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ABSTRACT:

In this study, we proposed and analyzed an SIS mathematical model by considering population density dependent emigration.
It is assumed that the disease is transmitted by direct contact of infective and susceptible populations. We also assumed that the
rate of contact is emigration dependent i.e. contact rate is variable which depends on the current population of habitat as well
as on non-emigrating population density of habitat. The equilibria and their stability are studied by using the stability theory of
differential equations and simulation. The model analysis shows that the spread of infectious disease in habitat decreases if the rate
of emigration increases but it increases as the population density of non-emigrating population increases. The simulation study
of the model confirms these analytical results.

Kew words: Modelling and Simulation, Mathematical model, Density dependent emigration, Stability.
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RESUMEN:

En este estudio, propusimos y analizamos un modelo matemdtico SIS considerando la densidad de poblacién dependiente de la
emigracién. Se supone que la enfermedad se transmite por contacto directo de poblaciones infectivas y susceptibles. También
asumimos que la tasa de contacto depende de la emigracidn, es decir, la tasa de contacto es variable y depende de la poblacién actual
del habitat, asi como de la densidad de la poblacién del hbitat que no emigra. Los equilibrios y su estabilidad se estudian utilizando
la teorfa de la estabilidad de las ecuaciones diferenciales y la simulacién. El analisis del modelo muestra que la propagacion de
enfermedades infecciosas en el hébitat disminuye sila tasa de emigracién aumenta, pero aumenta a medida que aumenta la densidad
de poblacion de la poblacién no emigrante. El estudio de simulacién del modelo confirma estos resultados analiticos.

Palabras nuevas: modelado y simulacién, modelo matemético, emigracién dependiente de la densidad, estabilidad.

PALABRAS CLAVE: modelado y simulacién, modelo matemadtico, emigracion dependiente de la densidad, estabilidad.
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INTRODUCTION:

The spread of infectious diseases in human population depend upon various factors such as the densities
of susceptibles and infectives, their contact rate, environmental and ecological factors, etc. Many human
infectious diseases in nature transmit by both direct and indirect physical contacts such as tuberculosis,
influenza, conjunctivitis, AIDS, Hepatitis and typhoid fever. The spread of infectious diseases also depends
on the emigration of population from the human habitat as well as its immigration to the habitat.

Mathematical models are important tools in the study of spread and control of infectious diseases. Many
researchers have been considered the constant contact rates between susceptible and infective to study disease
dynamics by considering various mathematical models>''”. But the population density dependent rate of
contact plays a key role in the spread of infectious diseases L4 The effect of variable death rate has also been
considered 1> . It is noted that the effect of fraction of the population in the habitat which may emigrated
or not has not been studied in most of the mathematical models related to the disease dynamics. It is further
pointed out that the effect of density dependent emigration by considering the effect of non-emigrating
population of the habitat has also not been studied.

B, (N)XY
fIN)

Susceptibles (X) rédectives (V)
e
uy
dx (a + d)Y
v
FIG 1.

Schematic flow of the Disease

In this paper, therefore, the following effects are studied on the spread of infectious diseases by proposing
a non-linear mathematical model.

(1) The effect of population density dependent emigration, which is considered as a linear function of
non-emigrating population of the habitat.

(2) The effect of emigration dependent contact rate between susceptibles and infectives, which is a linear
function of non-emigrating population of the habitat.

Let

be the density of population in the habitat. The variable emigration function

of human population density with constant immigration

is proposed as follows.

f(N)=A-u_0 (N-N_0); A>0,N_020 (1)

In eq. (1), is the non-emigrating population density of habitat and is the coefficient rate of emigration
from habitat. It is noted from eq. (1) that increases as increases but it decreases as increases

Further, we also assume that the contact rate between susceptible and infectives is also emigration
dependent. Thus, the emigration dependent contact rate is proposed as follows:

B_.(N) =B - B, (N-N,). (2)

Where, is the constant contact rate, is the coefhicient rate of emigration. It is noted that as increases
increases but it decreases as increases.
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The basic objectives of this study to incorporate the effects of non-emigrating population as well as
the density dependent contact rates in the modelling process and to study its effect on infectious disease
dynamics.

SIS MODEL WITH DENSITY DEPENDENT EMIGRATION:

Let N be the total human population density of the habitat, which consist the susceptible population density
X and infective population density Y. In view of the above, the dynamics of model is governed by following
system of non-linear differential equations:

%=A—;IO(N—N9)_(ﬁ_ﬁo(N_No))XY_dX-I-#Y

== (B - Bo(N — No))XY — (n + a + d)Y

N(0) > 0,X%(0) > 0 and Y(0) = 0

In the model system (3), is natural death rate of human population, is death rate coefficient of infective
human population due to disease related factors, is the recovery rate of infective human population density.

EQUILIBRTUM ANALYSIS:

Equilibrium Analysis: To analyze this model system (3), we reduced into the equivalent form of model

system (3) by taking

Z=(B—B(N—N))(N-Y)Y — (u+a+d)Y

dt

dN _

o Ap — dgN — a¥

The following lemma is needed for further analysis of model system (4).
Lemma 3.1. The region of attraction of model system (4) is given by the set

Q=((YN) € R ; 0sYsN__ and N_, ==A /(a+d,)sNsA /d,=N__}

Which attract all the solution of model system (4) in the positive quadrant of the region
Theorem 3.1. The model system (4) has the following two non-negative equilibria in

()) E (0, A/d ) ,The disease free equilibrium.

(i) E,=E, (Y*,N*) is endemic equilibrium which exists if .

Proof: The existence of disease free equilibrium point is obvious we prove the existence of from the model
system (4). Let then and are given from the following equations.
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(B-By (N-N))(N-Y)-(u+a+d)=0 (5)

A,- d, N-aY=0 (6)

By using eq.(5) and eq.(6) we define the following function,
F(Y)={(B+B.ON_-B,A0/d,) A0/d, - (atp+d) }

+ {B,.(aA)/d "2 -(a+d,))/d, (B+B, N,-B,A,/d,)Y-{a(a+d,)/

0

d,"2.B,} Y 2=0 (7)
It is noted from the eq.(7), we have

(i) FO)={(B+B,N,-(B.0A0)/d,) A /d,-(a+p+d)}>0

for.or R =(B+B,N,) A_0)/(a+p+d).d )+(B,A,*2)/d, )>1.

(i) F(A/a+d,)=-(a+p+d)<0

Hence, by the Intermediate value theorem the equation has at least one root in the interval . To show the
uniqueness of root in the interval , we prove that . By differentiate eq. w.r.t. , we get

F(Y)={B.0.(aA,)/d ? -(a+d )/d, (B+B, N,-B,A/d, )}-{a(a+d, )/d 2B, }2Y
(8)
Then, by using eq.(7) again, we have

YF(Y)=-{(B+B,N,-B, A/d,) A/d,- (u+a+d)Ha(a+d,)/d} B,}Y,
9)

Which is negative for Thus have a unique root in the interval . Now by knowing the value of , the value
of can be uniquely determined from eq.(6). Hence exists if

Remark: From eq. (5) and eq. (6), it is casy to note that d and d . This implies that, as or increases, infected
population density decreases.

STABILITY ANALYSIS:

In this section, we study the stability behavior of equilibrium points. The local stability behavior of the
equilibrium point can be investigated by determining the sign of the Eigen value of Jacobian matrix and the
local stability behavior of can be investigated by considering suitable positive definite Lyapunov function.
These results are given in the following theorems.

Theorem 4.1: The equilibrium pointis unstable if and the equilibrium point is locally asymptotically stable
provided the following inequality is satisfied.
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a(B, (N*Y*)) *<[4d_ {B-B, (N*-N)} (10)

Where N*-Y*=(A -(a+d )Y"*)/d,

Proof: See Appendix A.

Theorem 4.2: The equilibrium point is globally asymptotically stable in the region provided the following
inequality is satisfied.

a(B, A, /d, )2=<4d {B-B, (N*-N )} (11)

Proof: See Appendix B.

Remark: It is noted that the inequalities (10) and (11) are automatically satisfied if

Numerical simulation and discussion. Here we discuss the existence and stability of the nontrivial
equilibrium point by considering the values of parameter from Table 1 and using the software MAPLE.

TABLE.1
Table.1
T: -
Parameter Value of parameter and
references
A 500/ day [11]
-02
1.98¢ 7/ day
10000 persons per unit area
D 0.03/ day
0.06/ day

1267 fperson
0.03/ day

10810y person

For these values of parameters the nontrivial equilibrium point corresponding to eq. (5) and eq. (6) is
obtained as s, s

It may be noted that for the parameter values defined in Table.1, the condition and local and global
stability condition are satisfied.

For the above values of parameters the Jacobian Matrix at (1666, 12009) is

M*=[ -0.0193 0.0159]
-0.06 -0.0498

The Eigen values of the Jacobian Matrix corresponding to
the equilibrium point E, (Y*N*) are:

-0.0346 + 0269i, -0.0346 - 0269i

Both Eigen values are complex number having negative real parts. Thus, the equilibria is asymptotically
stable.

The numerical simulation of model system (4) are also conducted and the results are shown in figures [ 1-6]
from which the following results are concluded.
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(i) Fig.1 shows the global stability of the system.
(ii) Fig.2 shows increases as N, increases.

(iif) Fig.3 it is noted increases as A increases.
(iv) Fig4 it is seen increases as Bincreases.

(v) Fig.5 it is noted decreases as U, increases.
(vi) Fig.6 shows decreases as B , increases.

S
\\
18000 -
N Na
~ N
16000 - \
N \
14000 N \
Y
N -~ T~ (1666, 12009) .
12000-!/ l/'i-wzi:---"/
' \
10000 | \
] \\
8000} N
\
6000 ) T~

500 1000 1500 'Yzobo' 2500 3000

FIG.1.

Stability diagram for infective population density (N ) and total population density
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Infected population density (Y) Vs. time (¢ ) in days for

various values of non-emigrating population density (N_0).
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FIG.3:

Infected population density (Y ) Vs. time (t ) in days for various values of constant immigration (B)
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Infected population density (Y) Vs. time ( t) in days for various values of constant contact rate (B).
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Infected population density (Y ) Vs. time ( t) in days for various values of variable emigration rate (M_0)
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Infected population density (Y ) Vs. time (t ) in days for various values of variable contact rate (M_0) .

CONCLUSIONS.

In this paper, an SIS epidemic non-linear model have been proposed and analyzed to study the effect of
density dependent emigration and non-emigrating population of habitat on spread of infectious diseases. In
the modeling process, the two variables have been considered namely, the susceptible population density and
the infective population density. The rate of contact between susceptible and infective has been assumed to
be emigration dependent. The model has been analyzed by using the stability theory of differential equations
and simulations. In the equilibrium analysis we found two non-negative equilibrium, one of them is disease
free and the other is endemic equilibrium. In stability analysis we investigated the behavior of equilibrium
points. The model analysis has shown that if the non-emigrating population density increases, the infective
population density increases. Further as emigration increases, not only the contact rate decreases but the
spread of infectious disease decreases.

The various results from simulation are summarized in the following.

- As the non-emigrating population density increases, the infective population density also increases i.c.
the spread of infectious disease increases.

- As the constant immigrated population density increases, the infective population density also increases
i.e. the spread of infectious disease increases.

- As the constant contact rate increases, infective population density increases.

- As the variable emigration rate increases, infective population density decreases

- As the variable contact rate that increases, the increases then infective population density decreases i.c.
the spread of disease decreases.

Appendix A. Proof of theorem 4.1.: The local stability behavior of each two equilibrium points and is
studied by computing Jacobian Matrix at equilibrium points.
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Let  £=(B-B, (N-N,))(NY)Y-(d+a+p)Y
f,=A,- d, N-a¥
Thus Jacobian matrix at E,

JE,)=((B+B, N, B, A/d,) A/d, - (u+a+d) 0-a)

-

Since R,>1, one of Eigen values A, =(B+B,N,-B, A/d,)
A,/d, - (n+a+d)>0

Hence E, is Unstable.

Now we check the local stability of E (Y*,N* ) of by us-
ing the Lyapunov’s method, for this the following positive
definite function is used.

V(yn)=1/2y*+K'/2n* Al
By differentiating eq. (A.1), we getwe get
V(yn)=yy'+K_1 nn A2

Now using linearization of the model system (4) about
and by taking

y=Y-Y* ,n=N-N*, we get
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Viy.n) =Y (B-B, (N**-N.)) ¥

-(B, (N Y* ) Y*4(B-B, (N**-N, )).Y"-aK Iny-K d n* A3
By choosing such that =K_1=(Y** (-B, (N*-N,)))/a then
V(yn)=Y* (B-B, (N*-N,)) y*-(B, (N*Y*) Y** )ny-K d, n* A4
Now V(yn)<0 if (B, (N*-Y*) Y* )*2<4K d, Y* (BB, (N*-N,))
e a(B, (N*-Y*)):<4d, (B-B,(N**-N,))? AS

E, (Y'N*) is locally stable providing inequality (A.S) is
satisfied .

Appendix B. Proof of theorem 4.2.

To prove this theorem, we consider the following positive
definite function

U=(Y-Y*Y* In Y/Y* )4 (K, (N-N* ))/2 B.1
By differentiating B.1, we get,
U=((¥Y*)/Y) Y +K, (N-N*) N B.2

Now after using model system (4), eq.(5) and eq.(6), we
get

U=((B-B, (N*N, ))-aK,-B, (N-Y))(N-N* ) (Y-¥*)

- K, d, (N-N* )% (- B, (N*-N,)) (Y-Y* )2 B3
By choosing K, st K=((B-B,(N**-N,))/a then
U=- (B- B, (N*-N,)) (¥-¥*)"-B, (NY)(N-N*)(¥-¥*) -K,d, (N-N*)'B.4
U<0iff (B, (NY)*<4K,d, (B-B, (N*-N,))

a(B,N_. ) <4d, (B-B, (N*-N0))* B.5

s

a(B,A,/d,y<4d, (B-B, (N*-N,)}2 B.6

E, (Y*N*) & globally asymptotically stable Providing B.6
satisfied
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