
PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative

Andean Geology
ISSN: 0718-7092
ISSN: 0718-7106
andeangeology@sernageomin.cl
Servicio Nacional de Geología y Minería
Chile

Reviewing the Antioquia batholith
and satellite bodies: a record of Late
Cretaceous to Eocene syn- to post-
collisional arc magmatism in the Central
Cordillera of Colombia

Duque-Trujillo, José; Bustamante, Camilo; Solari, Luigi; Gómez-Mafla, Álvaro; Toro-Villegas, Gloria;
Hoyos, Susana
Reviewing the Antioquia batholith and satellite bodies: a record of Late Cretaceous to Eocene syn- to post-
collisional arc magmatism in the Central Cordillera of Colombia
Andean Geology, vol. 46, no. 1, 2019
Servicio Nacional de Geología y Minería, Chile
Available in: https://www.redalyc.org/articulo.oa?id=173957708004
DOI: https://doi.org/10.5027/andgeoV46n1-3120

https://www.redalyc.org/articulo.oa?id=173957708004
https://doi.org/10.5027/andgeoV46n1-3120


Andean Geology, 2019, vol. 46, no. 1, January, ISSN: 0718-7092 0718-7106

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 82

Research article

Reviewing the Antioquia batholith and satellite bodies: a record of Late Cretaceous
to Eocene syn- to post-collisional arc magmatism in the Central Cordillera of
Colombia

José Duque-Trujillo
Universidad EAFIT, Colombia
jduquetr@eafit.edu.co

Camilo Bustamante
Universidad EAFIT, Colombia
cbustam3@eafit.edu.co

Luigi Solari
Universidad Nacional Autónoma de México, México
solari@unam.mx

Álvaro Gómez-Mafla
Universidad EAFIT, Colombia
agomezm@eafit.edu.co

Gloria Toro-Villegas
Universidad EAFIT, Colombia
gtoro@eafit.edu.co

Susana Hoyos
Universidad EAFIT, Colombia
shoyosm1@eafit.edu.co

DOI: https://doi.org/10.5027/andgeoV46n1-3120
Redalyc: https://www.redalyc.org/articulo.oa?

id=173957708004

Received: 13 November 2017
Accepted: 19 July 2018

Abstract:

e Antioquia batholith represents the magmatic record of the interaction between the Farallón and Caribbean plates with the
NW part of the South American Plate during the Meso-Cenozoic. Several authors have reported zircon U-Pb ages and whole rock
geochemistry in order to constrain the crystallization history of this batholith and its formation conditions. e present work
aims to gather the existing data with new data obtained from the Ovejas batholith and La Unión stock, both genetically related
to the main intrusion. Gathering our new data with information obtained in previous works, we conclude that the Antioquia
batholith was constructed by successive pulses from ca. 97 to 58 Ma in an arc-related setting. e initial pulses are related to syn-
collisional tectonics, during the early interaction between the Farallón plate and NW South America. e final pulses, that record
Eocene ages, are related to a post-collisional setting, similar to that recorded in other plutons of the Paleogene magmatic arc of
the Central Cordillera.
Keywords: Antioquia Batholith, Magmatism, Central Cordillera, Colombia.

1. Introduction

Granite batholiths are found in continental magmatic arcs around the world and constitute the main vestiges
of subduction-related settings (Best, 2013). ese are constructed over time spans from 105 to 106 years by
the incremental assembly of small magma batches (Coleman et al., 2004; Annen et al., 2015).
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In that sense, they can record significant changes in the tectonic style of convergent margins through time,
identified when U-Pb geochronology in zircons and whole rock geochemistry is combined and its spatial
distribution is considered. e whole Andean chain includes several Meso-Cenozoic granitoids that record
the continuous subduction setting that has molded the western margin of South America since the breakup
of Pangea during the Triassic (Ramos, 2009; Ramos and Aleman, 2000). Hence, studying these granitoids
may help to unravel evolution of the continental margin.

A major arc-continent collisional event took place in the western margin of northern South America
related to its interaction with the Caribbean Large Igneous Province during Late Cretaceous (Cardona
et al., 2011; Villagómez et al., 2011; Bayona et al., 2012; Spikings et al., 2015; Jaramillo et al., 2017). A
contemporaneous granitic magmatism appeared in the Central Cordillera represented by the intrusion of
the Antioquia batholith, a granodiorite to tonalite pluton formed by multiple pulses from ca. 90 to 60 Ma
(Ibáñez-Mejía et al., 2007; Restrepo-Moreno et al., 2009; Ordóñez and Pimentel, 2001; Ordóñez-Carmona
et al., 2006; Leal-Mejía, 2011; Villagómez et al., 2011). is was succeeded by a Paleogene post-collisional
magmatic arc which includes the Eocene portion of the Antioquia batholith (Leal-Mejía, 2011; Bayona et al.,
2012; Bustamante et al., 2017). e later suggests that the continental margin was subjected to a progressive
thickening since its interaction with the Farallón plate, and that may be recorded by the Antioquia batholith.

However, geochemical and geochronological data from this batholith are limited to scarce international
works presenting extensive formation ages and discussing the origin of the Antioquia Batholith in a long term
tectonic model including both the transition from Nazca-dominated to Caribbean-dominated tectonics.

In this paper, we present new U-Pb crystallization ages from one of the earliest (La Unión stock)
and intermediate (Ovejas batholith) pulses of the Antioquia batholith, and also provide new whole rock
geochemistry. is information combined with a compilation of available data obtained from previous
works, will allow us to outline the crystallization history of the Antioquia batholith in relation with the
Meso-Cenozoic subduction setting of the NW corner of the South American Plate, tracking the thickening
that experienced the margin during the Late Cretaceous and lasted until the Eocene.

2. Geological setting

ree N-NE trending Cordilleras built the Andes of Colombia. e Eastern Cordillera, mainly constituted
by a Proterozoic metamorphic basement covered by highly deformed Paleozoic to Cenozoic sedimentary
sequences (Villamil, 1999; Sarmiento-Rojas et al., 2006). is cordillera is separated from the Central
Cordillera by the Magdalena River Valley, which in turn consists of Permo-Triassic gneisses, migmatites and
amphibolites (Martens et al., 2014) and Jurassic schists belts (Blanco-Quintero et al., 2014; Bustamante et
al., 2017) intruded by Jurassic (Cochrane et al., 2014; Bustamante et al., 2016) and Cretaceous to Paleogene
arc-related plutons respectively (Bayona et al., 2012; Bustamante et al., 2017). e northernmost exposure
of the latter magmatic belt continues under the Lower Magdalena Valley, represented by the Bonga pluton
(Mora-Bohórquez et al., 2017). e Cauca River Valley separates the Central Cordillera from the Western
Cordillera which includes Late Cretaceous oceanic rocks accreted to the South American plate during Early
Cretaceous (Kerr et al., 1997; Villagómez and Spikings, 2013), then intruded by Miocene plutons and
covered volcanic rocks from intermediate to tholeiitic character (Bissig et al., 2017; Restrepo and Toussaint,
1990).

2.1. Late Cretaceous to Paleogene magmatism of the Colombian Andes

Late Cretaceous arc-related granitoids (i.e., Antioquia batholith) intrudes the Great Caribbean Arc (Fig. 1).
ese have been identified all along the Central Cordillera of Colombia (Ibáñez et al., 2007; Villagómez et al.,
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2011; Restrepo-Moreno, et al., 2009; Leal-Mejía, 2011) as well as in the Real Cordillera in Ecuador (Vallejo
et al., 2009). ese are the main vestiges of a well established subduction zone on the western margin of South
America that lasted until at least the middle Eocene (Fig.1), when magmatism stopped due to difficulties of
the Caribbean plateau to subduct and the northward migration of the Caribbean and South America plates
(Aspden et al., 1987; Pindell et al., 2005; Spikings et al., 2005; Vallejo et al., 2009; Cardona et al., 2010;
Villagómez et al., 2011; Bayona et al., 2012).

2.1.1. Antioquia batholith and related stocks

e Antioquia batholith is the only Late-Cretaceous intrusive body recognized in the Central Cordillera of
Colombia and constitutes the first record of the continental arc magmatism in NW South America aer ca.
20 m.y. of magmatic quiescence (Bustamante et al., 2016).

Along decades, different geochronometers as U-Pb, 40Ar/39Ar, K-Ar, U-/He, Fission tracks, Re/Os
and Rb/Sr have been used on the Antioquia Batholith, obtaining a considerable dataset. A review of all
available geochronological ages are listed in table 1, where basic data are gathered including sampling site,
method, material, error, among others.

In order to establish the formation age of the batholith, extensive U-Pb geochronological studies in zircon,
using different techniques (LA-ICP-MS, TIMS and SHRIMP) have been performed (Fig. 2; Table 1). U-Pb
have yielded crystallization ages between 97 and 58 Ma (Fig. 3; Ordóñez-Carmona et al., 2006; Correa et al.,
2006; Restrepo-Moreno et al., 2007; Ibáñez-Mejía et al., 2007; Leal-Mejía, 2011; Villagómez et al., 2011).
e whole intrusive complex has a scanty compositional variation, ranging from granodiorite to tonalite
with minor gabbroic facies (Feininger and Botero, 1982). Five spatially related satellite stocks have also been
related to this major Cretaceous magmatic body. ese satellite stocks are known as the Altavista, La Culebra,
Ovejas, La Unión and San Diego. eir compositions range from granite to granodiorite, except the San
Diego stock which has a gabbroic composition (Fig. 3A). Based on extensive zircon U-Pb data, Leal-Mejía
(2011) defined four main pulses which constructed the Antioquia batholith (i) An older pulse between 95
and 87 Ma located to the south of the batholith, including the San Diego and Altavista stocks; (ii) a second
pulse between 89 and 82 Ma, mainly located on the margins of the pluton, including La Culebra and a more
felsic facies of the Altavista stocks; (iii) a third pulse between 81 and 72 Ma that includes the Ovejas stock;
(iv) the fourth and youngest pulse of Eocene age (~63 to 58 Ma) is identified in the central-eastern portion
of the batholith (Fig. 3B). is last magmatic pulse is also correlatable with other plutons located south on
the Central Cordillera such as Hatillo, Manizales, El Bosque, Norcasia and Sonsón (Bayona et al., 2012;
Bustamante et al., 2017) and the Santa Marta batholith and the Parashi stock located at the Colombian
caribbean (Cardona et al., 2011; Cardona et al., 2014; Salazar et al., 2016).

3. Methods

3.1. U-Pb geochronology

is paper presents five new U-Pb (LA-ICP-MS) ages in zircon (crystallization ages) from La Unión Stock
and Ovejas Batholith. ese ages were obtained at the Laboratorio de Estudios Isotópicos (LEI), Centro
de Geociencias (CGEO), Universidad Nacional Autónoma de México (UNAM) following procedures
described in Solari et al. (2010). Zircon crystals were separated using conventional techniques of rock
crushing, sieving, Frantz isodynamic magnetic separator, panning, and heavy liquid separation. Crystal
ablation was performed using an ArF excimer laser (Resolution M-50) operated at 193nm, 5 Hz and ~6
J/cm. e Plešovice reference zircon (ca. 337 Ma; Sláma et al., 2008) was used in combination with NIST
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610 standard glass to correct for instrumental dri and down-hole fractionation and to recalculate elemental
concentrations, using the UPb.age script for R (Solari and Tanner, 2011) and Iolite (Paton et al., 2010).
Because its signal is swamped by the 204Hg contained in the carrier gases, 204Pb was not analyzed during
this study. Common Pb correction, where needed, was thus performed employing the algebraic method of
Andersen (2002). Concordia and age distribution plots, as well as age error calculations, were performed
using Isoplot v. 3.70 (Ludwig, 2004).

3.2. Whole-rock geochemistry

Whole rock geochemistry was performed on the same samples where U-Pb ages were obtained, except for the
A.G.1.6 sample (La Unión Stock), which was completely weathered. Major elements analysis were performed
by X-ray fluorescence with a Siemens SRS-300 equipment, following the procedures described by Lozano-
Santa Cruz et al. (1995). Trace elements analysis were performed on the LEI by ICP-MS using a ermo
Series XII equipment, under procedures described by Mori et al. (2009). Two additional digestion steps were
added in order to achieve complete dissolution of highly refractory minerals (e.g., zircon) as described in
Duque-Trujillo et al. (2014).

Due to the impossibility of accessing raw data from Leal-Mejía (2011) a graphic comparison was made
between the data of this author and the data here presented.

4. Results

4.1. Petrography and geochemistry

Petrographic analyses were performed on four samples from the Ovejas Batholith and one sample from a
magmatic mafic enclave. e sample belonging to La Unión Stock could not be analyzed due to its high
degree of weathering.

e analyzed samples were classified as granodiorites. Broadly speaking, the samples are hypidiomorphic,
equigranular, coarse to medium grained. ese are mainly composed of quartz, plagioclase, K-feldspar,
hornblende, and biotite. Magmatic mafic enclaves are common, and those present the same mineralogical
composition as the main magmatic mass with a high content of mafic minerals.

Plagioclase is usually classified as andesine although compositional zonation is frequent. K-feldspar is
classified as orthoclase. e amphibole, classified as hornblende, usually presents a genetic relationship with
biotite in clusters of crystals. e amphibole and biotite are frequently altered to chlorite and present local
replacements to epidote-clinozoisite. ese observations agree with the results obtained by Feininger and
Botero (1982) and Álvarez (1983) for the Antioquia Batholith. ose authors, based on a large data-set,
found that the petrographic characteristics of the main granitic mass of the Antioquia Batholith are very
homogeneous, with a ~97% of the samples classified as granodiorites to tonalities.

Four samples of the Ovejas Batholith were geochemically analyzed and their results are presented in table
2. ree samples correspond to the main granodioritic mass of the Ovejas Batholith and one sample from
a mafic enclave. Samples belonging to the granodioritic mass were classified as quartz-diorites and diorites,
meanwhile the mafic enclave fall in the gabbro field (Fig. 4A). SiO2 vary from 61.9 to 66.7 wt%, while K2O
content is almost invariant around ~1.8 wt% for the granitic samples, which fall in the calc-alkaline series
of medium K (Fig. 4B). e mafic enclave has 52.3% of Si2O and higher K2O, locating the sample on the
Shoshonitic series. MgO values range from 1.5 to 2.3 wt% in the granitic samples, and have a value of 4.1 wt
% for the mafic enclave. Al2O3 values range from 16.2 to 17.0 wt% within the granitic samples, and 17.9 wt
% for the mafic enclave. From the four analyzed samples, two samples, (the mafic enclave and one granitic



Andean Geology, 2019, vol. 46, no. 1, January, ISSN: 0718-7092 0718-7106

PDF generated from XML JATS4R by Redalyc
Project academic non-profit, developed under the open access initiative 86

sample) fall in the metaluminous field, meanwhile the other two granitic rocks fall into the peraluminous
field (Fig. 4C).

Primitive mantle-normalized multi-element diagrams for the Ovejas Batholith rocks are characterized by
an enrichment of the Large Ion Lithophile Elements (LILE) over the High Field Strength Elements (HFSE)
(Fig. 5A, C). ese patterns are also characterized by negative Nb-Ta, La-Ce and Ti anomalies, and positive
Pb, and Zr-Hf anomalies (Fig. 5A, C). Although the mafic enclave has a similar pattern as the granitic rocks,
it differs from those in some aspects, especially those related to less differentiated rocks (e.g., Zr-Hf anomaly,
which is negative in the mafic enclave and positive in the granitic rocks).

Chondrite-normalized REE patterns show a well-defined LREE enrichment ([La/Yb]N ratios vary from
6.4 to 8.6 in granitic rocks and 3.8 for the mafic enclave) and an almost flat HREE pattern ([Gd/Yb]N ratios
vary from 1.58 to 1.70 in granitic rocks and 1.51 for the mafic enclave) (Fig. 5B, D, E and F). Unless all
samples have similar patterns, La/Yb ratios show that the mafic enclave rock is less depleted in REE than the
granitic samples (Fig. 5B, D and E). Eu anomaly is present in three from the four analyzed samples (Fig. 5B).
e mafic enclave shows a well-defined negative anomaly (Eu/Eu*=0.68), meanwhile the granitic rocks all
samples have positive anomalies (Eu/Eu* from 1.03 to 1.42) (Fig. 5G).

4.2. U-Pb geochronology

Zircon U-Pb crystallization ages (Table 3) were obtained by the LA-ICP-MS method in five samples (Fig. 6
and 7). One of them corresponds to the La Unión Stock, and four to the Ovejas Batholith. In order to obtain
the age of the last crystallization event, the preferred ablation target were crystal borders; nevertheless, some
cores were analyzed in order to identify possible inherited ages.

4.2.1. La Unión Stock

One sample (AG 1.6) was analyzed for this pluton. Cathodoluminescence (CL) images show thin concentric
overgrowths around ante-crystals (Fig. 6). Twenty-six analysis from this sample yield a weighted mean
238U/206Pb age of 97.2±0.6 Ma (Fig. 6). is age is dominated by the age of the magmatic overgrowths,
leading to interpret this as the age of the latest magmatic activity during the La Unión Stock magmatism.
Zircon cores yield ages only ~4 Ma older than the overgrowths (102-100 Ma).

4.2.2. Ovejas Batholith

Four samples were analyzed for the Ovejas Batholith (AG 1.1, 1.2, 1.3 and 1.4) (Fig. 3). CL-images show
mostly thin concentric overgrowths around an older core (Fig. 7). Although most of the analytical spots
were located on zircons overgrowths, some of them were located on the cores (Fig. 7). Single-spot U-Pb ages
obtained from the Ovejas Batholith samples yield ages between 85 and 66 Ma (Fig. 7); meanwhile, intercept
ages fall between 76.9 and 73.3 Ma (Fig. 7). A weighted mean age calculated using those four ages yield an
age of 75.2 Ma (MSWD=0.47).

Although intercept ages from the Ovejas Batholith clearly define a coherent unique age for this
magmatism, sample AG 1.1 has three zircons with ages ~10 M.y. younger (66-62 Ma) than the intercept
age calculated for that sample. It is plausible that these zircons represent a later magmatic pulse which had
affected part of the Ovejas Batholith between 66 and 64 Ma.
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5. Discussion

5.1. The length of the upper Cretaceous to Eocene arc magmatism in the
Northern Andes and its tectonic setting

Our new U-Pb crystallization ages from La Unión stock (ca. 97 Ma) and Ovejas Batholith (ca. 76 to 73
Ma), together with ages previously reported for the Antioquia batholith and its satellite bodies (Ordóñez-
Carmona et al., 2006; Correa et al., 2006; Restrepo-Moreno et al., 2007; Ibáñez-Mejía et al., 2007; Leal-
Mejía, 2011; Villagómez et al., 2011) ranging from ca. 89 to 58 Ma, suggest that aer ~ 20 m.y. of magmatic
quiescence, continental arc magmatism resumed during upper Cretaceous in the Central Cordillera and
lasted until the Eocene. Age distribution in the Antioquia batholith (Fig. 3) suggests that it was constructed
from south to north, with a most voluminous period of magmatism between 89 and 72 Ma. However, despite
the apparent 40 m.y. of continuous magmatism in the Central Cordillera, a clear gap between 72 and 63 Ma
is present as seen in figure 3C and in the detrital record (U-Pb in zircon) of sedimentary basins from eastern
Colombia, where two group ages (Late Cretaceous and Paleogene) are abundant, whereas the ~62 to 70 m.y.
ages are scarcely represented. It is noteworthy than the Antioquia Batholith is until now, the only vestige
of late Cretaceous arc-related magmatism in the Central Cordillera. Conversely, the Paleogene magmatism
is extended along the Central Cordillera (Bustamante et al., 2017) and the Caribbean region (Cardona et
al., 2012, 2014).

According to such age distribution exposed over the present work, we propose to challenge previous
geological models which suggest a southward magmatic migration during Paleogene (Ordóñez et al., 2001;
Cardona et al., 2012; Pindell and Kennan, 2009; Pindell et al., 1998, 2006). Instead, we propose that
continental arc magmatism was stationary during upper Cretaceous, forming the Antioquia Batholith,
whereas its Paleogene pulse, ~10 Ma aer the mentioned magmatic hiatus, was formed on the eastern
side and share geochemical features with other Paleogene post-collisional plutons of the Central Cordillera
(Bustamante et al., 2017). Further Miocene rotation of the Sierra Nevada de Santa Marta located northern
of Colombia (Montes et al., 2010) and the oblique convergence between South America and the Caribbean
Plate may have dispersed the Eocene granitoids from its former position (Cardona et al., 2014), which in
turn, may explain the magmatic gap between the Central Cordillera and the Sierra Nevada de Santa Marta
(Fig. 1). e coincidence of the aforementioned ~10 m.y. magmatic hiatus with increasing Sr/Y ratios,
suggest that the collision of the Caribbean plateau with NW South America may have caused such period
of magmatic quiescence.

Whole rock geochemical results from the Ovejas Batholith indicate an arc related setting for this pluton
according to the Nb, Ti and Ta negative anomalies (Fig. 5) as well as the LREE/HREE ratios ([La/Yb]N
from 6.4 to 8.6). We compared our results with geochemical analyses obtained in previous works of the
Antioquia Batholith (Botero, 1963; Feininger and Botero, 1982; González, 1980; Álvarez, 1983; Sáenz, et
al., 2003; Villagómez, 2010; Almeida and Villamizar, 2012). Such compilation, however, lacks of the raw data
and trace and REE analyses, and only eight of them are complete (Almeida and Villamizar, 2012). Analytical
data obtained by Leal-Mejía (2011) are also included in this compilation by graphical comparison because
the absence of the raw data.

Primordial mantle-normalized trace-element trends exhibit a clear enrichment in LILE over HFSE (Fig.
5A) with similar patterns as the obtained for the Ovejas Batholith. is can be compared in figure 5C and by
the [La/Yb]N ratio values in figure 5F. Nb, Ta and Ti negative anomalies, and Zr, Hf positive anomalies are
identifiable (Fig. 5A). Chondrite-normalized REE patterns show enrichment in LREE versus HREE with
similar patterns as those obtained for the Ovejas Batholith. Nevertheless, Antioquia batholith has less steep
MREE-HREE patterns, indicated by the Gd/Yb ratio.
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Some authors consider these and other plutons in Aruba, Curaçao, Pujilí, Guajira, among others, as
belonging to the tonalite-trondhjemite-granodiorite series or having an adakitic affinity (e.g., Wright and
Wyld, 2011; Whattam and Stern, 2015). Pindell and Kennan (2009) consider that this series of plutons are
so close to the Caribbean-South American Plate boundary and cast doubt on the normal arc setting for these
rocks, suggesting the melting of a slab-tip during subduction initiation. Conversely, we claim for a primitive
continental arc setting for the Antioquia batholith and its satellite bodies based on the aforementioned
geochemical evidences. Such magmatic arc is recording an increasing in its maturity with time as suggested
in the Rb/Zr versus Nb ratios (Fig. 8). Elliot et al. (1997) observed that incompatible elements like Ba and
 can be used as tracers of fluids derived from subducting slabs. In that sense, the high Ba/ (~111 to
185) ratios of the Antioquia batholith are indicative of a continental arc where the slab derived fluids are
increasing with maturity (Fig. 8). e stationary character of the magmatism represented by the Antioquia
batholith, indicates that the subduction components (hydrous fluids) involved in the petrogenesis of these
magmas would have changed locally, and are not related to the migration of the magmatic arc away from
the trench.

6. Conclusions

Syn- to post-collisional tectonics characterized the NW margin of South America since the Late Cretaceous
to the Eocene, mainly influenced by the interaction of the Farallón and Caribbean plates with this margin.
e Antioquia batholith, built by successive magmatic pulses for ca. 40 m.y., constitutes one of the main
magmatic records of this tectonic scenario. Its crystallization history can be inferred according to new and
already published U-Pb ages, whereas the whole rock geochemistry suggests that this magmatism is arc-
related and that its locus may have been relatively stationary since no evidences of arc migration are recorded.

e latest magmatic phases of the Antioquia Batholith, Paleogene in age, constitute part of a magmatic
arc that includes other small volume plutons currently located at the Colombian Caribbean. is formerly
arc would have been disrupted and dispersed by the interaction between the NW margin of South America
and the Caribbean Plate which lead to rotation and translation of cortical blocks as well as basin formation.

Fig. 1.
Fig. 1. Geographic distribution of the Late Cretaceous to Paleogene magmatism in the northwestern part of the South American

Plate. 1. Parashi Pluton; 2. El Hatillo Stock; 3. El Bosque Batholith; 4. Santa Marta Batholith; 5. Santa Bárbara Batholith;
6. La Blanquilla Pluton; 7. Manizales Stock; 8. Antioquia Batholith; 9. Sonson Batholith; 10. Playa Salguero Stock; 11. Irra

Stock; 12. Baja Guajira Granitoid; 13. Córdoba Stock; 14. Jejenes Stock; 15. Aruba Batholith; 16. Media Luna Stock; 17. Buga
Batholith; 18. Mariquita Stock. Abbreviation: W.C.: Western Cordillera; C.C.: Central Cordillera; E.C.: Eastern Cordillera.
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Fig. 2.
Fig. 2. Summary of geochronological ages (Ma) obtained for the Antioquia
Batholith and satellite bodies using different methods. Data from table 1.
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Fig. 3.
Fig. 3. A. Geographical distribution of U-Pb Zircon ages from the different magmatic bodies which constitute the Antioquia
Batholith. Square-outlined numbers indicate the geological unit: 1. Antioquia Batholith and satellite bodies, 2. Altavista, 3.
La Culebra, 4. Ovejas, 5. La Unión; B. Geographical distribution (latitude) versus zircon U-Pb age (Ma) graph. Numbers

indicate the identified magmatic pulses. Black dots: Pulse 1 (P1); dark grey dots: Pulse 2 (P2); light grey dots: Pulse 3 (P3);
white dots: Pulse 4 (P4). C. Detrital zircon U-Pb age on sediments from the Middle Magdalena Valley, from Caballero et
al. (2013). Colors indicate the different interpreted magmatic pulses. Same magmatic pulses identification as numeral (B).
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Fig. 4.
Fig. 4. Whole-rock classification and discrimination diagram from Ovejas main granitic mass (red dots)

and enclave (blue dot). A. TAS based rock classification diagram (Cox et al. 1979); B. TAS discrimination
diagram (Middlemost, 1994); C. Aluminum saturation index diagram (A/CNK versus A/NK (Shand, 1943).
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Fig. 5.
Fig. 5. Trace element diagrams for samples from ovejas Batholit (in red) and mafie enclave (in blue). A. Trace element (PRIMA

normalized, Wood, 1979); B. REE normalized diagram (normalized using Boynton, 1984) spider-diagram from the Ovejas
Batholith; C-D. Ovejas Batholith trace elements spider-diagrams compared with Leal-Mejía (2011); Antioquia Batholith data;
E-G. Trace elements ratio for the Ovejas Batholith and Antioquia Batholith from Almeida and Villamizar (2012) in grey color.

Fig. 6.
Fig. 6. U-Pb zircon (LA-ICP-MS) geochronology results from La Unión Pluton.
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Fig. 7.
Fig. 7. U-Pb zircon (LA-ICP-MS) geochronology results from Ovejas batholith.

Fig. 8.
Fig. 8. Rb/Zr versus Nb diagram (Brown et al., 1984). Data from samples belonging to the Antioquia batholith from: Whatam

and Stern (2015), blue dots; Almeida and Villamizar (2012), red dots; Villagómez (2010), green dots; this work, gray dots.
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Table 2
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