

Desarrollo y Sociedad

ISSN: 0120-3584 ISSN: 1900-7760

Universidad de los Andes

Gentili, Martin

Estudio comparado de las matrices tecnoeconómicas de Argentina y Canadá: un acercamiento desde el enfoque insumo-producto Desarrollo y Sociedad, núm. 94, 2023, Mayo-Agosto, pp. 191-234 Universidad de los Andes

DOI: https://doi.org/10.13043/DYS.94.6

Disponible en: https://www.redalyc.org/articulo.oa?id=169175637007

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

abierto

Estudio comparado de las matrices tecnoeconómicas de Argentina y Canadá: un acercamiento desde el enfoque insumo-producto

Martin Gentili¹

DOI: 10.13043/DYS.94.6

Resumen

Este artículo realiza un estudio comparativo del sistema de relaciones tecno-económicas –es decir, de flujos de Investigación y Desarrollo (I+D) incorporado– que estructura el proceso innovador de Argentina y Canadá. Para ello, se analizaron tanto los flujos domésticos como los de origen importado. La construcción de indicadores tecnoeconómicos se complementó con un Análisis de Redes. Entre los principales resultados se destaca la mayor articulación del sistema tecnoeconómico canadiense frente al argentino. Se estableció que existe una relación entre la articulación y la mayor absorción de I+D del sistema productivo de Canadá vis a vis una participación del componente importado menos relevante. A su vez, dichas diferencias estructurales encuentran correspondencia con el diferente perfil sectorial de sus respectivas estructuras tecno–económicas. Entre las principales conclusiones se sugiere que la presencia de un sector dinámico basado en ciencia no compensa la ausencia doméstica de proveedores especializados como núcleos difusores del progreso técnico.

Palabras clave: cambio tecnológico, estructura económica, desarrollo endógeno, investigación y desarrollo, país en desarrollo, Argentina.

Clasificación JEL: 057, 030, R15.

¹ Centro de Estudios Urbanos y Regional (Ceur), Argentina. Correo electrónico: martin.gentili.86@gmail.com Este artículo fue recibido el 19 de mayo del 2022, revisado el 27 de marzo del 2023 y finalmente aceptado el 7 de mayo del 2023.

Comparative analysis of the technoeconomic structures of Argentina and Canada: An input-output approach

Martin Gentili²

DOI: 10.13043/DYS.94.6

Abstract

The objective of this work is to conduct a comparative study of the system of techno-economic relations, specifically the incorporated R&D flows, that shape the innovative process in Argentina and Canada. The analysis encompasses both domestic and imported flows, utilizing Network Analysis to complement the construction of technoeconomic indicators. The key findings indicate that Canada has a higher degree of integration within its techno-economic system compared to Argentina. This finding is linked to Canada's greater absorption of R&D within its productive system, with a lower reliance on imported components. These structural differences correspond to divergent sectoral profiles of their respective techno-economic structures. In light of these findings, it is suggested that the presence of a dynamic "Science Based" sector alone cannot compensate for the absence of "Specialized Providers" within the domestic context, which serves as a pivotal driver for disseminating technical progress.

Keywords: Technological change, economic structure, endogenous development, research and development, developing countries, Argentina.

JEL Classification: 057, 030, C67.

² Centro de Estudios Urbanos y Regional (Ceur), Argentina. Email: martin.gentili.86@gmail.com This paper was received on May 19, 2022, revised on March 27, 2023, and finally accepted on May 7, 2023.

Introducción

En repetidas ocasiones se han realizado estudios comparados del desarrollo económico de Argentina y Canadá (Chudnovsky et al., 2000; Díaz-Alejandro, 1970; González y Viego, 2011; Mundlak et al., 1989; Platt y di Tella, 1985; Sanz-Villarroya, 2005)³. Las similitudes a finales de siglo XX en su perfil de inserción comercial (exportando alimentos y materias primas e importando manufacturas), la recepción de grandes flujos migratorios desde Europa Occidental y de capitales británicos (y, luego, estadounidenses) correspondieron a un proceso de catching-up económico con respecto a los países industrializados. Lo cierto es que, al menos desde el periodo de entreguerras, el devenir económico de uno y otro país ha sido muy disímil. Hoy en día, Canadá se encuentra dentro del pool de los países más ricos de la OCDE, con elevados estándares tecnológicos y productivos, mientras que Argentina no logra salir de la "trampa del ingreso medio", con crónicos y crecientes problemas socioeconómicos (figura A1 del Anexo).

Dentro de la variedad de estos estudios comparativos, este articulo parte del enfoque de Sistema Nacional de Innovación (SNI), adoptado en el estudio de Chudnosvky et al. (2000), donde, desde una perspectiva histórico-institucional, se estudiaron las diferentes trayectorias institucionales y políticas de ciencia y tecnología de cada país y se analizó cómo ellas contribuyeron a comprender los senderos divergentes de desarrollo económico entre sí.

A sabiendas de que las dos principales dimensiones de análisis de los SNI son el entramado institucional y la estructura económica (Lundvall, 1992), nuestro estudio buscó indagar sobre ciertos atributos estructurales de ambos países, que contribuyen al diagnóstico de los problemas de desarrollo económico argentino. Metodológicamente, se trata de un análisis comparado basado en estimaciones de las propiedades cuantitativas y cualitativas de sus respectivas matrices tecno-económicas, es decir, matrices de flujos intersectoriales de I+D incorporado⁴ (Leoncini *et al.*, 1996a).

³ Para una comparación de estos estudios, ver Niosi (2014).

⁴ La noción de flujos de conocimientos incorporados se contrapone a la de flujos de conocimientos desincorporados. En este último caso, nos referimos a las ideas, conocimientos y experticias, entre otros, que se difunden sin mediar la transacción de algún producto. En un contexto interindustrial, este tipo de difusión se suele estudiar mediante el análisis de matrices de flujo de información de patentes, matrices de citación de patentes o matrices de proximidad tecnológica (Dietzenbacher y Los, 2002).

El proceso de "desindustrialización prematura" que ha sufrido la estructura tecno productiva argentina, a partir de la irrupción neoliberal de mediado de 1970 —y profundizado durante la década de 1990 — ha destruido capacidades productivas y tecnológicas sensibles para el desarrollo económico argentino (Azpiazu y Schorr, 2010; Robert *et al.*, 2018). Por el contrario, el proceso de desindustrialización canadiense —al igual que el acontecido en otras economías de altos ingresos — ha sido un proceso cualitativamente diferente, donde la manufactura continúa liderando en productividad a los servicios y concentra los mayores desarrollos tecnológicos; además, muchos servicios son simplemente una profundización de la división social del trabajo y el empleo de la industria se ha mantenido (Andreoni y Gregory, 2013).

El objetivo de este trabajo es contribuir a comprender, desde un análisis de las relaciones intersectoriales de difusión tecnológica, la manera como estas diferentes características de la desindustrialización argentina y canadiense (y sus efectos) repercuten sobre el menor desarrollo económico de la primera. En particular, se espera que, en Argentina, dicho proceso se traduzca en una relativamente desarticulada y jerarquizada red de relaciones tecnoeconómicas. A su vez, esto se correlacionaría con una débil incorporación de progreso técnico al sistema productivo nacional, con fuerte penetración de componentes importados. Por último, estas características estarían asociadas a un cambio estructural que derivó en una pérdida de la relevancia de ramas manufactureras (como las productoras de bienes de capital), con mayores capacidades potenciales para la adopción y difusión del progreso técnico al sistema productivo en su conjunto.

El trabajo se organiza de la siguiente manera. Primero, se hace un repaso de algunos ejes histórico-estructurales que dan cuenta de similitudes y diferencias sensibles para el desarrollo de los sistemas innovadores de ambos países. Luego, se hace una presentación de la metodología utilizada y de la fuente

Los flujos de conocimiento incorporado son las innovaciones incorporadas dentro de los productos, difundidas a partir de vínculos comerciales que, a nivel interindustrial, suelen emplear las relaciones insumo-producto como canales de difusión.

⁵ Este concepto se ha utilizado para diferenciar el fenómeno de la caída del PBI industrial sobre el PBI total de los países de los países desarrollados y subdesarrollados (Dasgupta y Singh, 2007; Rodrik, 2016). En particular, en los países subdesarrollados el proceso de desindustrialización se ha dado a niveles de ingreso per cápita muy inferiores a los de países de ingreso alto motivado mayormente por políticas de apertura comercial y desregulación de los mercados.

de los datos empleados. Posteriormente, se presentan los resultados y, finalmente, se ofrecen unas reflexiones finales.

I. Revisión de literatura

Los estudios sistémicos de flujos tecnológicos intersectoriales tienen como antecedente el marco conceptual del estructuralismo de posguerra, quienes, inspirados por la introducción de los esquemas insumo-producto (Leontief, 1936) y el concepto schumpeteriano de *clúster de innovaciones* (Schumpeter, 1939), han buscado estructurar el espacio económico, introduciendo conceptos como los de *encadenamientos productivos* (Hirschman, 1958) y *polos de crecimiento* (Perroux, 1955).

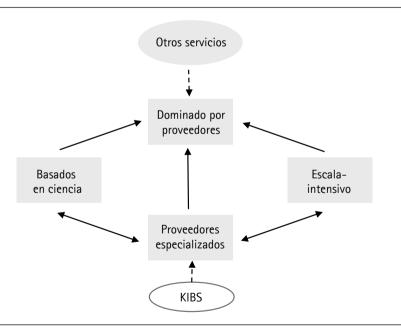
Otros antecedentes relevantes son los aportes (1) de Schmookler (1966) sobre el papel crucial de los usuarios en orientar la dirección del cambio técnico; (2) de Rosenberg (1976, 1982) acerca de las restricciones técnicas (y los costos asociados a su uso) como condicionantes en la dirección que adopta del cambio tecnológico; y (3) los de Mansfield (1971), donde se enfatiza la importancia el influjo de conocimientos extramuros como fuentes de conocimiento e innovaciones. También es central el concepto de los aprendizajes usuario-proveedor en el marco del enfoque de los SNI, ya que considera la centralidad que adquieren las interacciones entre productores y clientes para orientar la dirección del proceso de innovación de los países (Andersen, 1992; Lundvall, 1985).

Dentro de las metodologías que han medido la difusión de tecnologías intersectoriales, están aquellas que, por un lado, han asignado la relación proveedorusuario del nuevo conocimiento a partir de un criterio de complementariedades productivas y, por otro lado, quienes lo han hecho a partir de un criterio de complementariedad de bases de conocimiento (Goto y Suzuki, 1989; Jaffe, 1986; Los y Verspagen, 2000). Dentro del primer conjunto, a su vez, puede añadirse una subdivisión, según el canal de difusión empleado:

- 1. Un primer grupo (dentro del cual se ubica nuestro estudio) utiliza la transacción de bienes de producción, es decir, matrices insumo-producto).
- 2. Un segundo grupo, que utiliza el criterio de usos potenciales de patentes (Putnam y Evenson, 1994; Scherer, 1982).

3. Un tercer grupo que releva dicha información mediante encuestas a empresas o entrevistas a expertos (DeBresson *et al.*, 1994; DeBresson y Townsend, 1978; Pavitt, 1984).⁶

En particular, el trabajo de Keith Pavitt (1984) ha encontrado regularidades sectoriales e intersectoriales en los procesos de innovación que derivaron en una taxonomía canónica para el conjunto de esta literatura. Esta comprende tres grupos de sectores: (1) sectores dominados por proveedores; (2) sectores intensivos en producción que, a su vez, pueden desglosarse en empresas intensivas en escala y proveedores especializados; y (3) sectores basados en la ciencia⁷. Esta taxonomía identifica jerarquías en la producción y la difusión intersectorial de progreso técnico, donde los sectores del grupo basados en ciencia y proveedores especializados son los más tecnológicamente dinámicos. De la diferencia de los patrones de innovación entre estos dos grupos puede interpretarse que, dada la centralidad que allí adquieren sus interacciones con sus usuarios y su mayor grado de transversalidad insumo-producto, el desempeño del segundo tiene una mayor imbricación con las competencias del sistema productivo en conjunto. Esto, a su vez, implica que este grupo ofrece mayores oportunidades de difundir las rentas de sus innovaciones (Patel y Pavitt, 1994).


Ahora bien, en su mayoría, los estudios empíricos sobre flujos de I + D incorporados en bienes de producción han sido impulsados en el marco de estudios de los determinantes de productividad y modelos de crecimiento endógeno. Sin embargo, aquí interesa más una serie de estudios abierta por Leoncini *et al.* (1996a), focalizados en el estudio estructural de las matrices de flujos de I + D, a partir de la aplicación de un AR (Leoncini y Montresor, 2000; Montresor y Marzetti, 2008, 2009). Por ejemplo, Leoncini y Montresor (2000) investigan el comportamiento de ocho países de la OCDE, dentro del periodo 1980–1990, con lo cual encontraron dos grupos de países de acuerdo con su grado de densidad y jerarquización, cuya división, se asume, responde a diferentes modelos del capitalismo, tamaños de mercados domésticos y arreglos institucionales.

⁶ Para un análisis comparativo de estas tres últimas metodologías, ver Marengo y Sterlacchini (1990).

⁷ Como desprendimiento teórico del enfoque de los SNI, aparece la noción de los sistemas sectoriales de innovación (SSI), cuya tesis es que es posible encontrar regularidades en el proceso innovador de cada sector, asociado a un régimen tecnológico definido, a partir es una combinación particular de cuatro "propiedades fundamentales de la tecnología": oportunidades, apropiabilidad, acumulabilidad y base de conocimiento (Malerba, 2002). Dicho enfoque no postula hipótesis sobre la interdependencia en los procesos innovadores intersectoriales y, para los fines de este análisis, resulta más útil la taxonomía de Pavitt como marco conceptual núcleo.

Otro estudio importante por su refinamiento metodológico es Papaconstantinou et al. (1998) quien corrige problemas de "doble contabilización", añade los internacionales a los flujos de I + D domésticos y, finalmente, construye un indicador que mide el grado de dependencia de países/sectores del I + D extramuros ("multiplicador tecnológico"). Este refinamiento es continuado en Haukness y Knell (2009) donde se agrega (1) una corrección para la medición de la interacción de industrias con diferentes niveles tecnológicos y (2) una taxonomía modificada sobre la propuesta original de la de Pavitt (figura 1), utilizada en este artículo. En particular, se incorpora el papel de los servicios intensivos en conocimiento (KIBS, por sus siglas en inglés) como la industria del software. Dado el perfil de sus empresas y los procesos innovadores (pymes, innovadoras en producto y aprendizaje usuario-proveedor, etc.), dentro de la "era digital" de la tecnología, son un caso especial dentro de los "proveedores especializados" (Antonelli et al., 2000; Bell y Pavitt, 1992; Czarnitzki y Spielkamp, 2003; Mas-Verdú et al., 2011).

Figura 1. Taxonomía de Pavitt modificada

Fuente: adaptado de Hauknes y Knell (2009, p. 462).

La lista de estos trabajos para economías emergentes es escasa; y muchos de ellos se dedican a dar cuenta sobre la evolución más reciente de China (Chang

y Shih, 2005; Guan y Chen, 2009; Shi y Wu, 2019). Gonçalves y Neto (2016) extienden el análisis para los BRIC, aplicando la metodología mejorada de Haukness y Knell (2009) y comparando los resultados que este trabajo había aportado para el conjunto de economías desarrolladas de la OCDE.

Dentro de este pequeño conjunto de trabajos, todavía no se encuentra un estudio para el caso argentino⁸. Las economías estudiadas en estos trabajos, aun con la economía vecina de Brasil, encuentran diferencias estructurales muy importantes en relación con sus respectivos tamaños domésticos y disponibilidad de recursos. Así, la comparación que entre Argentina y Canadá es un aporte tanto a la literatura del análisis de las estructuras tecno-económicas de economías emergentes, como al de los estudios que comparan economías de base primario-exportadora.

II. Marco histórico-estructural del Sistema Nacional de Innovación de Argentina y Canadá

Sin pretensión de exhaustividad, en los eventos históricos que explican el proceso divergente entre ambas economías, aquí se compararon algunos rasgos estructurales, que dan forma a las dimensiones que comprehenden a los SNI de estos países (cuadro A1 del Anexo).

A. Dotación de factores: la importancia de los RRNN

Dos siglos después del origen de estas economías nacionales, ambas todavía muestran una fuerte dependencia de sus canastas exportadoras, en relación con las industrias intensivas en el uso de recursos naturales. A pesar de que existen otros casos aislados (como Australia y Noruega), este perfil exportador todavía aparece como una anomalía dentro de las economías desarrollas de la OCDE, como es el caso de Canadá⁹.

⁸ Desde una perspectiva histórica, en función del análisis de fuentes secundarias, merece destacarse el estudio de Angelis (2016) que caracteriza los diferentes modelos de desarrollo y sus desempeños de acuerdo con los diferentes paradigmas tecnoeconómicos que se sucedieron desde el siglo XX.

⁹ Vale agregar que esta estructura ha sido reforzada en ambos países, durante el boom del precio de las commodities del primer decenio del siglo XXI, aunque en Argentina dicho proceso comenzó al menos veinte años antes, con el abandono del modelo de sustitución de importaciones (Schorr, 2012; Stanford, 2008).

Esta comparación, sin embargo, no puede pasar por alto dos aspectos. De acuerdo con un informe del Banco Mundial (Lange *et al.*, 2018), Canadá cuenta con una riqueza natural —medida en dólares por habitantes— más de tres veces superior a la de Argentina, por lo que se ubica como el décimo cuarto país más importante en este aspecto. Adicionalmente, dicho "capital natural" tiene una composición relativa muy diferente en cada caso. Mientras que Argentina explica más de la mitad de su "capital natural" gracias a la extraordinaria fertilidad de sus tierras, esta riqueza en Canadá está liderada por sus recursos del subsuelo, donde se destacan los hidrocarburos, el aluminio, el oro, el níquel, el cobre y el carbón¹⁰.

B. La maduración de la industria

Desde principios de siglo XX, la estructura productiva de ambos países ha visto crecer el peso relativo de las actividades manufactureras, que alcanzaron un pico en los años 1970 y, desde allí, se inició un retroceso, cara a cara con el crecimiento en la participación de las industrias de servicios. No obstante, el periodo de desarrollo industrial en Canadá se sostuvo de manera más prolongada, por lo que se consolidó una trama mucho más profunda y compleja frente al caso argentino (Chudnovsky et al., 2000).

Los principales logros de la industria canadiense se han dado en el desarrollo de productos de alta complejidad tecnológica, bajo la tutela de políticas selectivas definidas por los paradigmas tecno-económicos vigentes: durante el periodo de posguerra se destaca el fomento de aeronaves, energía nuclear y telecomunicaciones y, desde la década de 1980, a la actualidad el desarrollo de materiales avanzados, biotecnología y TIC (Niosi, 2014).

Otro aspecto crucial ha sido el desarrollo de una trama de servicios de ingeniería de elevada competitividad internacional, construida a partir de las exigencias de adaptación tecnológica de máquinas y equipos importados, en respuesta a las especificidades del territorio y el desarrollo masivo de proyectos hidroeléctricos (DeBresson, 1996). Finalmente, debe destacarse el liderazgo de Canadá en la industria de telecomunicaciones, pues contó con la primera

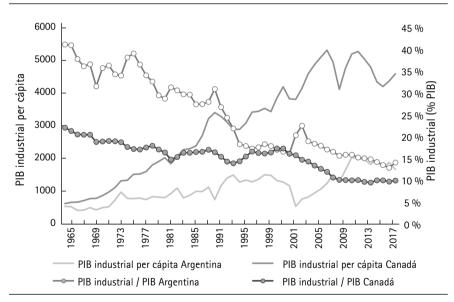
¹⁰ Canadá también es uno de los países más ricos en madera, pasta de celulosa y trigo. Argentina, por su parte, también dispone de hidrocarburos y algunos minerales metalíferos como oro y cobre.

empresa (Northern Telecom Limited) en producir equipos de telecomunicaciones totalmente digitales.

En Argentina, sus mayores logros en el desarrollo de capacidades productivas industriales e innovadoras se dieron durante los años de posguerra, bajo el modelo de sustitución de importaciones [ISI] (Bisang, 1995; Katz y Bercovich, 1993; Vitelli, 1999). Pese a trabajar lejos de la frontera tecnológica, el fortalecimiento de la trama productiva, con industrias como la automotriz, estimularon algunos esfuerzos de imitación y adaptación de ingeniería y organización a las especificidades de su territorio. Estos esfuerzos iniciaron una incipiente diversificación de su canasta exportadora, con productos como máquinasherramientas, equipos agrícolas, instrumentos electromecánicos, calderas industriales y automóviles; incluso con la venta de tecnologías intangibles a países de la región (Katz, 2001).

No obstante, el abrupto giró hacia políticas neoliberales a mediados de 1970 desarticuló el sistema industrial, con la excepción de los procesadores de materias primas intensivas, en el uso de capital (petroquímicas, aluminio, pulpa y papel), que cubrían su demanda de tecnología, por vía de la importación de equipos "llave en mano" (Katz y Bercovich, 1993)¹¹. Esto ha significado una reprimarización de su canasta exportadora, hacia los complejos agroindustriales como el oleaginoso que, a partir de la década de 1990, son favorecidos por un proceso de fuerte reformas estructurales y adopción de tecnología mayoritariamente importada (Gutman *et al.*, 2004).

Por último, merece señalarse que el proceso desindustrializador, medido a partir de la participación del PBI industrial en el PBI de los países, ha sido un fenómeno global que incluye a la mayoría de las economías más ricas. En ese sentido, Canadá tampoco ha sido la excepción. No obstante, esta medida de desindustrialización no debe ocultar procesos nacionales muy disímiles entre sí, de acuerdo, entre otros aspectos, con el grado de desarrollo tecnoeconómico de las respectivas matrices industriales de los países. Robert *et al*


DESARRO. SOC. 94, BOGOTÁ, SEGUNDO CUATRIMESTRE DE 2023, PP. 191-234, ISSN 0120-3584, E-ISSN 1900-7760, DOI: 10.13043/DYS.94.6

¹¹ Este proceso desindustrializador fue acompañado (y reforzado) por el avance de un "modelo de valorización financiera", impulsado por las políticas de liberalización y desregulación de los mercados de capitales desde fines de 1970, que ponía al capital financiero en una posición jerárquica por sobre el resto de los capitales, especialmente, sobre el capital industrial (Lavarello, 2004). En Argentina dicho modelo con origen durante el gobierno de facto fue especialmente profundizado durante el periodo de "convertibilidad" argentino (1991-2001).

(2018) demuestra que, en la comunidad de países de altos ingresos (incluyendo a Canadá), el proceso fue el de una desindustrializador selectiva en actividades menos intensivas en conocimiento, mientras que en países como Argentina han ocurrido procesos de "desindustrialización prematura" (Rodrik, 2016) por partir grados de industrialización menos desarrollados. Aquí la caída de las industrias intensivas en conocimiento ha sido muy relevante y la contracara ha sido mayormente de servicios no intensivos en conocimiento vis a vis ramas de producción primaria.

Como se muestra en la figura 2, estas diferencias pueden verificarse si en lugar de solo observar el PBI industrial en relación con el PBI total, agregamos la evolución del PBI per cápita tomada como medida alternativa para aproximar cuantitativamente el desarrollo industrializador de cada país (Schteingart y Tavosnanska, 2022).

Figura 2. Evolución del PBI industrial (porcentaje del PBI total) y PBI industrial per cápita en Argentina y Canadá

Fuente: elaboración propia, a partir de datos del Banco Mundial.

C. El grado y perfil de apertura de las economías

Dado el reducido tamaño de sus mercados domésticos, la baja densidad poblacional y su escasez de capital, históricamente la estructura de ambas economías

ha estado configurada a partir de sus vinculaciones con actores no nacionales. Siguiendo periodos más o menos proteccionistas¹², el capital extranjero siempre ha sido relevante en dar impulso al desarrollo de sus transformaciones estructurales.

En este aspecto, Canadá ha sido marcado por dos grandes fenómenos: en primer lugar, formar parte de la Mancomunidad de Naciones le significó tener acceso preferencial a mercados dinámicos y, en segundo lugar, ser vecino de una economía mucho mayor pero tecnológicamente similar como Estados Unidos. Durante mucho tiempo, la dominancia de capitales estadounidense prácticamente en todas las ramas manufactureras del país ha generado, especialmente en la industria automotriz, que los esfuerzos innovadores (tales como los departamentos de I + D) se concentren fuera del país. A su vez, la estrechez con el mercado estadounidense ha acortado los encadenamientos domésticos, lo que incrementa el costo asociado a los aprendizajes de tipo usuarioproveedor por las distancias geográficas y culturales (McFetridge, 1993). No obstante, a diferencia del caso argentino, muchos de estos capitales estadounidenses estimularon el desarrollo de manufacturas con salidas exportadoras (Diéquez, 1981). Por otro lado, en 1980 se desarrolló una política de world product mandates que logró (de forma heterogénea) un avance en el desarrollo endógeno de tecnologías y diseños exclusivos (Chudnovsky et al., 2000).

Argentina, por su parte, es una economía con fuerte predominio de capitales extranjeros, especialmente, en sectores estratégicos asociados a la prestación de servicios públicos y al procesamiento y exportación de recursos agropecuarios, mineros e hidrocarburíferos (Wainer y Schorr, 2014). A excepción de algunos esfuerzos adaptativos, históricamente, las subsidiarias de las empresas multinacionales (EMN) importan la mayor parte de la tecnología utilizada vía licencias, bienes de capital u otros mecanismos. Esto se agudizó con el proceso de desindustrialización, junto al cambio de las estrategias globales sobre la deslocalización de actividades por parte de las EMN (Azpiazu *et al.*, 2011).

Precisamente, la inestabilidad crónica de sus cuentas macroeconómicas está asociada al problema de su estructura productiva que, ante procesos de cre-

DESARRO. SOC. 94, BOGOTÁ, SEGUNDO CUATRIMESTRE DE 2023, PP. 191-234, ISSN 0120-3584, E-ISSN 1900-7760, DOI: 10.13043/DYS.94.6

¹² En Argentina, el periodo de mayor protección se alcanzó durante el periodo ISI, mientras que Canadá ha seguido un modelo proteccionista de sus manufacturas al menos hasta el Auto Pact de 1965, que marcó un hito en la política comercial canadiense (McFetridge, 1993).

cimiento económico, demanda muchas más importaciones de los que su primarizada canasta exportadora pueda generar. También debe añadirse que su principal socio comercial, a diferencia de Canadá, es un país emergente como Brasil que, en los últimos años, ha venido sustituyendo su articulación con Argentina (y otros países latinoamericanos) por sus intercambios con China (Amar y García, 2018)¹³.

D. Vinculación del sistema científico-tecnológico con estructura productiva

El periodo de posguerra ha sido un punto de inflexión para Argentina y Canadá en la creación y reorientación del conjunto de instituciones públicas que constituyen el núcleo duro de sus respectivos sistemas científico-tecnológicos, como centros de investigación, laboratorios públicos y universidades (Chudnovsky et al., 2000).

En Canadá, la segunda parte del siglo XX ha sido un periodo de aprendizaje institucional que avanzó en la superación de algunas deficiencias típicas de las economías en desarrollo. A la promoción de ciertas industrias y tecnologías estratégicas¹⁴, se agregó la creación de una serie de instituciones e instrumentos de apoyo financiero y técnico que significó un *catching-up* hacia los estándares de las economías desarrolladas, en términos de participación de inversión en I + D empresarial (Niosi, 2014). Entre las instituciones más destacadas, aparecen el instituto de estudios geológicos de Canadá —hoy en día el más grande del país—, el Consejo Nacional de Investigación (NRC), el Departamento de Defensa, el Instituto de Energía Atómica que diseño el Candu y la Agencia Espacial Canadiense.

En dicha etapa, Argentina también comienza un proceso de *catching-up* en ciencia y tecnología, a partir de la creación de un conjunto de instituciones que, en la actualidad, continúan siendo la estructura científico-tecnológica del país, como el Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), el Instituto Nacional de Tecnología Agropecuaria (INTA), el Insti-

¹³ Desde finales de 1994, entró en vigencia el Mercado Común del Sur (Mercosur) como proceso de integración regional que incluye a Argentina, Brasil, Paraguay y Uruguay.

¹⁴ En línea con los cambios de los paradigmas tecnoeconómicos, durante los años de posguerra, el país impulsó las aeronaves industriales, la energía nuclear y las telecomunicaciones; mientras que, a partir de la década de 1980, estos esfuerzos se han concentrado en nanotecnología, biotecnología y las TIC.

tuto Nacional de Tecnología Industrial (Inti) y el Consejo Nacional de Energía Atómica (CNEA). Sin embargo, a diferencia con el caso canadiense, dichas instituciones debieron convivir con un contexto macroeconómico y político inestable (Alto, 2013).

En particular, el Conicet fue concebido bajo la lógica de generar contribuciones a la "ciencia universal" y sus vinculaciones con el sector productivo no fueron una prioridad (Buch, 2006)¹⁵. Este perfil ha ido modificándose en los últimos años, por medio de una serie de estrategias y cambios en su estructura organizacional, para introducir mecanismos que promuevan la ejecución de acciones de transferencia de tecnologías y conocimientos (Ferrón y Katzer, 2021)¹⁶. Por su parte, el INTA y el Inti son esencialmente institutos de ampliación (apoyo técnico y extensión). No obstante, deben reconocerse los aportes del INTA, pues participa activamente en la revolución tecnológica del sector agrícola argentino (León y Losada, 2002); y, todavía más, el papel de CNEA, que logró la formación de recursos *vis a vis* concreción de proyectos de alta complejidad alrededor de la energía nuclear y espacial (Niosi, 2014).

Como se observa en la figura 3, la participación del sector privado en Argentina como ejecutor de I + D todavía se encuentra muy debajo frente al caso canadiense.

Esta mayor articulación del SNI canadiense parece también expresarse en el vínculo universidad-empresa. Por un lado, Canadá realiza desde la década de 1960 una fuerte inversión en las universidades, incluyendo un proceso creciente de oferta de cursos de posgrados e investigación académica. Mientras que, en las universidades argentinas, hasta 1980, la investigación universitaria se restringió casi exclusivamente a medicina, y casi no existían formaciones de posgrado (Niosi, 2014).

¹⁵ Como ejemplo de esto último, entre el periodo 1971–1983, solo se firmaron diez contratos de transferencia tecnológica entre el Conicet y el sector industrial (Chudnovsky *et al.* 2000).

¹⁶ Una de las medidas más importantes en esta dirección ha sido la creación de las Oficinas de Vinculación Tecnológica (Resolución 2220 de 2013).

Durante la década de 1990, profundizado durante el siglo XXI, Argentina inició un proceso de fuerte estímulo a la investigación universitaria y la creación de posgrados. Mientras que, con la creación de la Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), se reforzó la articulación universidadempresa (Arza y Carattoli, 2017)¹⁷. Esto último todavía parece ser un eslabón débil, especialmente si se evalúan los canales que implican un flujo de conocimiento bidireccional, como proyectos de I + D cooperativos (Dutrénit y Arza, 2010). Tomando una muestra de 140 países, un informe del índice de competitividad global para 2018 indica que Canadá es la 24° economía con mayor colaboración en I + D universidad-empresa, mientras que Argentina ocupa la posición 81° (Schwab, 2018)¹⁸.

2020 2010 2000 1990 1980*

0.3

■ Canadá

0.4

■ Argentina

0.5

0.6

0.7

Figura 3. Porcentaje de participación de ejecución del sector privado del I+D total

0

1963*

Fuente: elaboración propia, a partir de datos de la OCDE.

0.2

0.1

^{*} Sin datos para Argentina

¹⁷ También deben mencionarse como hitos en la articulación universidades-empresas la institucionalización de las universidades como unidades de vinculación tecnológica con la promulgación de la Ley de Educación Superior (N.º 24.521/95) en 1995 y, luego, la creación de la Red de Vinculación Tecnológica de Universidades Nacionales Argentinas en 2004 (Codner et al., 2013).

¹⁸ Este indicador surge de la denominada *Executive Opinion Survey* que incluyo la entrevista a 14.375 ejecutivos de negocios en más de 148 economías entre febrero y junio de 2017.

III. Metodología y fuente de datos

A. La matriz tecno-económica

A diferencia de los estudios anteriores, este trabajo parte directamente del uso matrices multirregionales, por lo cual, antes de continuar, conviene presentar los dos elementos básicos para construir la matriz tecno-económica, esto es, (1) el vector sectorial de inversión en I + D por valor bruto de producción (\mathbf{r}) y (2) la matriz inversa de Leontief (\mathbf{B}). El vector sectorial de intensidad de I + D del país $k(\mathbf{r}^k)$ puede descomponerse de la siguiente forma¹⁹:

$$\mathbf{r}^k = \begin{pmatrix} \mathbf{r}^{d,k} \\ \mathbf{r}^{m,k} \end{pmatrix} \tag{1}$$

Donde $\mathbf{r}^{d,k}$ describe la intensidad de inversión en I+D, que realiza cada industria del país k; y $\mathbf{r}^{m,k}$, aquella que realizan las mismas industrias para cada uno de los países que guardan relaciones comerciales directas e indirectas con k. Con el mismo criterio, también es posible particionar a la matriz inversa de Leontief, en función del origen-destino de los flujos del país k:

$$\mathbf{B}^{k} = \begin{pmatrix} \mathbf{B}^{d,k} & \mathbf{B}^{x,k} \\ \mathbf{B}^{m,k} & \mathbf{0} \end{pmatrix}$$
 (2)

Donde $\mathbf{B}^{d,k}$ es la submatriz que capta los flujos domésticos; $\mathbf{B}^{m,k}$ y $\mathbf{B}^{x,k}$, las submatrices que captan los flujos importados y exportados, respectivamente, del país k^{20} . Dado que nuestro interés es captar el l+D incorporado dentro del sistema productivo del país k, en adelante se asume que $\mathbf{B}^{x,k}=0$.

Siguiendo a Papaconstantinou et al. (1998), la intensidad de I+D incorporado en el producto de la industria j del país k (s_j^k) se descompone en cinco elementos: (1) la intensidad en I+D directa que realiza dicha industria (r_j^k); (2) la intensidad del I+D, incorporado en insumos intermedios domésticos (t_j^a); (3), la intensidad del I+D incorporado en insumos intermedios importados (t_j^a);

¹⁹ A lo largo del artículo, los vectores se indican con caracteres en negrita en minúsculas (ejemplo, **V**), las matrices se indican con caracteres en negrita en mayúsculas (ejemplo, **X**) – a excepción de los caracteres en minúsculas con un sombrero (por ejemplo, **2**) que indica matrices diagonales con los elementos vectoriales en la diagonal principal– y los escalares se representan en cursiva.

²⁰ el parámetro n es la cantidad de industrias en que se desagrega cada economía nacional y l la cantidad de países en cuestión, el vector \mathbf{r}^k y la matriz cuadrada \mathbf{B}^k tiene una dimensión de n por l, respectivamente.

(4) la intensidad del I + D incorporado en bienes de capital domésticos $(t_j^{d\,c})$; y (5) la intensidad del I + D incorporado en bienes de capital importados $(t_j^{m\,c})$. Esto es:

$$s_j^k = r_j^k + t_j^{d,k} + t_j^{m,k} + t_j^{dc,k} + t_j^{mc,k}$$
(3)

Para hallar cada uno de estos elementos, conviene empezar por el esquema más simple de la matriz tecno-económica del país $k(\mathbf{R}^k)$:

$$\mathbf{R}^k = \widehat{\mathbf{r}^k} \mathbf{B}^k \tag{4}$$

La suma de cada columna de dicha matriz capta los requerimientos directos e indirectos de I+D incorporado que la industria j del país k obtiene de los insumos intermedios domésticos e importados, por cada peso de su demanda final. Para evitar el problema de doble contabilización, al intentar mensurar la intensidad de I+D por valor de producción (y no por demanda final), Papaconstantinou et al. (1998) proponen utilizar una matriz B^* que divide los elementos de cada columna j de la matriz B (b_{ij}) por los valores de su diagonal principal (b_{ij}). Así, cada columna j de la matriz tecnoeconómica modificada para el país k (T^k) mide la intensidad total de I+D incorporado a través de insumos intermedios que dicho sector utiliza en relación con su valor de producción:

$$\mathbf{T}^k = \widehat{\mathbf{r}^j} \mathbf{B}^{k*} \tag{5}$$

Para descomponer estos flujos entre su componente doméstico e importado las operaciones respectivas son las siguientes:

$$t_{j}^{d,k} = \sum_{i=1,i\neq j}^{n} r_{i}^{d} \frac{b_{ij}^{d,k}}{b_{jj}^{dk}}$$

$$t_{j}^{m,k} = \sum_{c=1,c\neq k}^{l} \sum_{i=1,i\neq j}^{n} r_{c,i}^{m} \frac{b_{c,ij}^{m,k}}{b_{jj}^{dk}}$$
(6)

A diferencia de Hauknes y Knell (2009), el vector \mathbf{r}^m utilizado aquí se construyó a partir del vector de intensidad directo de I+D de los principales socios comerciales de cada país en cuestión; y el residuo como un promedio ponderado de los mismos²¹. Finalmente, se aproximan los flujos de I+D incorporado en bienes de capital del país k, mediante la construcción de una matriz de utilización de bienes de capital por valor de producción (\mathbf{C}^k). Como solo se dispone información sectorial sobre la producción de bienes de capital y no de su destino, se utilizó la matriz inversa de Leontief para aproximar los flujos intersectoriales del vector de inversión del país k (I^k):

$$\mathbf{C}^k = \widehat{\mathbf{I}^k} \mathbf{B}^k \widehat{\mathbf{x}^k}^{-1} \tag{7}$$

Tal como \mathbf{B}^k , dentro de la matriz \mathbf{C}^k , puede diferenciarse una submatriz que solo capta los requerimientos directos e indirectos de bienes de capital domésticos ($\mathbf{C}^{d,k}$); y otra, los restantes flujos importados ($\mathbf{C}^{m,k}$). De allí, los elementos de I + D incorporados en bienes de capital domésticos e importados se obtuvieron mediante las siguientes operaciones algebraicas²²:

$$t_{j}^{dc,k} = \sum_{i=1,i\neq j}^{n} r_{i}^{d,k} c_{ij}^{d,k}$$

$$t_{j}^{mc,k} = \sum_{c=1,c\neq k}^{l} \sum_{i=1}^{n} r_{c,i}^{m,k} c_{ij}^{m,k}$$
(8)

De los componentes de la ecuación 1, se construye el multiplicador tecnológico del país k (MTEC k) que mide la relación entre la intensidad total de I+D incorporado y la intensidad de inversión en I+D propio:

²¹ Esta medición se ajusta más a la realidad que asumir, como en otros trabajos, que el I+D importado a través de productos desarrollados en diferentes países tiene la misma intensidad de I+D incorporada. De hecho, nuestra metodología se propone como una alternativa viable en Hauknes y Knell (2009).

²² Debe tenerse en cuenta que esta aproximación subestima el I+D incorporado, a través del uso de bienes de capital, ya que solamente se contemplan sus flujos durante el periodo corriente y no el *stock* acumulado.

$$MTEC^{k} = \frac{\sum_{j} s_{j}^{k}}{\sum_{j} r_{j}^{k}} con 1 \le MTEC^{k}$$
(9)

Su interpretación es la siguiente: si su valor es 1, el país se considera un productor neto de tecnología, mientras que, cuanto mayor sea su valor, su posición se aproxima más a ser un usuario neto de tecnologías.

B. Análisis de redes

El análisis de las matrices tecno-económicas encuentra en el AR una herramienta potente para construir indicadores de sus propiedades estructurales (Leoncini $et\ al.$, 1996b). Con base en la ecuación 3, se construyó la matriz S^k , donde, desde el lenguaje del AR, cada nodo representa una industria; y cada vínculo desde el nodo i hacia el nodo j equivale a la difusión de tecnología incorporada, desde la primera hacia la segunda industria. Es importante tener en cuenta que, dentro de estos nodos y vínculos, es posible distinguir actores domésticos y extranjeros frente a frente con las vinculaciones internas y externas.

Para la construcción de indicadores que cualifiquen sus estructuras, la matriz direccionada original se llevó a una red dicotómica (\mathbf{D}^k) de ceros y unos mediante un valor de corte \bar{x} que define, de forma arbitraria, si existe un vínculo con la suficiente masa crítica para considerarse que hay difusión²³:

$$d_{ij} = \begin{cases} 1, t_{ij}^k > \bar{x} \\ 0, t_{ij}^k \le \bar{x} \end{cases}$$
 (10)

Con base en esta matriz dicotómica, el primer indicador del AR utilizado fue la densidad (δ). Este se calcula a partir de la relación entre las cantidades efectivas de vinculaciones existentes en un sistema de n sectores y las potenciales existentes:

$$\delta^k = \frac{\sum_i \sum_{j(i \neq j)} d_{ij}^k}{n(n-1)} \qquad \text{con } 0 \le \delta^k \le 1$$
 (11)

²³ Dada la alta densidad que se encuentra en las matrices insumo-producto (relacionado con sus niveles de agregación), es probable que la cantidad de enlaces que inciden en cualquier nodo dado no varíe mucho en toda la red (DePaolis et al., 2022). El problema es que la elección de un valor de corte, como se desarrolla más adelante, siempre posee algún grado de arbitrariedad (Montresor y Marzetti, 2009).

Valores más próximos a uno implican que el sistema tiene una mayor densidad, lo cual se supone favorable para la fortaleza de un SNI, en términos de su conectividad. Luego, se introduce el indicador de centralidad de cada sector como usuario $-c_j^{in}$ — y como difusor $-c_j^{out}$. A diferencia de la densidad, este indicador recoge información cualitativa sobre los respectivos sistemas de innovación, por lo que resalta donde se ubican los principales núcleos difusores de conocimientos incorporados y hacia donde van dirigidos:

$$c_j^{in} = \sum_{i(i\neq j)} d_{ij}^k \operatorname{con} 0 \le c_j^{in} \le n - 1$$

$$c_j^{out} = \sum_{j(j\neq i)} d_{ij}^k \operatorname{con} 0 \le c_j^{out} \le n - 1$$
(12)

Como se describió en la figura 1, existen jerarquías sectoriales en el proceso innovador que obedecen a factores tecno-económicos. La ausencia doméstica de los principales grupos difusores suele ser un obstáculo en el desarrollo de soluciones tecnológicas endógenas, especialmente allí donde el conocimiento tácito y las interacciones usuario-proveedor (como Proveedores especializados) son insumos críticos para el desempeño innovador exitoso.

Finalmente, se midió el grado de centralización de la red en su conjunto. Este indicador refleja el cociente entre (1) la sumatoria de la diferencia entre el sector con mayor cantidad de vinculaciones (c_*) y el resto y (2) el mayor nivel de centralidad obtenible en un sistema de n sectores. Al ser una red direccionada, hay una medida de centralización como difusores (h^{in}) y otra como proveedores (h^{out}) :

$$h^{in} = \frac{\sum_{j} \left(c_{*}^{in}(t) - c_{j}^{in}(t) \right)}{(n-1)(n-2)} y h^{out} = \frac{\sum_{j} \left(c_{*}^{out}(t) - c_{j}^{out}(t) \right)}{(n-1)(n-2)}$$
(13)

Igual que con el indicador de densidad, aquí se espera que cuanto mayor sea su valor más conectado estará el respectivo SNI, asumiendo que la simetría entre los sectores incrementa la conectividad del sistema.

C. Fuentes de datos

Para la construcción de las matrices tecno-económicas de Argentina y Canadá, los dos insumos necesarios fueron, de una parte, la obtención de matrices

insumo-producto globales (MIPG) donde esté desagregada la presencia de ambos países y, de otra, la intensidad (directa) de I+D de cada industria de los países involucrados —Argentina, Canadá y sus principales socios comerciales²⁴— con una desagregación industrial compatible con la presentada en la mencionada MIPG vis a vis la taxonomía empleada en Hauknes y Knell (2009).

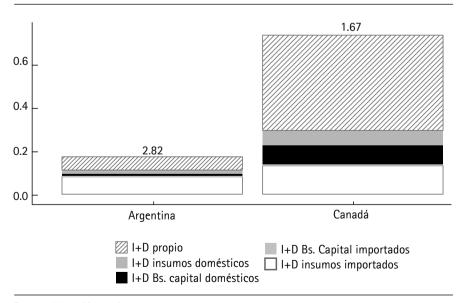
La MIPG utilizada fue ICIO-OECD (OCDE, 2021) que dispone de información para 67 economías nacionales, incluyendo economías desarrolladas y emergentes, desagregada en 45 industrias con base en el CIIU (Rev. 4), con una cobertura anual del periodo 1995-2018. Pese a que han crecido los proyectos de MIPG (Timmer et al., 2015), la ICIO-OECD es, hasta el momento, la única base de datos de libre acceso donde aparece la Argentina y Canadá de forma conjunta.

El vector de I+D industrial de los respectivos países para el mismo año fue elaborado a partir de la información de la base BERD-OECD, que capta los flujos de I+D industriales solamente ejecutados por empresas a un nivel de desagregación que oscila entre 1 y 4 dígitos del CIIU (Rev. 4), dependiendo del país y la industria. En el caso argentino, esta base de datos solamente está desagregada a primer dígito, por lo cual se debió complementarse dicha información con la Encuesta Nacional de Empresas e Innovación (Endei I)²⁵ para el sector manufacturero y, para el sector primario y de servicios, con la Encuesta I+D del sector empresario, ambas elaboradas por el Ministerio de Ciencia y Tecnología (MINCyT).

Finalmente, se obtuvieron las respectivas matrices tecno-económicas para el año 2011, en un nivel de desagregación de 25 sectores, compatible para construir los ocho grupos que integran la taxonomía empleada en Hauknes y Knell [2009] (detalles en el cuadro A2 del Anexo).

²⁴ Para ello los países elegidos fueron Alemania, Brasil, Chile, China, Corea del Sur, Estados Unidos, España, Italia, Francia, Japón, México y Reino Unido que en conjunto representaron aproximadamente un 80% de las importaciones intermedias de ambos países. El resto de las importaciones intersectoriales fue captado en una región residual –Resto del Mundo- construyendo su vector de I+D mediante un promedio ponderado de la intensidad en I+D de los países elegidos.

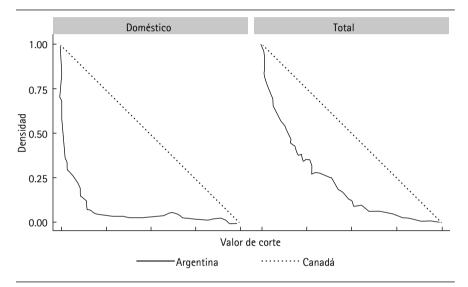
²⁵ La Endei I es una encuesta que relevó una muestra de 3.691 empresas manufactureras de 10 o más ocupados, representativa a nivel nacional por rama de actividad y tamaño de empresa cubriendo los años 2010, 2011 y 2012.


IV. Resultados

A. Análisis agregado

Tal como se observa en la figura 4, la intensidad de uso de I+D incorporado es sensiblemente mayor en el sistema productivo canadiense, frente al argentino. En Canadá, predomina el componente doméstico r_j^d (60%) mientras que, en Argentina, es el componente importado t_j^m el de mayor importancia (47%). De hecho, el componente importado en Argentina representa la mitad del I+D incorporado (50%), mientras que en Canadá explica aproximadamente un 20% del total. Estos aspectos se sintetizan en el menor multiplicador que exhibe el país del Norte (1.67) frente al argentino (2.82).

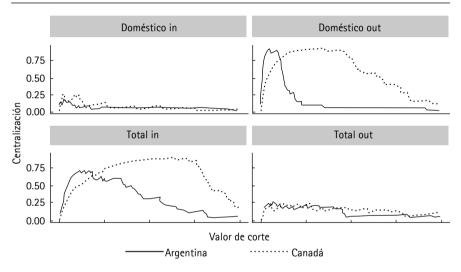
La densidad y centralización de las respectivas redes tecno económica se evalúa para un continuo de valores de cortes, para intentar evitar el problema de la arbitrariedad en su elección, testeando si los resultados son independientes de elección adoptada.


Figura 4. Intensidad de I + D incorporado según componentes y multiplicador tecnológico (arriba de cada columna): Argentina frente a Canadá

Fuente: elaboración propia.

El mayor desarrollo relativo de los vínculos tecno-económicos de Canadá también encuentra apoyo en la comparación de la densidad de ambos países (figura 5). Esto es cierto también al considerar las redes domésticas como totales (es decir, flujos domésticos más importaciones). Vale agregar que, al incorporar los flujos externos, la distancia entre la densidad de los países se acorta, lo cual está asociado al mayor peso relativo del componente importado dentro del I+D incorporado del sistema productivo argentino.

Figura 5. Densidad del sistema de flujos de I+D incorporado: Argentina y Canadá



Fuente: elaboración propia.

En cuanto al análisis de centralización, los resultados son menos concluyentes (figura 6). Tomando el valor máximo de la distribución de cada país, en contra de lo esperado, se observa que la red tecno-económica canadiense aparece con un mayor grado de centralización como usuario en los flujos domésticos y totales. Además, debe advertirse que, en ambos países, hay un fuerte contraste entre sus redes domésticas y totales: a nivel local, la difusión está mucho más centralizada que para sus usuarios; mientras que en el segundo sucede todo lo contrario. Esto puede interpretarse como un reflejo (1) de la especialización de ambas economías por el tamaño de sus economías domésticas y (2) de la importancia que los flujos importados adquieren para completar sus respectivas matrices tecnológicas.

A priori, la mayor especialización a nivel doméstico podría considerarse una debilidad de las respectivas estructuras tecno-económicas, en tanto también hace al sistema más vulnerable ante las posibilidades de transformaciones en el régimen tecno-económico actual. Las posibilidades de un cambio coyuntural o estructural, interno o externo, supone que los sistemas de mayores grados de jerarquización tienen menores posibilidades de adaptarse a las transformaciones en su entorno.

Figura 6. Centralización del sistema de flujos de I + D incorporado: Argentina y Canadá

Fuente: elaboración propia.

B. Análisis sectorial

En línea con los resultados agregados de la figura 4, se observa que todos los sectores productivos de Canadá presentan mayores niveles de intensidad incorporada en I + D, pues se encuentran las mayores distancias en aquellos grupos sectoriales más dinámicos en la introducción nuevas tecnologías (basados en ciencia, KIBS y proveedores especializados; como se muestra en el cuadro 1). En cuanto a los multiplicadores tecnológicos, solamente *tradicional* aparece con valores más altos en Canadá, lo que se explica por los dos sectores pertenecientes al complejo productivo argentino, con mayor peso exportador: agricultura, ganadería, silvicultura y pesca (I-O1) y alimentos, bebidas y tabaco (I-O4).

A nivel sectorial, en la estructura tecno-económica argentina, el sector más intensivo en la incorporación de I + D es farmacéutica (I-10), seguido por otros equipos de transporte (I-19), equipos e instrumentos ópticos y electrónicos (I-15), software (I-24) y automotriz (I-18). Vale destacar que, de estos sectores, solamente en el farmacéutico y el de software predomina el componente directo de inversión (79 y 57 %), mientras que, en los restantes, predomina el componente importado (66, 87 y 58 %, respectivamente).

En Canadá se destaca el fuerte predominio de equipos e instrumentos ópticos y electrónicos. Les siguen en importancia otros equipos de transporte, farmacéuticos, *software*, y maquinaria y equipo (I-17). A diferencia de Argentina, en todos estos sectores predomina el componente de inversión del propio sector. El sector automotriz canadiense, junto a agricultura, ganadería y pesca, es el único donde el componente importado²⁶ es mayor al mismo en argentina y, en línea con la trayectoria de tal industria en ese país, donde aparece con mayor importancia el componente importado (69 %).

A diferencia de lo realizado en la subsección anterior, para construir la tabla de centralidad sí fue necesario elegir un valor de corte. El criterio de selección fue elegir un valor de corte que garantizara un valor de densidad cercano al 35 para la red de flujos domésticos de Canadá (x = 0.00065), imitando lo realizado en otros estudios. Una red tecno-económica con dicha densidad tiene la ventaja de basarse en un valor de corte suficientemente alto para eliminar eslabones excesivamente débiles y, al mismo tiempo, ser suficientemente bajo para hacer visibles las diferencias en el perfil sectorial de la estructura tecno-económica, fundamentales para evaluar las hipótesis de este trabajo. Para comenzar, dicho valor de corte corresponde con una red tecno-económica canadiense de mayor densidad y menor centralización, excepto en sus vinculaciones domésticas como usuario, frente al sistema argentino (cuadro 2).

Dentro de la red doméstica Argentina, el principal sector difusor es Servicios de I + D (I-25), seguido por productos químicos (I-09) y farmacéutico. En contra de lo descrito en la figura 1, los sectores de maquinaria y equipo; y aparatos eléctricos (I-16); equipos e instrumentos ópticos y electrónicos están entre los sectores con menos vínculos. Al evaluar el origen del I + D importado, todos los sectores –excepto los más destacados de la red doméstica—

²⁶ Esto asociado a una de las industrias con mayor presencia de capital estadounidense (Stanford, 2008).

Multiplicador tecnológico (MTEC), intensidad total de I+D incorporado (S_j) y participación (en porcentaje) de sus componentes

Cuadro 1.

Industrial ARG CAN ARG ARG ARG ARG ARG					<u>+</u>	.D incorpo	$I+D$ incorporado $(\% S_I)$	(
ARG CAN ARG ARG <th>1</th> <th>Inte</th> <th>ırno</th> <th>Insui domés</th> <th>mos ;ticos</th> <th>Bs. Ca domés</th> <th>apital sticos</th> <th>Insur</th> <th>mos tados</th> <th>Bs. Ca import</th> <th>ipital tados</th> <th>•,</th> <th>S'-</th> <th>Σ</th> <th>ධ</th>	1	Inte	ırno	Insui domés	mos ;ticos	Bs. Ca domés	apital sticos	Insur	mos tados	Bs. Ca import	ipital tados	•,	S'-	Σ	ධ
9 64 19 16 3 5 69 14 1 0 0.17 1.23 11.19 8 12 19 54 2 9 71 25 1 0 0.30 102 11.83 37 46 12 31 2 9 48 14 1 0 0.30 0.32 11.83 22 57 14 19 5 5 50 0 0 0 0.34 0.73 11.83 24 25 2 8 3 4 0 <th>Industria</th> <th>ARG (%)</th> <th>CAN (%)</th> <th>ARG (%)</th> <th>CAN (%)</th> <th>ARG (%)</th> <th>CAN (%)</th> <th>ARG (%)</th> <th>CAN (%)</th> <th>ARG (%)</th> <th>CAN (%)</th> <th>ARG</th> <th>CAN</th> <th>ARG</th> <th>CAN</th>	Industria	ARG (%)	CAN (%)	ARG (%)	CAN (%)	ARG (%)	CAN (%)	ARG (%)	CAN (%)	ARG (%)	CAN (%)	ARG	CAN	ARG	CAN
8 12 19 54 2 9 71 25 1 6 0.30 1.02 1.183 37 46 12 31 2 9 48 14 1 0 0.35 0.73 1.02 1.183 22 57 14 19 5 5 59 20 0 0 0.24 0.93 0.73 2.70 24 25 13 2 2 8 33 34 0	1-02	6	64	19	16	33	2	69	14	-	0	0.17	1.23	11.19	1.56
37 46 12 31 2 48 48 41 1 0 0.35 0.35 0.73 2.0 22 57 14 19 5 5 59 20 0 0 0.24 0.33 2.74 0.34 4.77 24 25 39 1 7 40 32 0 0 0 0.24 0.35 1.83 4.77 17 49 17 49 1 4 1 0	80-I	∞	12	19	54	2	6	7.1	25	-	0	0:30	1.02	11.83	8.50
25 57 14 19 5 5 59 20 0 024 034 4.47 55 26 11 32 2 8 33 34 0 1 0 0 0 0 0 0 18 34 18 1 0	1-21	37	46	12	31	2	6	48	14	-	0	0.35	0.73	2.70	2.18
55 66 11 32 2 8 33 34 0 1 0.30 0.75 1.83 24 22 35 39 1 7 40 32 0 0 0 0 0 0 0 0 0 13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.13 6.14 6.14 7 7 6.14 7 7 7 6.15 8.44 7 7 7 8.44 7 7 8.44 7 8.44 7 8.44 7 8.44 7 8.44 7 8.44 7 8.44 7 8.44 7 8.44 8.44 7 8.44 8.44 8.44 8.44 8.44 8.44 8.44 8.44 8.44 8.44 8.44 8.44 8.44 8.44 <t< td=""><td>Energía</td><td>22</td><td>22</td><td>14</td><td>19</td><td>2</td><td>2</td><td>59</td><td>20</td><td>0</td><td>0</td><td>0.24</td><td>0.93</td><td>4.47</td><td>1.76</td></t<>	Energía	22	22	14	19	2	2	59	20	0	0	0.24	0.93	4.47	1.76
24 25 35 39 1 40 32 0 0 0.33 0.73 6.13 4.13 17 49 17 49 15 14 64 15 1 2 0.31 2.65 5.85 12 49 12 14 61 64 15 1 0.34 1.25 8.44 12 42 13 62 1 61 64 1 0.34 1.25 8.44 17 45 15 1 61 61 61 62 7 1 0.44 1.34 4.10 1 45 15 1 1 6 7 4 0 0 0 0 0 1.05 <t< td=""><td>1-01</td><td>55</td><td>26</td><td>11</td><td>32</td><td>2</td><td>80</td><td>33</td><td>34</td><td>0</td><td>-</td><td>0:30</td><td>0.75</td><td>1.83</td><td>3.88</td></t<>	1-01	55	26	11	32	2	80	33	34	0	-	0:30	0.75	1.83	3.88
17 49 17 9 2 24 64 15 1 2 64 15 15 64 15 1 2 63 5.85 12 35 20 26 10 19 54 19 4 1 6.34 1.22 8.44 14 45 13 2 1 11 61 24 1 0.44 1.34 4.10 8.41 1 1 6.44 1.34 4.10 8.41 1 0.44 1.34 4.10 8.84 1 1 0.44 1.51 8.84 1 1 1.88 4.10 1 1 1.88 4.10 1 1 1.88 4.10 1 1 1.88 4.10 1 <	1-04	24	22	35	39	-	7	40	32	0	0	0.33	0.78	4.13	4.51
12 35 20 26 10 19 54 19 4 1 0.34 1.22 844 24 42 42 11 61 24 1 0.44 1.34 4.10 17 45 15 9 61 26 2 1 0.44 1.51 5.86 1 6 24 47 1 6 7 41 0 <td< td=""><td>1-05</td><td>17</td><td>49</td><td>17</td><td>6</td><td>2</td><td>24</td><td>64</td><td>15</td><td>-</td><td>2</td><td>0.31</td><td>2.65</td><td>5.85</td><td>2.05</td></td<>	1-05	17	49	17	6	2	24	64	15	-	2	0.31	2.65	5.85	2.05
24 42 13 22 1 11 61 24 1 64 134 134 410 17 45 15 18 6 61 26 7 1 64 151 586 1 6 24 47 1 6 75 41 0 0 0 0 160 160 160 10 160 160 10 861 10 10 10 861 10 <td>90-1</td> <td>12</td> <td>35</td> <td>20</td> <td>26</td> <td>10</td> <td>19</td> <td>54</td> <td>19</td> <td>4</td> <td>-</td> <td>0.34</td> <td>1.22</td> <td>8.44</td> <td>2.88</td>	90-1	12	35	20	26	10	19	54	19	4	-	0.34	1.22	8.44	2.88
17 45 15 18 6 61 26 2 1 0.44 1.51 5.86 1 6 24 47 1 6 75 41 0 0 0 0 0.28 1.00 186.4 1.00 1.00 1.00 0	1-07	24	42	13	22	-	11	61	24	-	-	0.44	1.34	4.10	2.38
1 6 24 47 1 6 75 41 0 0.28 1.00 1.05 1.05 1.06 1.07 1.06 1.07 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.07 1.06	1-20	17	45	15	18	2	6	61	26	2	-	0.44	1.51	5.86	2.22
28 18 14 33 7 10 52 39 0 0 0.30 1.06 3.56 12 31 19 28 60 29 4 2 0.22 0.70 861 17 40 16 16 1 9 65 33 1 1 0.69 1.79 5.87 21 29 14 20 44 20 1 1 0.37 1.15 2.62 21 29 11 23 2 4 65 43 1 1 0.26 1.04 4.78 49 32 4 65 45 0 0 0 0.44 1.11 5.15	1-22	-	9	24	47	-	9	75	41	0	0	0.28	1.00	168.64	17.71
12 31 19 28 60 29 4 2 0.22 0.70 861 17 40 16 16 1 9 65 33 1 1 0.69 1.79 5.87 18 35 14 25 3 20 44 20 1 1 0.37 1.15 2.62 1 19 3 4 65 43 1 0 0 0 0.44 1.11 5.15 42 19 7 16 1 7 49 29 0 0 0 0 1.11 5.15	Tradicional	28	18	14	33	7	10	52	39	0	0	0:30	1.06	3.56	5.43
17 40 16 16 1 9 65 33 1 1 0.69 1.79 5.87 38 35 14 25 3 4 65 43 1 1 0.37 1.15 2.62 1 19 3 4 65 43 1 1 0.06 1 4.78 4.78 4 10 10 10 1 1 4 65 45 0 0 0 0 1.11 5.15 4 10 10 1 1 1 4 65 45 0 0 0 0 1.11 5.15	1-03	12	31	19	28	9	6	09	29	4	2	0.22	0.70	8.61	3.24
38 35 14 25 3 20 44 20 1 1 0.37 1.15 2.62 1 29 11 23 2 4 65 43 1 1 0.26 1.04 4.78 1 19 3 4 65 45 0 0 0 0.44 1.11 5.15 42 10	1-1	17	40	16	16	_	6	65	33	_	-	0.69	1.79	5.87	2.48
21 29 11 23 2 4 65 43 1 1 0.26 1.04 4.78 1 19 32 12 19 3 4 65 45 0 0 0.44 1.11 5.15 42 48 7 16 1 7 49 29 0 1 0.78 1.61 2.36	1-12	38	35	14	25	က	20	44	20	_	-	0.37	1.15	2.62	2.89
1 19 32 12 19 3 4 65 45 0 0 0.44 1.11 5.15 42 48 7 16 1 7 49 29 0 1 0.78 1.61 2.36	1-13	21	29	1	23	2	4	65	43	_	-	0.26	1.04	4.78	3.44
42 48 7 16 1 7 49 29 0 1 0.78 1.61 2.36	Material	19	32	12	19	က	4	65	45	0	0	0.44	1.11	5.15	3.14
	60-1	42	48	7	16	-	7	49	29	0	-	0.78	1.61	2.36	2.10

				<u>+</u>	D incorpo	I+D incorporado (% S_I)								
1	Interr	rno	Insumos domésticos	mos sticos	Bs. Capital domésticos	apital ;ticos	Insumos importados	mos tados	Bs. Capital importados	ıpital tados	•1	S_j	MTEC	<u>ධ</u>
Industria	ARG (%)	CAN (%)	ARG (%)	CAN (%)	ARG (%)	CAN (%)	ARG (%)	CAN (%)	ARG (%)	CAN (%)	ARG	CAN	ARG	CAN
1-14	30	54	1	14	9	80	52	24	_	_	0.49	1.66	3.33	1.86
1-18	30	16	7	12	9	ю	22	99	_	က	1.12	2.25	3.35	6.25
1-19	20	29	2	က	12	11	52	18	14	-	2.18	9.42	4.99	1.50
Escala- intensiva	34	20	9	7	2	4	56	38	0	0	0.89	2.77	2.97	1.99
1-16	27	46	10	10	7	14	53	27	2	4	0.74	2.97	3.73	2.17
1-17	24	20	6	ω	13	15	54	24	_	2	0.79	3.59	4.15	1.98
Proveedores especializados	23	51	10	80	13	14	22	27	0	0	0.85	3.39	4.44	1.98
1-10	79	72	8	5	_	6	17	12	0	_	2.53	6.86	1.27	1.38
1-15	7	77	4	-	2	12	83	6	4	-	1.51	19.01	14.53	1.30
Basados en ciencia	20	7.7	ო	2	œ	10	39	11	0	0	2.16	14.11	2.01	1.29
Otros servicios	4	35	28	36	1	2	29	27	0	0	0.16	0.55	25.58	2.87
1-24	57	69	6	4	17	24	17	4	_	0	1.41	5.32	1.76	1.46
1-25	71	82	2	9	2	7	19	2	0	0	0.81	3.01	1.42	1.21
KIBS	69	80	4	3	6	12	18	5	0	0	0.87	3.50	1.44	1.25

Fuente: elaboración propia.

aumentan sensiblemente su peso como difusores, con mayores contrastes en automotriz y otros equipos de transporte; maquinaria y equipo; y equipos e instrumentos ópticos y electrónicos. Luego, en el promedio de los flujos totales (domésticos más importados), la jerarquía sectorial del origen de las nuevas tecnologías se asemeja bastante a lo descrito por la taxonomía de Pavitt (figura 1).

En los flujos domésticos de Canadá, los principales focos difusores de conocimientos son los dos sectores pertenecientes a KIBS (I-24, I-25); equipo e instrumentos ópticos y electrónicos; otros equipos de transporte; y extracción de minerales energéticos (I-02); también son importantes productos químicos, con maquinaria y equipo. En cuanto a los flujos importados de difusión, de forma similar a Argentina, suben de manera significativa los flujos de casi todos los sectores menos de aquellos con mayor peso en los flujos domésticos. Entre los más destacados aparecen todos los sectores pertenecientes a proveedores especializados, automotriz y productos metálicos (I-14), junto a algunos sectores pertenecientes a tradicionales y materiales.

Desde los usuarios de la red doméstica de Argentina, se distribuyen de forma bastante simétrica, entre los que se destacan el sector automotriz, seguido por aparatos eléctricos y algunos sectores tradicionales (alimentos, bebidas, tabaco y productos de madera —IO6). Al evaluar los sectores que importan I + D, es notable la dominancia desde los grupos que, desde la taxonomía utilizada, se supondrían como núcleos difusores, entre otros, el de proveedores especializados. Esto se refleja en que en total los grupos con mayor peso en el uso de I + D, excepto servicios, son los mismos que aquellos con mayor peso difusor.

Al igual que en Argentina, en el caso canadiense, los flujos domésticos también tienen una distribución pareja entre los sectores como usuarios. En particular, se destacan algunos sectores tradicionales, como papel y edición (I-07), otras manufacturas (I-20) y suministro de agua y reciclaje (I-22); escala-intensivos, como productos de metal y automotriz; y equipo eléctrico. Como sucede en Argentina, al evaluar los flujos importados, quienes más incrementan su cantidad de influjos son los sectores de los cuales se espera que se destaquen más por su capacidad difusora de I+D. De nuevo, esto repercute en que en el promedio total del I+D incorporado, los mayores usuarios sean basados en ciencia, escala-intensivos, proveedores especializados y KIBS.

Centralidad industrial de usuarios (in) y difusión (out) según origen del flujo: doméstico e importado

Cuadro 2.

			Arge	Argentina					Car	Canadá		
Industria		z			OUT			Z			TUO	
	ТОТ	DOM	IMPO	TOT	DOM	IMPO	TOT	DOM	IMPO	TOT	DOM	IMPO
I-02	18	-	17	9	_	2	13	2	ω	32	23	6
I-08	11	т	∞	7	0	7	80	ω	0	10	0	10
1-21	-	-	0	80	0	∞	9	9	0	10	4	9
Energía (promedio)	10	2	ω	7	0	7	6	9	က	17	6	∞
I-01	ю	2	-	7	8	4	=	10	-	13	က	10
I-04	4	4	0	80	0	ω	10	6	-	13	-	12
I-05	က	ო	0	œ	0	ω	6	6	0	11	0	11
90-I	4	4	0	∞	0	ω	10	10	0	13	က	10
I-07	2	2	0	10	0	10	1	1	0	13	-	12
I-20	2	2	0	12	0	12	33	13	20	21	7	17
I-22	2	2	0	80	0	∞	11	1	0	œ	0	∞
Tradicional (promedio)	က	က	0	6	0	80	14	10	3	13	2	11
I-03	-	-	0	9	0	9	12	7	2	12	က	6
1-11	12	က	6	10	0	10	23	œ	15	18	2	13
1-12	2	2	0	œ	-	7	12	10	2	14	-	13
1-13	10	0	10	10	က	7	21	10	11	20	2	15

			Arge	Argentina					Can	Canadá		
Industria		Z			DUT			Z			OUT	
	T0T	DOM	IMPO	T0T	DOM	IMPO	T0T	DOM	IMPO	T0T	DOM	IMPO
Material (promedio)	9	2	2	6	1	8	17	6	8	16	4	13
60-1	26	2	24	24	15	6	30	9	24	25	14	11
1-14	6	က	9	13	က	10	19	10	6	24	6	15
I-18	28	2	23	16	2	14	34	11	23	14	0	14
1-19	2	က	2	14	0	14	30	7	23	36	23	13
Escala-intensiva (promedio)	17	8	14	17	2	12	28	6	20	25	12	13
1-16	13	4	6	12	0	12	20	10	10	16	-	15
1-17	25	က	22	12	-	11	32	ω	24	25	1	14
Proveedores especializados (promedio)	19	4	16	12	-	12	26	თ	17	21	9	15
1-10	17	2	15	16	8	80	31	80	23	=	-	10
1-15	27	က	24	41	0	41	32	œ	24	37	24	13
Basados en ciencia (promedio)	22	8	20	15	4	11	32	80	24	24	13	12
Otros servicios (promedio)	26	2	24	2	0	5	30	9	24	33	24	6
1-24	2	-	4	6	-	80	24	4	20	33	24	6
1-25	24	2	22	29	22	7	30	9	24	33	24	6
KIBS (promedio)	15	2	13	19	12	80	27	2	22	33	24	6
Densidad	0.44	0.10	0.37	0.44	0.10	0.37	0.62	0.35	0.49	0.63	0.35	0.50
Centralización	0.58	0.11	99.0	0.24	0.85	0.23	0.40	0.20	0.54	0.14	0.68	0.15

Fuente: elaboración propia.

V. Reflexiones finales

Uno de los hallazgos más relevantes del estudio fue verificar la débil articulación (densidad) relativa de las relaciones tecno-económicas argentinas frente al caso canadiense. Este menor grado de articulación argentino corresponde también con una mayor dependencia tecnológica, aproximada por la medida relativa del componente importado de I+D sobre el total de I+D incorporado. Nuestra metodología fue menos concluyente sobre cuál de los dos países registra una estructura difusora más especializada (centralizada), aunque la matriz tecno-económica que se utilizó para evaluar el perfil sectorial de las relaciones tecno-económicas sí dio soporte a nuestra hipótesis de que la red de relaciones tecno-económicas argentina está más centralizada.

Sobre el perfil sectorial de la estructura de difusores y usuarios del I+D de Argentina, nuestros resultados demuestran la importancia que los productos químicos y farmacéuticos adquieren como focos difusores de conocimientos incorporados. La débil presencia local de los sectores productores de bienes de capital que pertenecen al grupo de proveedores especializados (equipos eléctricos, maquinaria y equipo) y basados en ciencia (equipo e instrumentos electrónicos y ópticos) contrasta con su relevancia cuando se incorporan los flujos importados.

La importancia de los flujos de I + D importados en una economía pequeña y abierta como Canadá, por el contrario, no quita que allí exista un entramado desarrollado de difusores locales en ramas estratégicas asociadas al vigente paradigma tecno-económico de las TIC, como la industria electrónica y el *software*. Esto abona a favor de nuestra hipótesis de que el desarrollo doméstico de ciertos sectores basados en ciencia difícilmente pueda compensar la función de pivote de los sectores productores de bienes de capital, como articuladores de los sistemas productivos y difusores transversales del progreso técnico.

Los desafíos de desarrollo que un país como Argentina enfrenta no pueden desdeñar los aportes que una mirada estructural puede ofrecer. En particular, el difundido enfoque de las políticas como misiones debe acompañarse con políticas tecnológicas e industriales coherentes; especialmente, generar sinergias en dichas políticas que, en principio, fortalezcan las capacidades productivas y tecnológicas domésticas, para dar una mirada estructural que defina

ramas y tecnologías estratégicas en el fortalecimiento de los sistemas tecno productivos nacionales.

El espíritu de este trabajo se enmarca en una noción, según la cual, los estudios a nivel de firmas o sectores en la producción y difusión de nuevas tecnologías debieran poder organizarse bajo un criterio de mayor agregación sobre su posición dentro de las relaciones tecno-económicas. Será tarea para futuras investigaciones explorar sobre trayectorias de las ramas productivas domésticas, como los bienes de capital, cuyo subdesarrollo (o desarrollo trunco) se ha identificado aquí a partir de factores explicativos de las debilidades de la actual estructura tecno-económica argentina.

Agradecimientos

Esta investigación reporta parte de los datos de mi tesis *Difusión intersectorial* de la tecnología en Argentina y Canadá: un acercamiento a partir del enfoque insumo-producto, escrita en el marco de la Maestría de Desarrollo Económico de la Universidad Nacional de San Martín (UNSAM), y en los avances de mi proyecto de tesis doctoral. No se tuvieron fuentes de financiamiento.

En primer lugar, le agradezco a los tres revisores anónimos por sus valiosos comentarios que enriquecieron, sustancialmente, la versión original de este artículo. También, al doctor Pablo Lavarello y a la doctora Verónica Robert por sus cuidadosas lecturas y la dirección de esta investigación.

Referencias

- 1. Alto, B. P. de. (2013). *Autonomía tecnológica: la audacia de la división electrónica de FATE.* Ediciones CICCUS.
- 2. Amar, A., & García, F. (2018). Integración productiva entre la Argentina y el Brasil. Un análisis basado en metodologías de insumo-producto interpaís. Cepal. http://hdl.handle.net/11362/43623
- 3. Andersen, E. S. (1992). Approaching national systems of innovation from the production and linkage structure. En B. Å. Lundvall (Ed.), *National*

- systems of innovation. towards a theory of innovation and interactive learning (pp. 71-96). Anthem Press.
- 4. Andreoni, A., & Gregory, M. (2013). Why and how does manufacturing still matter: old rationales, new realities. *Revue d'économie Industrielle*, (144), 21-57.
- 5. Antonelli, C., Geuna, A., & Steinmueller, W. E. (2000). Information and communication technologies and the production, distribution and use of knowledge. *International Journal of Technology Management*, *20*(1–2), 72–94.
- 6. Arza, V., & Carattoli, M. (2017). Personal ties in university-industry linkages. A case-study from Argentina. *The Journal of Technology Transfer*, *42*(4), 814–840.
- 7. Azpiazu, D., Manzanelli, P., & Schorr, M. (2011). *Concentración y extranjerización: la Argentina en la posconvertibilidad.* Capital Intelectual Buenos Aires.
- 8. Azpiazu, D., & Schorr, M. (2010). La industria argentina en la posconvertibilidad: reactivación y legados del neoliberalismo. *Problemas del Desarrollo*, *41*(161), 111–139.
- 9. Bell, M., & Pavitt, K. (1992). Accumulating technological capability in developing countries. *The World Bank Economic Review, 6*(suppl. 1), 257-281.
- 10. Bisang, R. (1995). Libremercado, intervenciones estatales e instituciones de ciencia y técnica en la Argentina: apuntes para una discusión. *Redes,* 2(3), 13–58.
- 11. Buch, A. (2006). Forma y función de un sujeto moderno: Bernardo Houssay y la fisiología (1900–1943). Editorial UNQ.
- 12. Chang, P. L., & Shih, H. Y. (2005). Comparing patterns of intersectoral innovation diffusion in Taiwan and China. A network analysis. *Technovation*, *25*(2), 155–169.

- Chudnovsky, D., Niosi, J., & Bercovich, N. (2000). Sistemas nacionales de innovación, procesos de aprendizaje y política tecnológica: una comparación de Canadá y la Argentina. Desarrollo Económico, 40(158), 213-252.
- 14. Codner, D., Baudry, G., & Becerra, P. (2013). Las oficinas de transferencia de conocimiento como instrumento de las universidades para su interacción con el entorno. *Universidades*, (58), 24–32.
- 15. Czarnitzki, D., & Spielkamp, A. (2003). Business services in Germany: Bridges for innovation. *The Service Industries Journal*, *23*(2), 1–30.
- 16. De Angelis, I. (2016). El posicionamiento argentino frente a los paradigmas tecnoeconómicos globales. *Estudios Económicos*, *33*(67), 3–21.
- 17. DeBresson, C. (1996). Long-term innovative clusters in a small, open, industrialized economy: Canada (1945–79). En *Economic interdependence and innovative activity: an input-output analysis* (pp. 205–215). Edward Elgar.
- 18. DeBresson, C., Sirilli, G., Hu, X., & Luk, F. K. (1994). Structure and location of innovative activity in the Italian economy, 1981–1985. *Economic Systems Research*, *6*(2), 135–158.
- 19. DeBresson, C., & Townsend, J. (1978). Notes on the inter-industrial flow of technology in post-war Britain. *Research Policy*, 7(1), 49-60.
- 20. DePaolis, F., Murphy, P., & De Paolis, M. (2022). Identifying key sectors in the regional economy: a network analysis approach using input–output data. *Applied Network Science*, 7(1), 1–19.
- 21. Díaz-Alejandro, C. F. (1970). *Essays on the economic history of the Argentine Republic*. Yale University Press.
- 22. Diéguez, H. L. (1981). Argentina y Canadá: un comentario. *Desarrollo Económico*, *21*(82), 271–276.
- 23. Dietzenbacher, E., & Los, B. (2002). Externalities of R&D expenditures. *Economic Systems Research*, *14*(4), 407-425.

- 24. Dutrénit, G., & Arza, V. (2010). Channels and benefits of interactions between public research organisations and industry: Comparing four Latin American countries. *Science and Public Policy*, *37*(7), 541–553.
- 25. Ferrón, L., & Katzer, L. (2021). Los Servicios Tecnológicos de Alto Nivel (STAN) como recursos de vinculación del Conicet. Alcances y limitaciones. *Revista Iberoamericana de Ciencia, Tecnología y Sociedad-CTS,* 16(48), 229-247.
- 26. Gonçalves, E., & Neto, A. B. F. (2016). Intersectoral flows of technological knowledge in emerging countries: an input-output analysis. *Cepal Review*, 118, 139–155.
- 27. González, G. H., & Viego, V. N. (2011). The "Argentine failure" from a comparative perspective: the role of total factor productivity. *Revista de Historia Economica*, 29(3), 301–326.
- 28. Goto, A., & Suzuki, K. (1989). R&D capital, rate of return on R&D investment and spillover of R&D in Japanese manufacturing industries. *The Review of Economics and Statistics 71*(4), 555–564. https://doi.org/10.2307/1928096
- 29. Guan, J., & Chen, Z. (2009). The technological system of Chinese manufacturing industry: A sectorial approach. *China Economic Review*, *20*(4), 767-776.
- 30. Gutman, G., Lavarello, P., &t Robert, V. (2004). Libéralisation et stratégies des entreprises multinationales: le cas des systèmes agroalimentaires en Argentine. Simposio; Libéralisation et stratégies des entreprises multinationales. Le cas des systèmes agroalimentaires en Argentine.
- 31. Hauknes, J., & Knell, M. (2009). Embodied knowledge and sectoral linkages. An input-output approach to the interaction of high-and low-tech industries. *Research Policy*, *38*(3), 459-469.
- 32. Hirschman, A. O. (1958). *The strategy of economic development*. Yale University Press.

- 33. Jaffe, A. B. (1986). Technological opportunity and spillovers of R&D: evidence from firms' patents, profits and market value. *The American Economic Review*, *76*(5), 984-1001.
- 34. Katz, J. (2001). Structural reforms and technological behaviour. The sources and nature of technological change in Latin America in the 1990s. *Research Policy*, *30*(1), 1–19.
- 35. Katz, J., & Bercovich, N. (1993). National systems of innovation supporting technical advance in industry: The case of Argentina. En R. Nelson (Ed.), *National innovation systems: A comparative analysis* (pp. 451–475). Oxford University Press.
- 36. Lange, G.-M., Wodon, Q., & Carey, K. (2018). *The changing wealth of nations 2018: Building a sustainable future.* World Bank Publications.
- 37. León, C., & Losada, F. (2002). Ciencia y tecnología agropecuarias antes de la creación del Instituto Nacional de Tecnología Agropecuaria (INTA). Revista Interdisciplinaria de Estudios Agrarios, (16), 35–90.
- 38. Leoncini, R., Maggioni, M. A., & Montresor, S. (1996a). Intersectoral innovation flows and national technological systems: network analysis for comparing Italy and Germany. *Research Policy*, *25*(3), 415–430.
- Leoncini, R., Maggioni, M. A., & Montresor, S. (1996b). Intersectoral innovation flows and national technological systems: network analysis for comparing Italy and Germany. *Research Policy*, 25(3), 415–430.
- 40. Leoncini, R., & Montresor, S. (2000). Network analysis of eight technological systems. *International Review of Applied Economics*, *14*(2), 213–234.
- 41. Leontief, W. W. (1936). Quantitative input and output relations in the economic systems of the United States. *The Review of Economic Statistics*, *18*(3), 105–125.
- 42. Los, B., & Verspagen, B. (2000). R & D spillovers and productivity: Evidence from US manufacturing microdata. *Empirical Economics*, *25*(1), 127–148.

- 43. Lundvall, B.-A. (1985). Product innovation and user-producer interaction. *The Learning Economy and the Economics of Hope*, (19), 19–60.
- 44. Lundvall, B. Å. (1992). User-producer relationships, national systems of innovation and internationalization. En *National systems of innovation:*Towards a theory of innovation and interactive learning (pp. 47–63). Pinter.
- 45. Malerba, F. (2002). Sectoral systems of innovation and production. *Research Policy*, *31*(2), 247–264.
- 46. Mansfield, E. (1971). *Technological change. An introduction to a vital area of modern economics.* Norton & Company, Inc.
- 47. Marengo, L., & Sterlacchini, A. (1990). Intersectoral technology flows. Methodological aspects and empirical applications. *Metroeconomica*, *41*(1), 19–39.
- 48. Mas-Verdú, F., Wensley, A., Alba, M., & Álvarez, J. M. G. (2011). How much does KIBS contribute to the generation and diffusion of innovation? *Service Business*, *5*(3), 195-212.
- 49. McFetridge, D. G. (1993). The Canadian system of industrial innovation. En R. R. Nelson (Ed.), *National innovation systems: A comparative analysis* (pp. 299–323). Oxford University Press.
- 50. Montresor, S., &t Marzetti, G. V. (2008). Innovation clusters in technological systems. A network analysis of 15 OECD countries for the mid-1990s. *Industry and Innovation*, *15*(3), 321–346.
- 51. Montresor, S., & Marzetti, G. V. (2009). Applying social network analysis to input–output based innovation matrices: An illustrative application to six OECD technological systems for the middle 1990s. *Economic Systems Research*, *21*(2), 129–149.
- 52. Mundlak, Y., Cavallo, D., & Domenech, R. (1989). *Agriculture and economic growth in Argentina*, 1913–1984 (Research Report, vol. 76). International Food Policy Research Institute (IFPRI).


- 53. Niosi, J. (2014). The construction of national systems of innovation: a comparative analysis of Argentina and Canada. En G. Dutrénit & J. (Eds.), *National Innovation Systems, Social Inclusion and Development* (pp. 349–379). Edward Elgar Publishing.
- 54. Organisation for Economic Co-operation and Development –OECD. (2021). *OECD Inter-Country Input-Output Database*. https://www.oecd.org/sti/ind/inter-country-input-output-tables.htm
- 55. Papaconstantinou, G., Sakurai, N., & Wyckoff, A. (1998). Domestic and international product-embodied R&D diffusion. *Research Policy*, *27*(3), 301–314.
- 56. Patel, P., & Pavitt, K. (1994). The continuing, widespread (and neglected) importance of improvements in mechanical technologies. *Research Policy*, 23(5), 533-545.
- 57. Pavitt, K. (1984). Sectoral patterns of technical change: Towards a taxonomy and a theory. *Research Policy*, *13*(6), 343–373.
- 58. Perroux, F. (1955). Note sur la Notion de Pôle de Croissance. *Economie Appliquée*, 307–320.
- 59. Platt, D. C., & di Tella, G. (Eds.). (1985). *Argentina, Australia, and Canada. Studies in comparative development 1870–1965.* Macmillan.
- 60. Putnam, J., & Evenson, R. E. (1994). *Inter-sectoral technology flows.* Estimates from a patent concordance with an application to Italy. Yale University.
- 61. Robert, V., Obaya, M., & Cassini, L. (2018). Tecnología, estructura productiva y desarrollo. *Desarrollo Económico*, *58*(225), 213–246.
- 62. Rosenberg, N. (1976). *Perspectives on technology.* Cambridge University Press. https://doi.org/10.1017/CB09780511561313
- 63. Rosenberg, N. (1982). *Inside the black box: Technology and economics.* Cambridge University Press.

- 64. Sanz-Villarroya, I. (2005). The convergence process of Argentina with Australia and Canada: 1875–2000. *Explorations in Economic History,* 42(3), 439–458.
- 65. Scherer, F. M. (1982). Inter-industry technology flows and productivity growth. *Research Policy*, *11*(4), 227–245.
- 66. Schmookler, J. (1966). *Invention and economic growth.* Harvard University Press.
- 67. Schorr, M. (2012). Argentina: ¿ nuevo modelo o "viento de cola"? Una caracterización en clave comparativa. *Nueva Sociedad*, (237), 114–127.
- 68. Schteingart, D., & Tavosnanska, A. (2022). El retorno de la desindustrialización. H-Industria. Revista de Historia de la Industria y el Desarrollo en América Latina, (30), 101-133.
- 69. Schumpeter, J. (1939). *Business cycles. A theoretical, historical and statistical analysis of the capitalist process.* McGraw hill.
- 70. Schwab, K. (2018). *The global competitiveness report 2018* (Insight Report). World Economic Forum. https://www3.weforum.org/docs/GCR2018/05FullReport/TheGlobalCompetitivenessReport2018.pdf
- 71. Shi, X., & Wu, Y. (2019). Evolution of Product-embodied R & D in China. *Structural Change and Economic Dynamics*, (49), 324–333.
- 72. Stanford, J. (2008). Staples, deindustrialization, and foreign investment. Canada's economic journey back to the future. *Studies in Political Economy*, 82(1), 7–34.
- 73. Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R., & de Vries, G. J. (2015). An illustrated user guide to the world input-output database. The case of global automotive production. *Review of International Economics*, 23(3), 575-605. https://doi.org/10.1111/ROIE.12178
- 74. Vitelli, G. (1999). Los dos siglos de la Argentina: historia económica comparada. Prendergast Editores.

75. Wainer, A., & Schorr, M. (2014). Concentración y extranjerización del capital en la Argentina reciente: ¿Mayor autonomía nacional o incremento de la dependencia? *Latin American Research Review, 49*(3), 103-125.

Anexo

Figura A1. Datos socioeconómicos descriptivos: Argentina, Canadá y Estados Unidos

Fuente: elaboración propia a partir de datos del Banco Mundial, Naciones Unidas y Proyecto Maddison.

El objetivo de este conjunto de gráficas es aproximar, a partir de los indicadores disponibles, el mayor desarrollo relativo socioeconómico de Canadá, usando a Estados Unidos como benchmark. La evolución de participación de I+D sobre el PBI y de la participación de exportación de productos de altatecnología en las exportaciones totales revelan tanto un mayor esfuerzo relativo como mayores resultados, en términos innovadores. La serie del PBI per cápita junto al índice de desarrollo humano (IDH) representa no solo el mayor nivel de riqueza relativa del país del Norte sino, además, su correspondencia con mejores avances en aspectos asociados a la salud y la educación.

Cuadro A1. Valor agregado, importaciones, exportaciones e Inversión privada en I+D

	٧	/A		Importac	iones			Exportac	iones		1+	- D
	(P	IB)	-	otal aciones)	(VI	BP)	-	otal ociones)	(V	BP)	(To	tal)
	ARG	CAN	ARG	CAN	ARG	CAN	ARG	CAN	ARG	CAN	ARG	CAN
1. Energía	5	9	6	11	5	12	11	20	18	35	4	8
2. Tradi- cional	25	15	26	25	5	13	36	14	14	12	25	6
3. Material	4	3	8	12	10	24	6	15	15	50	4	4
4. Escala- intensiva	4	3	19	17	17	30	15	16	28	49	11	12
5. Pro- veedores especiali- zados	2	1	5	4	14	27	2	4	9	44	4	5
6. Basados en ciencia	1	1	5	2	16	24	2	2	10	44	28	20
7. Otros servicios	56	61	28	26	3	5	26	26	6	8	3	19
8. KIBS	3	6	3	3	5	5	3	3	10	10	20	26

Fuente: elaboración propia en base a STAN-OECD y Endei I.

Cuadro A2. Clasificación industrias ICIO-0ECD (2021), según la taxonomía de Pavitt modificada

CIIU Rev.4	Industria	Código	Pavitt modificado
D01T02	Agriculture, hunting, forestry	I-01	Tradicional
D03	Fishing and aquaculture	I-01	Tradicional
D05T06	Mining and quarrying, energy producing products	I-02	Energía
D07T08	Mining and quarrying, non-energy producing products	I-03	Material
D10T12	Food products, beverages and tobacco	I-04	Tradicional
D13T15	Textiles, textile products, leather and footwear	I-05	Tradicional
D16	Wood and products of wood and cork	I-06	Tradicional
D17T18	Paper products and printing	I-07	Tradicional
D19	Coke and refined petroleum products	I-08	Energía

(Continúa)

CIIU Rev.4	Industria	Código	Pavitt modificado
D20	Chemical and chemical products	I-09	Escala-inten- siva
D21	Pharmaceuticals, medicinal chemical and botanical products	I-10	Basado en ciencia
D22	Rubber and plastics products	I-11	Material
D23	Other non-metallic mineral products	I-12	Material
D24	Basic metals	I-13	Material
D25	Fabricated metal products	I-14	Escala-inten- siva
D26	Computer, electronic and optical equipment	I-15	Basado en ciencia
D27	Electrical equipment	I-16	Proveedores especializados
D28	Machinery and equipment, nec	I-17	Proveedores especializados
D29	Motor vehicles, trailers and semi-trailers	I-18	Escala-inten- siva
D30	Other transport equipment	l-19	Escala-inten- siva
D31T33	Manufacturing nec; repair and installation of machinery and equipment	I-20	Tradicional
D35	Electricity, gas, steam and air conditioning supply	I-21	Energía
D36T39	Water supply; sewerage, waste management and remediation activities	I-22	Energía
D41T43	Construction	I-23	Tradicional
D45T47	Wholesale and retail trade; repair of motor vehicles	I-26	Otros servicios
D49	Land transport and transport via pipelines	I-26	Otros servicios
D50	Water transport	I-26	Otros servicios
D51	Air transport	I-26	Otros servicios
D52	Warehousing and support activities for transportation	I-26	Otros servicios
D53	Postal and courier activities	I-26	Otros servicios
D55T56	Accommodation and food service activities	I-26	Otros servicios
D58T60	Publishing, audiovisual and broadcasting activities	I-26	Otros servicios
D61	Telecommunications	I-26	Otros servicios

(Continúa)

CIIU Rev.4	Industria	Código	Pavitt modificado
D62T63	IT and other information services	I-24	KIBS
D64T66	Financial and insurance activities	I-26	Otros servicio
D68	Real estate activities	I-26	Otros servicio
D69T75	Professional, scientific and technical activities	I-25	KIBS
D77T82	Administrative and support services	I-26	Otros servicio
D84	Public administration and defence; compulsory social security	I-26	Otros servicio
D85	Education	I-26	Otros servicio
D86T88	Human health and social work activities	I-26	Otros servicio
D90T93	Arts, entertainment and recreation	I-26	Otros servicio
D94T96	Other service activities	I-26	Otros servicio
D97T98	Activities of households as employers; undi- fferentiated goods- and services-producing activities of households for own use	I-26	Otros servicio

Fuente: elaboración propia.