipos de hallazgos relacionados con los resultados acumulativos de 61 publicaciones académicas, ver Anexo A, entre el periodo de tiempo estudiado.

Por último, el artículo está estructurado de la siguiente manera: en la sección 2 se describe la metodología utilizada para la construcción de la síntesis de investigación, junto a la definición de los pasos que se tuvieron

en cuenta para llevarla a cabo, en la sección 3 se presenta los resultados y finalmente en la sección 4 se establecen las conclusiones.

2. Materiales y métodos

Las síntesis de investigación realizadas en la forma narrativa tradicional han sido criticadas Snilstveit, et al. (2012); Mallett, et al. (2012); Booth, et al. (2016); Gurevitch, et al. (2018), estas generalmente se llevan a cabo en artículos de revisión de literatura, en donde los autores consignan su análisis artículo por artículo. Quienes se oponen a la síntesis de investigación tradicional han sugerido que este método es impreciso tanto en el proceso como en el resultado. En particular, la síntesis de investigación narrativa tradicional carece de estándares explícitos de prueba. Los lectores y usuarios de estas síntesis no saben qué estándar de evidencia se utilizó para decidir si un conjunto de estudios respaldaba su conclusión Johnson and Eagly. (2000). Las reglas de combinación utilizadas por los sintetizadores tradicionales rara vez son conocidas por nadie más que por los propios sintetizadores, incluso si son conscientes de lo que está guiando sus inferencias.

Una de las primeras aproximaciones fue la de Feldman en 1971, quien publicó un artículo titulado "Uso del trabajo de los demás: algunas observaciones sobre la revisión y la integración", en el que escribió: "Revisar e integrar sistemáticamente la literatura de un campo puede considerarse un tipo de investigación en sí misma, que utiliza un conjunto característico de técnicas y métodos de investigación" Feldman. (1971). En el mismo año, Light y Smith. (1971) argumentaron que, si se tratara adecuadamente, la variación en los enfoques entre los estudios relacionados podría ser una valiosa fuente de información.

Desde mediados de los años noventa, han aparecido un número creciente de autores que han estudiado la síntesis de investigación y el metaanálisis. Por ejemplo, autores como Eddy, Hasselblad y Schachter. (1992), describen un método propio llamado Método de perfil de confianza, basado en comparabilidad o aplicabilidad de preguntas específicas a diferentes fuentes de información. Asimismo, Lipsey y Wilson. (2001), Card. (2015), Petticrew y Roberts. (2006) y, Schmidt y Hunter. (2015), tratan el tema en general, señalando pautas para identificar objetivos, definir el alcance, plantear preguntas de investigación y conducir la síntesis. Además, ofrecen recomendaciones para las actividades de búsqueda de literatura, reporte de resultados, entre muchas otras. También, algunos lo tratan desde la perspectiva de diseños de investigación particulares. Bohning, Rattanasiri y Kuhnert. (2008), proponen una metodología basada en un metaanálisis con datos agrupados individualmente, en el cual desarrollan diferentes medidas estadísticas. Si bien este trabajo está orientado principalmente a la síntesis de estudios clínicos, ellos recalcan que es posible replicarlo a otras áreas.

Por otro lado, algunos autores vinculan sus metodologías a paquetes de software específicos. Este es el caso de Arthur, Bennett y Huffcutt. (2001), quienes proponen un procedimiento de análisis estadístico y

presentan al lector cómo realizarlo utilizando programación en SAS. De manera similar, Chen y Peace. (2013) desarrollan un código de análisis usando los paquetes en el software estadístico R y las funciones apropiadas. Planteando un enfoque sistemático que ayuda a los lectores a comprender diferentes métodos de análisis usando este programa.

Como se mencionó anteriormente, este estudió utilizó la metodología propuesta por Cooper, Hedges y Valentine. (2019), esta elección se fundamenta por el hecho de implementar un procedimiento sistemático para asegurar que toda la investigación relevante se ubique e incluya en la síntesis, junto con un conjunto de técnicas para maximizar la validez de las conclusiones extraídas. Este procedimiento involucró siete etapas, cada una de ellas gira alrededor a una pregunta de investigación diferente. Las etapas abarcan las tareas principales que deben llevarse a cabo para que los sintetizadores produzcan una descripción imparcial del estado acumulativo de la evidencia sobre un problema o hipótesis de investigación. La Tabla 1 resume todo el procedimiento llevado a cabo para el desarrollo de este trabajo.

TABLA 1.METODOLOGÍA DE LA SÍNTESIS DE INVESTIGACIÓN.

1. Formular el	¿Qué evidencia de investigación será	El problema de estudio fue el diseño de modelos VMI. Como
problema	relevante para el problema o hipótesis de	evidencias relevantes se determinaron aquellos estudios de
Ι΄ Ι	interés en la síntesis? Determinar aquellas	investigación en donde se diseñan este tipo de modelos analíticamente
	evidencias de investigación que permitan	o desde una formulación matemática, bajo cualquier técnica de
	distinguir los estudios relevantes de	modelamiento y con aplicación a cualquier sector económico. Este
	aquellos irrelevantes.	alcance resulta bastante preciso para lograr una caracterización y
		síntesis de investigación
2. Buscar la	¿Qué procedimientos deberían usarse	Los artículos fueron obtenidos de bases de datos de gran prestigio
literatura	para encontrar estas investigaciones	internacional (ScienceDirect, ProQuest, Springer, etc.). La búsqueda
	relevantes? Identificación de las fuentes y	fue ejecutada usando combinaciones de las siguientes palabras: VMI;
	los términos utilizados para buscar	Inventario Administrado por el Vendedor, Modelo; Diseño, Gestión
	investigaciones relevantes.	de Inventario; Cadena de suministro y Logística. Estas palabras fueron buscadas tanto en inglés como en español.
3. Recolectar	¿Qué información sobre cada estudio es	La información recolectada correspondió a especificaciones propias
información	relevante para el problema o la hipótesis	de los modelos consultados. Se tuvo en cuenta información como el
de los	de interés? Se busca reconocer cual es la	año de publicación, país, técnica de modelamiento, técnica de
estudios	información relevante que se busca,	solución, estructura de la cadena de suministro representada,
Catadios	teniendo en cuenta que la variación en la	supuestos del modelo, variables del modelo, resultados, técnicas de
	información recopilada puede generar	validación, entre otros aspectos, como los focos de priorización a
	ciertas diferencias en las conclusiones.	corto, mediano y largo plazo para la constitución del modelo junto
		con los criterios y lineamientos fundamentales para su diseño.
4. Evaluar la	¿Cómo evaluar las investigaciones	Los modelos netamente teóricos no fueron considerados, es decir
calidad de los	incluidas en la síntesis? Identificación y	aquellos que no recurren a una modelación matemática en su diseño.
estudios	aplicación de criterios de evaluación de	Del mismo modo, se realizó una depuración con el fin de descartar
	calidad que separen los estudios idóneos	aquellas publicaciones duplicadas o aquellas que no cumplian con los
5 A 1'	de los estudios que no lo son.	alcances definidos en las etapas descritas anteriormente.
5. Analizar e	¿Qué procedimientos deberían usarse	Cada uno de los artículos fue revisado por los miembros del equipo
integrar los	para analizar e integrar la información de los estudios? Identificación y aplicación	investigador y se llevaron a cabo varios consensos grupales. Se utilizaron técnicas de recuento para resumir y comparar la
estudios	de procedimientos para recolectar	información definida en el paso 3, con el fin de obtener una
	información.	caracterización completa v facilitar su interpretación (paso 6).
6. Interpretar	¿Qué conclusiones se pueden extraer sobre la	Para cada una de las publicaciones, se obtuvieron las inferencias más
la evidencia	evidencia de investigación? Concluir la	relevantes en función a las especificaciones propias del paso 3. Además de lo
la evidencia	evidencia de investigación acumulada.	anterior, a partir de la caracterización de la literatura, se buscó encontrar
		ciertos vacíos o aspectos selectos que le servirán a futuros investigadores que
		deseen trabajar en temáticas relacionadas con el VMI y la gestión de
		inventario. Ya que se reconoce que un estudio de este tipo debe presentar el estado del conocimiento sobre la relación de interés y destacar cuestiones
		importantes de la investigación.
7. Presentar	¿Qué información debería incluirse en el	Como es notable en la mayoría de las publicaciones científicas, la
los resultados	informe de la síntesis? Identificación y	longitud de los artículos es un aspecto para tener en cuenta. Por esta
200 2004144403	aplicación de las pautas editoriales y la	razón, se decidió presentar únicamente los resultados finales de la
	presentación de los resultados finales que	síntesis que incluyen (a) una caracterización del estado actual del
	los lectores del informe requieren conocer	conocimiento de estas investigaciones y (b) aquellas cuestiones que
	sobre el problema de estudio.	son relevantes para futuros investigadores, estas son: 1) focos de
		priorización sugeridos para el diseño del modelo y que respondan a
		desafios actuales, 2) criterios esenciales para la selección de la técnica
1		
		de modelamiento y 3) lineamientos recomendados para el diseño y
		de modelamiento y 3) lineamientos recomendados para el diseño y desarrollo del modelo, estos están intimamente relacionados con el establecimiento de variables y supuestos.

elaboración propia, con base en Cooper et al (2019).

3. Resultados y discusión

3.1 Caracterización de las publicaciones

Como se mencionó anteriormente, el estudio se llevó a cabo con artículos académicos publicados entre los años 2012 y 2017, obtenidos de bases de datos de gran prestigio internacional (ScienceDirect, ProQuest, Springer, entre otras). El contenido de las publicaciones correspondió a aquellas relacionadas con el diseño de modelos VMI, contando con un total de 61 artículos (Anexo A). En la Tabla 2 se ilustra la relación porcentual respecto al año de publicación. Un aspecto importante para destacar es

que el 75,41% de los artículos fueron publicados en los últimos cuatro años, lo que reveló que aún hay una fuerte producción investigativa sobre esta temática en la comunidad científica.

TABLA 2
PUBLICACIONES POR AÑO

Año de publicación	Número de publicaciones	Porcentaje
2012	6	9,84%
2013	9	14,75%
2014	11	18,03%
2015	18	29,51%
2016	10	16,39%
2017	7	11,48%
Total	61	100,00%

elaboración propia.

Al mismo tiempo, se notó que la mayor parte de las publicaciones se concentró en países del continente asiático, concentrándose en países como Irán, China e India. Esto se representa en la Tabla 3. Por lo que fue posible inferir que hubo una reducida contribución en países de habla hispana.

TABLA 3
PUBLICACIONES POR PAÍS.

País	Número de publicaciones	Porcentaje
Irán	13	21,31%
China	12	19,67%
India	9	14,75%
Emiratos Árabes Unidos	5	8,20%
Malasia	3	4,92%
Canadá	2	3,28%
Colombia	2	3,28%
Dinamarca	2	3,28%
España	2	3,28%
Estados Unidos	2	3,28%
Italia	2	3,28%
Corea	2	3,28%
Holanda	1	1,64%
Hungría	1	1,64%
Indonesia	1	1,64%
Marruecos	1	1,64%
México	1	1,64%
Total	61	100,00%

elaboración propia.

Además, en la Tabla 4 se presentan las particularidades relacionadas con la técnica de modelamiento implementada en el diseño de los modelos. Se encontró que el 80,33% se concentró en tres técnicas de modelamiento: Programación No Lineal (13,11%), Teoría de Juegos (11.48%) y Optimización Clásica sin restricciones (55,74%), siendo esta última definida como aquel modelamiento analítico basado en teorías de optimización clásica sin restricciones o enfocado en el cálculo. Esto

constituye un punto de partida para que los investigadores sepan a cuáles técnicas contribuir particularmente y fomentar aspectos que aún no se hayan analizado o que convengan ser ampliados.

TABLA 4 TÉCNICA DE MODELAMIENTO.

Técnica de modelamiento	N° de publicaciones	Porcentaje
Optimización Clásica (Unconstrained Classical Optimization)	34	55,74%
NLP (Nonlinear Programming)	8	13,11%
Teoría de Juegos (Game Theory)	7	11,48%
Lógica Difusa (Fuzzy Logic)	4	6,56%
MILP (Mixed Integer Linear Programming)	3	4,92%
MINP (Mixed Integer Nonlinear Programming)	3	4,92%
Modelo Markoviano (Markov Model)	1	1,64%
Programación Multiobjetivo (Multiple Objective Programming)	1	1,64%
Total	61	100,00%

Otra característica importante fueron aquellos criterios esenciales o preferibles seleccionados por los autores de las publicaciones para elegir una determinada técnica de modelamiento que se ajustara a los objetivos de su modelo. Estos criterios se resumen en la Tabla 5. Esta característica fue significativa para analizar aquellas implicaciones que con frecuencia se necesitan para los modelos VMI, bien sea para aplicar enfoques diferenciadores o generales. Así, los resultados mostraron que la mayoría de estos modelos se orientaron a una representación compleja de un problema de estudio (33.33%), seguido por la preferencia de un método de solución rápido (20.43%), junto a una minimización o maximización de funciones objetivos (18.28%).

TABLA 5 CRITERIO DE SELECCIÓN.

Criterio de selección	Definición	% Publicaciones
Representación compleja	Modelo orientado a una representación matemática compleja.	33,33%
Reducir el tiempo de solución	Modelo que busca la eficiencia en sus operaciones.	20,43%
Optimización general del sistema	Modelo para minimizar o maximizar una función objetivo.	18,28%
Variedad de soluciones generadas	Modelo para soporte estratégico o decisiones.	12,90%
Aplicabilidad del modelo	Modelo que busca la sencillez en su replicación.	8,60%
Flexibilidad	Modelo adaptable a diferentes escenarios.	5,38%
Favorabilidad	Modelo que arroje soluciones de calidad.	1,08%
Total		100,00%

elaboración propia.

En relación con el análisis anterior, el diseño de algunos modelos fue asistido por una técnica de solución, debido a que no fue posible en muchos casos, llegar a soluciones desde técnicas simples. Po otro lado, si bien es cierto que la aplicación de estas técnicas está asociada

a requerimientos específicos de un determinado modelo según su formulación u objetivos, fue necesario observar el panorama general, con el fin de contar con un listado de las técnicas comúnmente aplicadas. En la Tabla 6 se muestran los resultados, donde un 54,10% de los autores, no requirieron la aplicación de ninguna técnica adicional para la solución de su modelo, en contraste con el 45,90% que aplicaron técnicas de solución avanzadas. Las técnicas con más frecuencia de implementación fueron los algoritmos genéticos y el diseño de heurísticas, ambas con un 11,48%.

TABLA 6
TÉCNICAS DE SOLUCIÓN IMPLEMENTADAS.

Técnica de Solución	# Publicaciones	%
Ninguna técnica de solución implementada	33	54,10%
Algoritmo Genético (Genetic algorithm)	7	11,48%
Heurística Propuesta por los autores	7	11,48%
HIbrido GA-PSO (Genetic algorithm and Particle Swarm Optimization)	4	6,56%
Algoritmo Imperialista Competitivo (Imperialist Competitive Algorithm)	2	3,28%
HIbrido GA-ICA (Genetic algorithm and Imperialist Competitive Algorithm)	2	3,28%
Colonia de Hormigas (Ant Colony)	2	3,28%
Adjusted Silver–Meal (ASM) heuristic	1	1,64%
HIbrido GA-AIS (Genetic algorithm and Artificial Immune Systems)	1	1,64%
HIbrido GA-DP (Genetic algorithm and Dynamic Programming)	1	1,64%
HIbrido GA-SA (Genetic algorithm and Simulated Annealing)	1	1,64%
Total	61	100%

elaboración propia.

Por otra parte, se hizo un análisis de la estructura de la cadena de suministro representada. Principalmente, los diseños trabajaron sobre supuestos referentes a "eslabones" y "nodos". Los eslabones representan el movimiento de bienes entre distintos puntos en la cadena (proveedor, fabricante, distribuidor, mayorista, minorista, etc.). Por ejemplo, una cadena de dos eslabones podría estar conformada por un vendedor y un comprador; en cuanto a los nodos, estos se definieron como el número de agentes que desarrollan las mismas funciones logísticas en un determinado eslabón, en otras palabras, representan formas alternativas del flujo de bienes en la cadena. Entonces, una cadena de dos eslabones donde un vendedor abastece a varios compradores se puede definir como una cadena de dos eslabones de uno a varios nodos. Similarmente, si un comprador es abastecido por varios vendedores, se puede definir como una cadena de dos eslabones de varios nodos a un nodo.

En estas publicaciones, los resultados en la Tabla 7 muestran que estos modelos se diseñaron para representar cadenas de dos y tres eslabones. La estructura de la cadena de dos eslabones más analizada correspondió a una estructura de un nodo a varios nodos (un proveedor suministra a varios compradores) y de un nodo a un nodo (un proveedor suministra a un comprador), con 49,09% y 41,82% respectivamente. La estructura de tres eslabones representó 3,64% de los casos, siendo la estructura de un nodo a

un nodo (flujo directo entre un único fabricante, proveedor y comprador) la única representada, con un 3,46% del total de publicaciones. Este análisis reflejó una aproximación a los escenarios donde existe una mayor profundización de la contribución investigativa.

TABLA 7.
ESTRUCTURA DE LA CADENA DE SUMINISTRO.

Número de eslabones	Nodos	Porcentaje
	Uno a Varios	49,09%
D 11 07 11 0 1	Uno a Uno	41,82%
Dos eslabones (Vendedor- Comprador	Varios a Varios	3,64%
	Varios a Uno	1,82%
Tres eslabones (Fabricante-Vendedor-Comprador)	Uno a Uno	3,64%
Total		100,00%

elaboración propia.

Asimismo, se revisaron los supuestos con los que trabajaron estos modelos, con el fin de indagar que aspectos fueron asumidos como ciertos a efecto de su diseño. Esto se muestra en la Tabla 8. Para este análisis, se consideró un porcentaje representado por el número de publicaciones que incluyeron un determinado supuesto. De manera general, los supuestos que mayormente se consideraron en este tipo de modelos corresponden al supuesto del flujo de un solo producto y al supuesto de demanda constante incluidos en el 11,08% y 9,58% de los artículos, respectivamente. Es importante aclarar que los supuestos íntimamente relacionados al VMI, como el acuerdo de intercambio de información o la gestión de inventarios por parte del vendedor, no fueron tenidos en cuenta en este análisis, dado que resultan incuestionables en esta clase de modelos.

Además de que se reconocieron una lista con los supuestos utilizados con mayor frecuencia, se propuso un apartado denotado como "otro supuesto" para representar publicaciones que hicieron uso de supuestos muy específicos o íntimamente relacionados con las particulares de un modelo y que no se relacionan con los otros supuestos en el listado. Un ejemplo de lo anterior puede ser un supuesto relacionado con la emisión de CO2 y el consumo de combustible en un modelo VMI que considera variables ambientales. Entonces, supuestos como estos no son presentados en la tabla, ya que no pueden ser tomados como un punto de referencia común, sin mencionar que sería demasiado extenso referirse a todos ellos.

TABLA 8 SUPUESTOS DEL MODELO

Supuesto	Porcentaje de artículos
Otro supuesto (Supuesto muy específico o Intimamente ligado con el modelo)	29,04%
Se considera el flujo de una sola referencia en el modelo	11,08%
La tasa de demanda es constante	9,58%
Se considera la presencia de faltantes en el despacho	8,68%
La demanda está representada por un comportamiento incierto	5,69%
Se considera una capacidad limite de almacenamiento	5,69%
Lead Time cero	4,19%
La tasa de producción del vendedor es infinita	3,29%
La tasa de producción del vendedor es constante	2,99%
Se considera una tasa de producción imperfecta (productos defectuosos)	3,60%
Se considera el flujo de varias referencias en el modelo	2,40%
Existe una politica de Inventario en consignación	2,40%
Se consideran descuentos	2,10%
Múltiples compradores con características independientes	1,80%
Se tiene en cuenta inventarios de seguridad	1,20%
La demanda sigue un comportamiento difuso	1,20%
Existe un acuerdo de fijación de precios mayorista y minorista	0,90%
Se considera la presencia de un operador logístico en el modelo	0,90%
Se analizan los costos de transporte en las operaciones	0,90%
Se consideran la dispersión geográfica de los compradores	0,60%
Se establece un limite inferior y superior para la cantidad pedida	0,60%
Existe un problema de enrutamiento de inventario	0,60%
La demanda es dependiente al precio de venta de los productos	0,60%
Total	100%

elaboración propia.

Por otro lado, teniendo en cuenta que los modelos están conformados por sistemas de ecuaciones y expresiones matemáticas que describen un determinado problema. Es posible mencionar que los investigadores fijan objetivos de optimización o indicadores cuantificables relacionados con ciertas variables de decisión. En la Tabla 9 se presenta la caracterización de estas variables, según el número de publicaciones que las consideraron con respecto al número total de artículos revisados. Por ejemplo, el Costo Total de Inventario en la Cadena es considerado en 37 de los 61 artículos consultados. En adición, al igual que con la caracterización de supuestos, se consideró un apartado adicional llamado "Otra Variable" con el fin de agrupar aquellas publicaciones que consideraban variables de decisión muy particulares o íntimamente asociadas con el modelo diseñado, ya que no pueden ser tomadas como punto de referencia común en un estudio general de este tipo.

En este análisis se observó que gran parte de estas variables fueron orientadas a funciones de minimización de costos totales de inventario o a la maximización de las utilidades de cada uno de los participantes en el acuerdo. Vale la pena mencionar que, de las 61 publicaciones científicas consultadas (Ver Anexo A), todas presentaron resultados positivos acordes a los objetivos establecidos. En consecuencia, fue posible inferir que se han desarrollado modelos o estrategias de inventarios colaborativos VMI a lo largo de los últimos años que señalan resultados beneficiosos en sus acuerdos colaborativos.

TABLA 9 VARIABLES DE DECISIÓN.

Variable de decisión	Número de publicaciones que consideran la variable	Porcentaje
Otra Variable (Específica del modelo)	48	22,75%
Costo Total de Inventario en la Cadena	37	17,54%
Cantidad pedida	22	10,43%
Costo Total de Inventario Vendedor	18	8,53%
Costo Total de Inventario Comprador	18	8,53%
Utilidad Total Comprador	14	6,64%
Utilidad Total Vendedor	14	6,64%
Utilidad Total Cadena	11	5,21%
Punto de reorden	8	3,79%
Número de envíos	6	2,84%
Precio Minorista	5	2,37%
Precio Mayorista	4	1,90%
Costo de ordenar	3	1,42%
Costo de mantener	3	1,42%

elaboración propia.

En adición, teniendo en cuenta que una validación es una comparación entre las respuestas de un modelo y el sistema real, con el fin de aceptar o no si este es satisfactorio. Se encontró que las publicaciones practicaron cuatro tipos de validación en la puesta a prueba de un determinado modelo: 1) el ejemplo ilustrativo, el cual consiste en un ejemplo ficticio donde se prueba la eficiencia del modelo en varios escenarios; 2) el análisis de sensibilidad para validar el modelo evaluando diferentes escenarios y los cambios en variables que generan impacto sobre algún objetivo específico de interés para la toma de decisiones asociada; 3) las demostraciones analíticas o aquella validación a base de inferencias, ya sea mediante pruebas de argumentos deductivos usando proposiciones matemáticas; Y 4) el caso de estudio, el cual consiste en un caso real donde se aplica el modelo desarrollado. Los resultados se presentan en la Tabla 10. Por tanto, el ejemplo Ilustrativo y el análisis de sensibilidad fueron los dos tipos de validación que más se utilizaron en el diseño de nuevos modelos, con valores del 53,85% y 29,67% respectivamente.

TABLA 10 VALIDACIONES DE MODELOS

Tipo de validación	Número de publicaciones que la aplican	% Total de publicaciones
Ejemplo Ilustrativo	49	53,85%
Análisis de sensibilidad	27	29,67%
Demostraciones analíticas	8	8,79%
Caso de estudio	7	7,69%

elaboración propia.

3. 2 Síntesis de las publicaciones

Este esquema de síntesis involucró aquellos aspectos relevantes y principales inferencias frente a las publicaciones consultadas, con el fin de fundamentar una síntesis que contribuyera al diseño y consolidación de nuevos modelos VMI que sean capaces de responder a los desafíos actuales.

En primer lugar, se propone un conjunto de criterios esenciales que los futuros investigadores deben considerar para seleccionar una determinada técnica de modelamiento. Esto resulta imperativo en un diseño, ya que la formulación de un modelo VMI debería incluir ciertos elementos afines con la representación de una cadena de suministro compleja junto con indiscutibles supuestos particulares. Sin embargo, al mismo tiempo un modelo debe poseer flexibilidad, fácil aplicabilidad y facilitar la toma de decisiones ofreciendo una variedad de soluciones posibles para distintos escenarios. En ese orden de ideas, se consideraron cuatro elementos esenciales que debe poseer un modelo VMI, y que deberían ser tenidos en cuenta para la formulación o elección de una técnica adecuada de modelamiento. A continuación, se detallan cada uno de ellos:

- § Capacidad para modelar sistemas complejos. Es necesario que los modelos de inventario administrado por el vendedor puedan representar correctamente la situación real investigada o problema de estudio, y al mismo tiempo, delinear las necesidades de operación y definir claramente las salidas esperadas. Así, el modelamiento matemático debe ser motivado por un contexto real.
- § Fácil aplicabilidad. En cuanto a la replicación o ejecución, se quiere que estos modelos sean de fácil manipulación analítica, todo ello con el fin de mitigar imperfecciones, disminuir costos de implementación y diseñar modelos útiles, pero no sobre simplificados.
- § Flexibilidad. Estos modelos no deberían ser robustos, se requiere que puedan ser aplicados a varios sectores, siempre y cuando se cumplan los supuestos establecidos.
- § Variedad de soluciones. Implica que los modelos puedan generar una variedad de soluciones que les permitan a las compañías involucradas, experimentar con diferentes escenarios hipotéticos, haciendo modificaciones a un conjunto compuesto por diversos parámetros establecidos que influyen en sus variables de salida.

Por otra parte, se establecieron aquellos elementos que debería ser incluidos en el diseño de modelos VMI; para llevar a cabo lo anterior, se definieron los focos de prioridad presentados en la Tabla 11. Estos están enlazados con objetivos a corto, mediano y largo plazo, e involucran distintos puntos relevantes. No obstante, estos objetivos pueden ser difíciles de alcanzar debido a un conjunto de barreras que se encuentran implícitas en las actividades de gestión de inventario, imposibilitando una correcta representación de los modelos. Del mismo modo, la Tabla 11 incluye las principales barreras que pueden estar presentes en los diseños.

TABLA 11
FOCOS DE PRIORIZACIÓN Y BARRERAS EN LOS MODELOS

Objetivos	Focos de prioridad	Barreras encontradas
	Disminuir los costos logisticos.	Complejidad en los sistemas de costeo y dificultad en la correcta asignación de costos a las actividades o procesos.
	Optimizar las cantidades y precisión en los ciclos de pedidos y entrega de productos.	Falta de precisión en la planeación operativa frente a entornos dinámicos que pueden alterar los requerimientos, capacidad y tiempos de respuesta previamente establecidos en las operaciones de suministro.
Corto plazo	Integrar los productos a un modelo VMI teniendo en cuenta la demanda incierta.	En muchas aplicaciones reales de acuerdos VMI, el comportamiento de la demanda de muchos productos no puede ser pronosticado con certeza, lo que puede ocasionar riesgos de faltantes o altos costos de inventario.
	Eliminar las Imposiciones Ilmitantes para la constitución de un acuerdo cooperativo.	El éxito de los modelos VMI puede ser afectado por limitaciones relacionadas con la falta de confianza para intercambiar datos, políticas o practicas ineficaces, y la creciente dependencia entre las partes.
	Aportar casos de estudio reales que Ilustren los beneficios del modelo.	Como se pudo observar en la Tabla 10, la mayor parte de los modelos no son validados correctamente. Lo anterior puede obedecer a barreras asociadas a la falta de datos de casos de estudio reales o esquemas de implementación.
Mediano plazo	Mejorar los Indicadores de nível de servicio y de porcentaje de agotados (out-of- stock).	Algunos modelos no poseen en su diseño una formulación que permita optimizar los niveles de disponibilidad de los productos en los canales de distribución (faltantes) o en los canales de comercialización (agotados).
	Mitigar el efecto látigo (bullwhip effect).	Las variaciones de la demanda a través de los distintos eslabones producen efectos importantes en los niveles de inventario. Las principales barreras están relacionadas con aversión al riesgo, fluctuaciones de precios, estrategias poco flexibles, y problemas de comunicación y coordinación.
Largo plazo	Contribuir al diseño de una red logística eficiente.	A lo largo de toda la cadena de suministro, los participantes de los distintos eslabones pueden tener percepciones diferentes y objetivos individuales. Esto podría ocasionar que las partes involucradas no tengan una visión compartida y no actúen en concordancia con ciertas estrateglas.
	Incrementar los niveles de utilidad de un portafolio determinado de productos.	Algunos diseños de modelos VMI no están contextualizados en aspectos concretos para portafolios específicos de productos, lo cual es una desventaja ya que modelos demaslados generales no toman en cuenta ciertas particularidades que son relevantes para alcanzar un nivel óptimo en las operaciones.
	Incrementar el valor agregado en los productos y servicios ante los clientes.	Incapacidad de ofrecer un valor agregado debido a diseños que no ofrecen garantias enfocadas a la disponibilidad del producto, junto a la falta de decisiones operativas y de planificación que logren una disminución de costos y mejoramiento de procesos.

elaboración propia.

Se destacó que los modelos a corto plazo deben ir orientados a establecer políticas y operaciones con respecto a la disminución de los costos logísticos, junto a aspectos fundamentales como la optimización del ciclo de pedido; Esto debe tener una enorme importancia para llegar a un punto en donde se establezca el equilibrio apropiado relacionado con los costos y la toma de decisiones sobre el tamaño del lote de pedido. Entonces, al momento de optimizar un sistema de inventario administrado por el vendedor, se determinó que es necesario un criterio de optimización o de eficiencia adecuado. En este caso, lo más recomendable seria orientarlo a la minimización de los costos, haciendo más énfasis en aquellos que impactan en gran medida el costo total de inventario, como los costos de adquisición, los costos de mantener inventario, los costos de pedido o de alistamiento de órdenes, los costos de penalización por faltantes, y los costos de transporte.

Igualmente, se resalta la necesidad de contar con modelos que involucren entre sus supuestos, productos con un comportamiento

incierto en la demanda. Aspecto que es imperativo incluir para buscar modelos adaptables a la realidad. Del mismo modo, la eliminación de imposiciones limitantes en los acuerdos es fundamental para dar paso a la consolidación de redes de suministro colaborativas. Asimismo, la necesidad del aporte con casos de estudios reales de implementación es también necesaria para ilustrar los beneficios reales de un determinado modelo, ya que la mayoría de las investigaciones realizadas en los últimos años no presentaron una validación clara o real de estos.

Por otro lado, con miras a mediano plazo, estos modelos VMI deberían diseñarse para mejorar los resultados en los indicadores de gestión de inventarios. La creciente necesidad en el cumplimiento de políticas acordadas de suministro, las exigencias por parte de los consumidores y sumándole el hecho de una demanda incierta, nos dice que es necesario el reconocimiento de metas en los indicadores de faltantes y agotados. Aspectos tales como la satisfacción del cliente, el nivel de servicio, la frecuencia de agotados y la mitigación del efecto látigo, son todos ellos indispensables para lograr un acuerdo colaborativo de este tipo, que cumplan con el logro de beneficios para las compañías involucradas. Un ejemplo de lo anterior podría ser contemplar la sinergia entre un acuerdo VMI y una estrategia de distribución por cross-docking, dado que esto traería consigo la gestión de un inventario reducido y, en consecuencia, una minimización de los costos, además de acortar los tiempos de entrega a los diferentes puntos de venta que formen parte del acuerdo.

Finalmente, en su ejecución a largo plazo, los modelos diseñados deben contribuir a la consolidación de una red logística eficiente que ayude a incrementar los niveles de utilidad en el portafolio acordado y genere valor agregado a los productos y servicios de las compañías. Ambos aspectos son vitales para soportar la supervivencia o prolongación del acuerdo. Se deben diseñar propuestas que ayuden a romper las barreras existentes en la coordinación de los eslabones, dejando a un lado beneficios individualistas y buscando la eficiencia global como red de valor y que, al mismo tiempo, no comprometan los beneficios y riesgos para los miembros del acuerdo.

En adición a lo anterior, se consolidó un conjunto de lineamientos que surgen de la síntesis realizada y que al mismo tiempo funcionan como recomendaciones para el desarrollo de estos modelos VMI y el establecimiento de las pautas en estos acuerdos. Dichos lineamientos se pueden observar en la Tabla 12. En otras palabras, se incluyó el conjunto de aquellos elementos que no deben faltar en el diseño de un modelo de este tipo, tomando como referencia la revisión de las particularidades presentes en los acuerdos colaborativos de los más recientes trabajos de investigación. Estos lineamientos propuestos deben contemplarse en el diseño de los modelos en respuesta a las barreras anteriormente descritas en la Tabla 11.

TABLA 12 LINEAMIENTOS RECOMENDADOS EN EL DISEÑO DEL MODELO.

Lineamiento	Justificación
Criterio de optimización orientado a la minimización de costos de inventario	Se recomienda un criterio de optimización orientado a reducir aquellos costos que influyen en gran medida el costo total de inventario, como los costos de adquisición, costos de mantener inventario, costos de pedido o de alistamiento de órdenes, costos de penalización por faltantes y costos de transporte. Además, la explotación de los costos fijos mediante la unificación de los pedidos es una estrategia que es posible ajustar a estos modelos, con el fin de realizar de manera simultánea la misma cantidad de pedidos para todos los productos pertenecientes a un mismo vendedor.
Envio de la Información de venta y niveles de Inventario de un portafolio de productos vectorizados por punto de venta.	Una vectorización por punto de venta es un enfoque valido y realista, porque generalmente se cuenta con un canal de comercialización conformado por varios puntos de venta dispersos geográficamente, por lo que el pedido estará refacionado con el mercado.
Flujo automático de Información entre los eslabones y en tiempo real.	Contar con sistemas de información que soporten las operaciones. Esta es una condición que debe cumplirse para garantizar que la información transmitida sea en tiempo real, coherente y confiable.
Flujo de varias referencias o SKU (stock-keeping unit) en una cadena de dos niveles, con varios puntos de venta.	Si bien podrian considerarse modelos 'Uno a Varios' o 'Varios a Uno', este tipo de esquema colaborativo es mayormente usado porque la esencia del acuerdo está entre dos compañías, dado que la gestión de información y de inventario cuenta con estipulaciones particulares.
Horizonte de planeación de un ciclo.	Debido al comportamiento incierto de la demanda de muchos productos, se hace necesario contemplar un horizonte de planeación de un ciclo, con el fin de alcanzar un mayor nivel de exactitud en los resultados en el corto plazo.
Asumir que la demanda es Incierta y que es conocida por el vendedor.	La naturaleza incierta de la demanda puede ser uno de los desafios al diseñar un modelo VMI, por lo que vale la pena realizar estudios de análisis de datos para conocer el comportamiento de la demanda de los productos que están presentes en el acuerdo, además de la aplicación de técnicas de pronósticos adecuadas.
Ajuste a un modelo cross- docking consolidado.	El diseño de un modelo VMI debería incluir estrategias logisticas como la integración con plataformas de cross- docking consolidado, donde las unidades logisticas se reciben, acondicionan y organizan para constituir nuevas unidades logisticas de distribución que se enviarán a los diferentes puntos de venta.
Indicadores de agotados y nivel de servicio	Este supuesto busca que por medio del modelo VMI, una empresa tenga un mayor conocimiento de los niveles de disponibilidad de los productos en el canal de comercialización, disminuyendo la probabilidad de ventas perdidas, y formulando un análisis más acertado para mejores pronósticos y nivel de servicio.
Considerar el manejo de un Inventario de seguridad	Al considerar la incertidumbre en la demanda, es necesario mantener ciertas unidades en inventario para reducir el número de agotados de las existencias, debido a una demanda mayor que la esperada.
Considerar una homogeneidad en el costo de mantener Inventario en los puntos de venta y en el costo de transporte.	Teniendo en cuenta el hecho de que los canales comerciales generalmente están compuestos por un gran número de puntos de venta, se hace necesario establecer que estos trabajen con cierto grado de homogeneidad en su comportamiento. Lo anterior con el fin de permitir una modelación adecuada del costo del transporte y del costo de mantener inventario en estas instalaciones, y que al mismo tiempo, se logre una simplificación apropiada de la realidad, alcanzando un balance entre una sobre simplificación y un modelo demastado ambicioso que comprometa la calidad de sus resultados.

elaboración propia.

4. Conclusiones

Al establecer el conjunto de los elementos que debería contener un modelo VMI, se logró consolidar una síntesis de investigación para servir como herramienta de consulta de caracterización bibliográfica y reflexión para el reconocimiento de todos aquellos criterios, focos de prioridad, barreras y lineamientos que han de tenerse en cuenta en el diseño de un modelo de inventario administrado por el vendedor. Por otra parte, la caracterización demostró que estos modelos tuvieron una gran presencia

a nivel internacional en el contexto académico en los últimos años, sobre todo en países como Irán, China o India, pero no fue posible decir lo mismo de estas iniciativas en estudios que proceden de países de habla hispana. De forma general, dentro de esta síntesis fue posible inferir que el VMI como técnica sigue siendo un tema examinado y relacionado con estrategias concernientes con la gestión de inventario, la disminución de los costos logísticos y el incremento de la productividad en las operaciones, del mismo modo, se observa un interés en el énfasis del fortalecimiento de modelos colaborativos en las cadenas de suministro para consolidar redes de valor.

También, resulta interesante que la gran mayoría de estos modelos (80,33%) están basados en tres técnicas de modelamiento, la programación no lineal, la teoría de juegos y la optimización clásica sin restricciones. Los principales criterios de selección de estas técnicas estuvieron dados por la necesidad de una representación compleja de un problema de estudio (33.33%), la preferencia de un método de solución rápida (20.43%) y minimización o maximización de funciones objetivos (18.28%). Asimismo, cerca de la mitad de estos modelos (45,90%) fue asistido por una técnica de solución, siendo los algoritmos genéticos y heurísticos los más predominantes, con un 11,48% cada uno.

Es importante hacer mención que la mayoría de las investigaciones propiamente relacionadas con el diseño de modelos VMI están ciertamente limitadas a un conjunto de pasos básicos en la formulación de modelos matemáticos. Estos pasos van desde una justificación del problema, seguida por un establecimiento de supuestos, variables y demás elementos, hasta llegar a la formulación y posterior análisis de sensibilidad del modelo. Consecuentemente, se destaca la necesidad de respaldar estos trabajos o diseños, aumentando el número de estudios o de casos de implementación con datos reales que muestren los beneficios de estas propuestas. Similarmente, se debería integrar una mayor profundización de aquellos factores que se encuentran relacionados con la realidad logística de un determinado país o bien estudios que respalden que estos modelos funcionan acordes a las realidades empresariales.

Además de lo anterior, algunas limitaciones del estudio están relacionadas con su alcance, dado que resulta posible aplicar esta investigación como punto de partida para avanzar de forma evolutiva hacia síntesis que involucren las investigaciones llevadas a cabo para el diseño de modelos más elaborados que reflejen una mayor complejidad del sistema real, bien sea a través de una mejor representación de las características operativas a lo largo de la cadena de suministro. Un ejemplo de lo anterior podría ser el análisis de otras técnicas colaborativas ampliamente utilizadas en la actualidad como el CPFR (Collaborative Planning Forecasting and Replenishment) o el C-Commerce (Collaborative Commerce).

Por otro lado, aspectos adicionales para futuras investigaciones incluyen la revisión de aquellas propuestas relacionas con esquemas de implementación que puedan ser aplicables según el tipo de organización, sus políticas y restricciones asociadas. Esto podría estar acorde a

recomendaciones para estudios previos de requerimientos funcionales, en capital, infraestructura y personal, así como la definición de medidas de desempeño, planes de capacitación, esquema de integración tecnológica, y ejecución de programas pilotos.

Por último, es posible mencionar que se sugiere la síntesis llevada a cabo como punto de partida de consulta para los investigadores en este campo y al mismo tiempo como una oportunidad para recalcar la gran importancia que tiene el integrar y lograr nuevas iniciativas asociadas al VMI, que fortalezcan o hagan aportes a los estudios académicos previos, y que sean respaldados y difundidos desde un contexto empresarial, fomentando la investigación como un elemento indispensable de la cultura de las organizaciones. Por lo anterior, este trabajo hace un llamado a las empresas y demás partes involucradas, para colaborar con las instituciones de educación superior y centros de investigación en la identificación, creación y validación de modelos aplicados a áreas de relevancia relacionadas con la gestión de la cadena de suministro.

ANEXO A

Tabla A1

Publicaciones académicas consultadas en la síntesis.

,	Año	Autori es)	Testo	Journal Académico
1	2012	Ben-Daya, Mohamed, Hassini, Elkafi; Hariga, Moncer; M. AlDurgam, Mohammad	Consignment and vendor managed inventory in single-vendor multiple buyers supply chains	International Journal of Production Research - INT J PROD RES, 51, 1-19
2	2012	Cárdenas-Barrón, Leopoldo Eduardo Trevillo-Garza, Genardo Wee, Hui Ming	A simple and better algorithm to solve the ventor managed inventory control system of multi-product multi-constraint economic order quantity model	Expert Systems with Applications, 39(3), 3388-3895
3	2012	Sne-Ann, Goh; Pennambalam, S. G.; Jawahar, N.	Evolutionary algorithms for optimal operating parameters of vendor managed inventory systems in a two-echelon supply chain	Advances in Engineering Software, 52, 47-54
4	2012	Taleizadeh, Ata Allah, Naki, Seyed Tagtsi Akhavan, Malesi, Ahmad	Multiproduct multiple-buyer single-vendor supply chain problem with stochastic demand, variable lead-time, and multi-chance constraint	Expert Systems with Applications, 39(5), 5338+5348
5	2012	Torrer, Fidel, Ballesteros, Frank, Marcela, Villa	Madela matemático de un sistema coordinado productor-compesdor bajo el enfoque VMI	Ingenieria, 17(2), 6-25
6	2012	Villa Marulanda, Marcela, Torres, Fidel	Analisis de tearia de juegos en cadenas de suministros de dos niveles, productor-comprador, bajo esquema vendor managed	ITECKNE, 9(1), 67-82
7	2013	Cho, Dong Won, Lee, Young Hae	investory (VMI). The value of information sharing in a supply chain with a seasonal demand process	Computers & Industrial Engineering, 45(1), 97-108
8	2013	Codho, Leandro C.; Laporte, Gibert	A branch-and-out algorithm for the multi-product multi-vehicle inventory-routing problem	International Journal of Production Research, 51(23-34), 7156-7169
9	2013	Egri, Péter, Váncza, József	A distributed coordination mechanism for supply networks with asymmetric information	European Journal of Operational Research, 236(3), 452-460
10	2013	Hariga, M.; Gumus, M.; Daghfeus, A.; Goyal, S. K.	A vendor managed inventory model under contractual storage agreement	Computers & Operations Research, 40(8), 2138-2144
11	2013	Herige, Moncer A.; Al-Ahmen, Alsthürstmen	An integrated retail space allocation and let sizing models under vendor managed inventory and consignment stock arrangements	Computers & Industrial Engineering, 64(1), 45-55
12	2013	Ramicumer, N., Pazhani, Subramanian, Narendran, T., Ganesh, K.	Three-phase heuristic for Inventory Routing Problem	HE Annual Conference and Expo 2013, 4003-4012
13	2013	Sadeghi, Javad, Mousani, Seyed Mohsen, Naki, Seyed Taghi Akhawan, Sadeghi, Saeid	Optimizing a Multi-ventor Multi-retailer Vendor Managed Inventory Problem	Knowledge-Based Systems 50(C),159-170
14	2013	Xino, Tinopus, Xu, Tinotius	Courdinating price and service level decisions for a supply chain with deteriorating item under vendor managed inventory	International Journal of Production Economics, 145(2), 743-752
15	2013	Yu, Yngang, Hong, Zhaofu; Zhang, Linda L.; Liang, Liang, Chu, Chengbin	Optimal selection of retailers for a manufacturing vendor in a vendor managed inventory system	European Journal of Operational Research, 225(2), 273-284
16	2014	Bezen, Elasts, Jaber, Mohamad Y.; Zanani, Simone; Zavenella, Lucia E.	Vendor Managed Inventory (VMI) with Consignment Stock (CS) agreement for a two-level supply claim with an imperfect production process with without restoration interruption	International Journal of Production Economics, 157(C), 189-301
17	2014	Braglia, Marcello, Castellano, Davide, Frosolini, Marco	Safety stock management in single vendor-single buyer problem under VMI with consignment stock agreement	International Journal of Production Economics, 154, 16-31
18	2014	Diebet. Ali	Hybrid algorithm for a vendur managed inventory system in a two-echelon supply claim	European Journal of Operational Research, 238(1), 114-121
19	2014	hamid ress Pasandaleh, Seved; Naki, Seved; Nilmanufur, Amir	Lexicographic max-min approach for an integrated vendor-managed inventory problem	Knowledge-Based Systems, 59, 58-45
20	2014	Jasemi, M.; Haji, A.; Gharibi, M.	On competence of vendor managed inventory in rangly chains using basic mathematical inventory models	Scientia Iranica, 21(3), 1061-1071
21	2014	Larren, Christian: Turkenstein, Marcel	A vendor managed inventory model using continuous approximations for route length estimates and Markov chain modeling for cost	International Journal of Production Economics, 157, 120-132
21	2014	Mare Mank Asheraf El-Housen	estimates Interesting vendor managed inventory and concensive same theory to effectively manage supply networks	Applications of Multi-Criteria and Game Theory Approaches, 263-288
23	2014	Marco, Nanci, Agrezzar, El-Housiane Prochasteri, Taberdi, Naisi, Sevel		
		* ' ' '	Vendor Managed Inventory of a Single-vendor Multiple-retailer Single-warehouse Supply Chain under Stochastic Demands	International Journal of Supply and Operations Management, 1, 297-313
24	2014	Rad, Rena Hosseini, Razzzi, Jafar, Sangari, Mebamad Sadegh; Etrabizzi, Zahra Fallah	Optimizing an integrated weater messaged inventory system for a single-render two-buyer supply claim with determining weighting factor for renders referring cost. A fluxy venter managed inventory of multi-tem communic trefer quantity model under shortings. An sat colony optimization.	International Journal of Production Economics, 153, 295-308
25	2014	Rouzbeh Na, Ak, Hemmsti Far, Mahammad, Akhavan Natai, Seyed Taghi	Signifian Optimizing a hybrid vendor-managed inventory and transportation problem with facey demand. An improved particle swarm	International Journal of Production Economics, 155, 259-271
26	2014	Sadeghi, Javad, Sadeghi, Saeid; Naki, Seyed Taghi Akhavan	optimization algorithm	Information Sciences, 272, 126-144
27 28	2015 2015	Abdul Rahim, Mohd lamarul Irwan; Aghezzaf, El-Houssaine	Effectiveness of Vendor Managed Inventory Approach in a Two-Stage Supply Chain when Demand Rates are Static Decision susport system for vendor menaged inventory supply chain, a case study	AIP Conference Proceedings, 1648, 1-4
28	2015	Bernde, And B.; Sweeney, Edward. Chalenburty, Abhishek, Verma, Nishant Kumar; Challenjoe, Ashis K.	Decision support system for vendor menaged inventory supply claim, a case study. A vendor managed inventory scheme for supply claim coordination under multiple heterogeneous retailers.	International Journal of Production Research, 53(16), 4789-4318 Working Paper Series, 76(760), 2-16
.,			The value of VMI beyond information storing in a single supplier multiple resident supply chain under a non-stationary (Rn. Sn.)	
30	2015	Chrodiary, Devendra; Standor, Ravi	policy	Omega, 51, 59-70
31	2015	Du, Y.; Liang, H Gevinden, Karman	Multi-objective optimization model and solution for easily broken material loading based on genetic algorithms under VMI	Open Automation and Control Systems Journal, 7(1), 525-532
32	2015		The optimal replenishment policy for time-verying stochastic demand under ventor manages inventory	European Journal of Operational Research, 243(2), 402-423
33	2015 2015	Hott, Robbie: Hill, Towis, Smith, Doug, Haskins, Steve Havnin, Gandice H., Pan, Wentins	Supply chain and inventory management through intermedal logistics analysis Oursetinnal strategies for supplier and retailer with risk preference under VMI contract	IIE Annual Conference and Expo 2015, 979-986 International Journal of Production Economics, 169, 413-421
34	2015	Haynn, Gantoe H., Fan, Westing Li. S.: Yu. Z.: Denz. M.	Operational strategies for suppose and relater with nak preference under VMI contract Construct the stable vendor managed inventory nationship through a profit-sharing approach.	International Journal of Production Economics, 169, 413-421 International Journal of Systems Science, 46(2), 271-283
36	2015	Mitem Aroum Chatteries Asias	Vender menseed inventory for single-vender multi-retailer annuly chains	Decision Support Systems, 70, 31-41
37	2015	Mateen, Argum, Chatteriee, Ashis Kumar, Mitra, Suhrata	VMI for single-vendor multi-retailer sounds chains under stochastic demand	Computers & Industrial Engineering, 79, 95-102
31	2015	Routbeh Na, Ak; Hemmati Far, Mahammad; Naki, Seyed Taghi Akhawan	A bybrid graetic and imperialist competitive alignrithm for green vendor managed inventory of multi-item multi-constraint EOQ	Applied Soft Computing, 10, 353-364
33	2015	Kontren ris, Ar, Hemman ris, Nationimos, Piani, Seyes Ligiu Ambreo. Sadesto, Javad	model under startage A Math Dem Integrated Inventory Model with Different Replenishment Frequencies of Retailers in a Two-Echelon Supply Chain	Appea son Compring, 30, 335-304 Springer OPSEARCH, 52, 631-649
	2015	Sadeşki, Javad, Niski, Seyed Taşki Aldavan	Management: A Tuned Parameters Hydrid Meta Heuristic Two parameter tuned multi-objective evolutionary algorithms for a bi-objective vendor managed inventory model with trapezoidal	Applied Soft Computing, 30, 567-576
40	2015		fuzzy demand	
41		Soyrel, Mehmet; Bloemhof-Russeard, Jacqueine M.; Heijeme, Rene, van der Vorst, Jack G. A. J.	Madeling an Investory Reuting Problem for periodable products with environmental considerations and demand uncertainty Joint optimization of price, replenishment frequency, replenishment cycle and production rate in ventor managed inventory system.	International Journal of Production Economics, 164, 118-133
42	2015	Talematch, Ata Allah, Noori-daryan, Malma; C(V(a)) release-Barr(V(a))n, Leopoldo Etnardo	with deteriorating items	International Journal of Production Economics, 159, 285-295
43	2015	Yang, Dong, Jian, Jiannin; Ji, Yangjan, Du, Gang, Hdo, Petri; Valente, Anna	Joint optimization for coordinated configuration of product families and supply chains by a leader-follower Stackelberg game	European Journal of Operational Research, 246(1), 263-280
45	2015	Yu, Haiyen, Teng, Linglang, Xu, Yinfeng, Weng, Yong Arms, Du Doefi	How much does VMI better than RMI in a global environment?	International Journal of Production Economics, 170, 268-274 MATEC Web of Conference, 53
40			The Implementation of Vendor Menaged Inventory In the Supply Chain with Simple Probabilistic Inventory Model	
46	2016	Belalia, Zeinab, Chieti, Fozzia Gelmobiemmadi, AM.; Ressy, H.; Sohberi, Z.; Poursoltan, Lily	The value of Vendor Managed Inventory in an autocorrelated demand environment Mudeling and Analyzing One Vendor-Multiple Retailers VMI SC Using Stackelberg Game Theory	IFAC-PapersOnLine, 49(12), 668-673 Industrial Engineering and Management Systems, 15, 385-395
47	2016	Distribution A. Fell, Recopy, H., Southern, Z., Printriollen, Lay Jia, Tao; Lin, Yowei, Wang, Nengmin, Lin, Feng	Montaing and Analyzing One Ventor-Multiple Relaters VML SC Using Stacketherg Game Theory Outsinal production-delivery policy for a ventor-bovers integrated system considering nostropped signatureous delivery	Industrial Engineering and Management Systems, 15, 315-395 Computers & Industrial Engineering, 99, 1-15
43	2016	Jan, 180; Lin, 10wer, wang, Nengmin, Lin, Feng Jane, Bo: Tene, Lan	Uptima: production-neavery poacy for a ventor-onyers integrated system considering postpaned simulations seavery Vendor managed inventory integration on plasmaceutical third-party logistics	Internstical Journal of Multimedia and Ubiquitous Engineering, 11(6), 397–410
50	2016	Klan Melmond Jaher Mohamad V. Zanora, Simone Zavanella, Lucio	Vender managed inventery with consignment stock agreement for a supply claim with defective items	Applied Mathematical Modeling, 40(15), 7102-7114
51	2016	Lee, Jun-Yenn, Cho, Richard K.; Palit, Senna-Kult	Supply chain coordination in vendor-managed inventory systems with stockout-cost sharing under limited storage capacity	European Journal of Operational Research, 248(1), 95-106
57	2016	Park, Yang-Byung, You, Jun-Su, Park, Hae-Suo	A genetic algorithm for the vendor-menaged inventory routing problem with last sales	Expert Systems with Applications, 53, 149-159
53	2016	Subita Describir Reiendran Chandrarekherer Kahakem S. Ziester Henr	A generic suggestion for the venior-managen inveniorly routing process with an instead. The value of information sharing in a serial supply chain with AR(1) demand and non-zero replenishment load times	European Journal of Operational Research, 255(3), 758-777
54	2016	Sadegti, Javad, Mousavi, Seyed Mahren, Niski, Seyed Taghi Aldavian	Optimizing an inventory model with fluzzy demand, backordering, and discount using a hybrid imperialist competitive algorithm	Applied Mathematical Modeling, 40(15), 7318-7335
55	2017	Alduri Kasaguri, Meryam, Imani, Din Molammad, Mahmuodjanloo, Mehdi	Optimizing a vendor managed inventory (VMI) supply chain for perishable products by considering discount: Two caldinated meta- horistic algorithms	Computers & Industrial Engineering, 103, 227-241
56	2017	Cai, Jianhu; Hu, Xiaoqing, Taddomalla, Pandu R.; Shang, Jennifer	Flexible contract design for VMI supply chain with service-sensitive demand: Revenue-sharing and supplier subsidy	European Journal of Operational Research, 261(1), 143-153
57	2017	Cai, Jianhu, Tarikismalla, Pienitu, Shang, Jennifer, Huang, Oranghai	Optimal inventory decisions under vendor managed inventory. Substitution effects and replenishment faction	Applied Mathematical Modelling, 43, 611-639
58	2017	Cai, Jianhu; Zhong, Man; Shang, Jennifer, Huang, Weilai	Coordinating VMI supply chain under yield uncertainty. Option contract, subsidy contract, and replenishment tactic	International Journal of Production Economics, 185, 196-210
59	2017	Dai, Janima; Peng, Shengho; Li, Shibiao	Mitigation of Bullwhip Effect in Supply Chain Inventory Management Model	Procedia Engineering, 174, 1229-1234
60	2017	Escuin, David; Polo, Lorena; Ciprès, David	On the comparison of inventory replenishment policies with time-waying stochastic demand for the paper industry	Journal of Computational and Applied Mathematics, 309, 434-434
61	2017	Verms, Nishant Kumar, Chatterjee, Ashis K.	A multiple-retailer replexishment model under VMI: Accounting for the retailer beterogeneity	Computers & Industrial Engineering, 104, 175-187

Referencias bibliográficas

- Akhbari, M.; Zare Mehrjerdi, Y.; Khademi Zare, H.; Makui, A. (2014). VMItype supply chains: a brief review. *Journal of Optimization in Industrial Engineering*, 7(14), 75-87.
- Arango-Serna, M. D.; Adarme-Jaimes, W.; Zapata-Cortes, J. A. (2013). Inventarios colaborativos en la optimización de la cadena de suministros. *Dyna*, 80(181), 71-80.
- Arthur Jr, W.; Bennett, W.; Huffcutt, A. I. (2001). *Conducting meta-analysis using SAS*. Psychology Press.
- Blackstone, J.H. (2002). APICS Dictionary: The Educational Society for Resource Management (10th edition).
- Bohning, D.; Rattanasiri, S.; Kuhnert, R. (2008). *Meta-analysis of binary data using profile likelihood*. London: Chapman and Hall.
- Booth, A.; Sutton, A.; Papaioannou, D. (2016). Systematic approaches to a successful literature review. Sage publications.
- Card, N. A. (2015). *Applied meta-analysis for social science research*. Guilford Publications.
- Cooper, H. (2017). *Research Synthesis and Meta-Analysis: A Step-by-Step Approach*, 5th ed. The United States of America: SAGE Publications.
- Cooper, H.; Hedges, L. V.; Valentine, J. C. (Eds.). (2019). *The handbook of research synthesis and meta-analysis*. Russell Sage Foundation.
- Council of Supply Chain Management Professionals (2013). [Online]. Available: https://cscmp.org/CSCMP/Educate/SCM_Definitions_and _Glossary_of_Terms/CSCMP/Educate/.
- Chen, D.D.; Peace, K.E. (2013). Applied Meta-analysis with. R. CRC Press.
- Eddy, D. M.; Hasselblad, V.; Shachter, R. D. (1992). *Meta-analysis by the confidence profile method: the statistical synthesis of evidence.* Academic Press London.
- Feldman, K. A. (1971). Using the work of others: Some observations on reviewing and integrating. *Sociology of Education*, 86-102.
- Ganesh, K.; Mohapatra, S.; Nagarajan, S. (2016). Design and development of knowledge management for manufacturing. Springer International Publishing.
- Govindan, K. (2013). Vendor-managed inventory: a review based on dimensions. *International Journal of Production Research*, 51(13), 3808-3835.
- Gurevitch, J.; Koricheva, J.; Nakagawa, S.; Stewart, G. (2018). Meta-analysis and the science of research synthesis. *Nature*, 555(7695), 175.
- Hammer, H.; Bernasconi, C. (2016). Best Practice in Implementing VMI. A recommendation by ECR Community. Recuperado de: https://www.ecr.digital/wp_contents/uploads/2016/07/Best_Practice_in_Implementing_VMI.pdf
- Hunter, J. E.; Schmidt, F. L. (2004). *Methods of meta-analysis: Correcting error and bias in research findings*. Sage publications.

- Johnson, B. T.; Eagly, A. H. (2000). Quantitative synthesis of social psychological research. *Handbook of Research Methods in Social and Personality Psychology* (pp.496–528). Cambridge: Cambridge University Press.
- Lee, J. Y.; Paik, S. K.; Cho, R. K. (2015). Vendor-managed inventory: a literature review on theoretical and empirical studies and future research directions. *International Journal of Advanced Operations Management*, 7(3), 199-228.
- Light, R.; Smith, P. (1971). Accumulating evidence: Procedures for resolving contradictions among different research studies. *Harvard educational review*, 41(4), 429-471.
- Lipsey, M. W.; Wilson, D. B. (2001). *Practical meta-analysis*. Sage Publications, Inc.
- Mallett, R.; Hagen-Zanker, J.; Slater, R.; Duvendack, M. (2012). The benefits and challenges of using systematic reviews in international development research. *Journal of development effectiveness*, 4(3), 445-455.
- Marquès, G.; Thierry, C.; Lamothe, J.; Gourc, D. (2010). A review of vendor managed inventory (VMI): from concept to processes. *Production Planning & Control*, 21(6), 547-561.
- Petticrew, M.; Roberts, H. (2008). Systematic reviews in the social sciences: A practical guide. John Wiley & Sons.
- Snilstveit, B.; Oliver, S.; Vojtkova, M. (2012). Narrative approaches to systematic review and synthesis of evidence for international development policy and practice. *Journal of development effectiveness*, 4(3), 409-429.
- Villa, M.; Torres, J.F.; Ballesteros. (2011). Revisión bibliográfica de los enfoques teoría de juegos y Vendor Managed Inventory (VMI) para el estudio de cadenas de suministros. *Rev. Puente Científica*, 5(1), 17–29.
- Yan, D.; Martin, D.; Yuliang,Y. (2014). Beyond information sharing: An empirical analysis of vendor managed inventory. *Production and Operations Management*, 23(5), 817-828.

