

Ciencia en su PC

ISSN: 1027-2887

manuela@megacen.ciges.inf.cu

Centro de Información y Gestión Tecnológica de Santiago

de Cuba Cuba

Ibarra-Camacho, Roberto; León-Duharte, Leandro CARACTERIZACIÓN QUÍMICO-FÍSICA DE VINAZAS DE DESTILERÍAS Ciencia en su PC, vol. 1, núm. 2, 2018, Abril-Junio 2019, pp. 1-13 Centro de Información y Gestión Tecnológica de Santiago de Cuba Cuba

Disponible en: https://www.redalyc.org/articulo.oa?id=181358410001

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

abierto

CARACTERIZACIÓN QUÍMICO-FÍSICA DE VINAZAS DE DESTILERÍAS

PHYSICOCHEMICAL CHARACTERIZATION OF DISTILLERY VINASSE

Autor:

Roberto Ibarra-Camacho, <u>roberto@ronsantiagodecuba.co.cu</u>. Corporación Cuba Ron S. A., Ronera Santiago de Cuba. Santiago de Cuba, Cuba.

Leandro León-Duharte, <u>Iduharte@edu.uo.cu</u>. Universidad de Oriente. Santiago de Cuba, Cuba.

RESUMEN

Se realizó la caracterización físico-química de las vinazas obtenidas en el proceso de producción de alcohol a partir de miel final en las destilerías Argeo Martínez y Arquímedes Colina de las provincias Guantánamo y Granma respectivamente, mediante la determinación de parámetros químico-físicos representativos para evaluar el poder contaminante de las mismas y se compararon con la Norma Cubana 521:2007. Se encontró que los parámetros DQO, conductividad eléctrica, pH, temperatura, nitrógeno total y contenido de hierro se encuentran por encima de los límites máximos permisibles, lo cual demuestra el efecto contaminante de las vinazas estudiadas y corrobora que es inadecuada la disposición final de este residual a las aguas terrestres y marítimas sin un tratamiento previo. Se realizó un estudio de las posibles alternativas para el tratamiento de los residuales de destilerías.

Palabras clave: destilería, vinazas, caracterización.

ABSTRACT

The physical-chemical characterization of the vinasses obtained in the process of alcohol production from final honey was carried out in the Argeo Martínez and Arquímedes Distillery Hill of the Guantánamo and Granma Provinces, respectively, by determining representative chemical-physical parameters for evaluate the polluting power of the same, and were compared with the Cuban Standard 521: 2007, finding that the parameters: DQO, electrical conductivity, pH, temperature, total nitrogen and iron content are above the Maximum Permissible Limits, demonstrating the contaminating effect of the vinasses studied, corroborating that the final disposal of this residual to the terrestrial and maritime waters without prior treatment is inadequate. A study was made of the possible alternatives for the treatment of residuals.

Key words: distillery, vinasses, characterization.

INTRODUCCIÓN

Los impactos ambientales de la industria provocan una incidencia directa en la población, ya sea por la emisión de partículas, gases contaminantes y residuales sólidos o líquidos que dificultan el saneamiento ambiental de los ecosistemas. En el proceso de obtención industrial de alcohol etílico por fermentación, que usa la miel final de caña de azúcar como fuente de carbono, se obtiene un residual que se conoce con el nombre de vinaza o mosto de destilería. Este es uno de los residuales orgánicos de mayor efecto contaminante sobre la flora y fauna. En la figura 1 aparece un diagrama del proceso de producción de etanol a partir de melaza de caña de azúcar (miel final), se ilustra cómo en la etapa de destilación de los fondos de las columnas destiladoras (8) se extrae un líquido residual llamado vinaza.

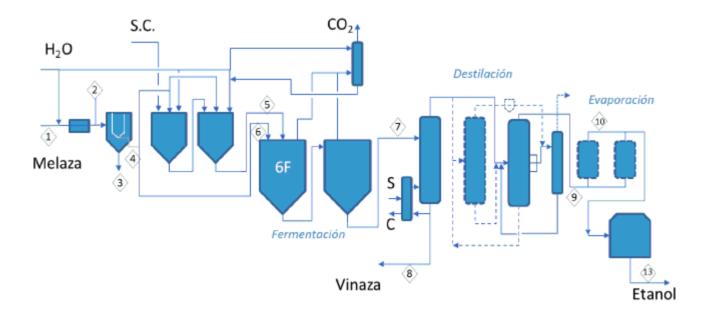


Figura 1. Proceso de producción de etanol (Espinosa y Ovando, 2014)

Dicho líquido sale del proceso como un producto de desecho. Sin embargo, por su contenido rico en sustancias orgánicas e inorgánicas de importancia económica puede aprovecharse en otros procesos industriales; esto convierte a la vinaza en un subproducto importante de la agroindustria.

Los estudios realizados sobre la vinaza han mostrado que es un residuo altamente contaminante de las aguas, ya que presenta en su composición química altos contenidos de materia orgánica, potasio y calcio; así como cantidades moderadas de nitrógeno y fósforo (Orlando y Leme, 1984). Por cada litro de etanol producido a partir de miel final se obtienen de 12 a 15 litros de vinaza como residual, con una demanda química de oxígeno (DQO) entre 60 y 70 g/L. Esto hace muy difícil su degradación y provoca serios problemas ambientales en los recursos hídricos donde se descarga (Gómez, 1987).

Como objetivo de esta investigación se realizó la caracterización de las vinazas de las destilerías Argeo Martínez y Arquímedes Colina de las provincias Guantánamo y Granma; además, se comparó con la legislación cubana vigente y con los resultados obtenidos en investigaciones de los residuales que se obtuvieron en la Destilería Hatuey.

MATERIALES Y MÉTODOS

La experiencia se realizó a escala de laboratorio en el Departamento de Química de la Facultad de Ciencias Naturales y Exactas y en el laboratorio de agua de la Empresa Geominera Oriente Elio Trincado, en el período comprendido entre enero y junio del año 2017. Además, se realizó un estudio bibliográfico acerca de las alternativas de tratamiento de la vinaza y de los resultados de evaluaciones de la vinaza de la Destilería Hatuey de Santiago de Cuba.

Caracterización de las vinazas

Las muestras se obtuvieron en las destilerías Argeo Martínez y Arquímedes Colina, en las cuales se tomó la temperatura de la vinaza a la salida del proceso de destilación. Las mismas se trasladaron a los laboratorios de la Universidad de Oriente en frascos de 5 litros, limpios y esterilizados, y se conservaron a una temperatura de 4 °C.

Para la caracterización físico-química de la vinaza de destilería se realizaron análisis característicos para este tipo de residual. Los parámetros determinados en las muestras fueron: temperatura (T), pH, conductividad eléctrica (λ), densidad, índice de refracción, % de ceniza, sólidos totales (ST), sólidos totales fijos (STF),

sólidos totales volátiles (SSV), viscosidad relativa, demanda química de oxígeno (DQO), sodio (Na⁺), potasio (K⁺), nitrógeno; además, se determinaron metales pesados. Las determinaciones de pH fueron realizadas potenciométricamente. La determinación de conductividad mediante el método conductimétrico. A través de gravimetría se determinó el porcentaje de cenizas, sólidos totales, sólidos totales fijos. El nitrógeno orgánico total se determinó por el método al formaldehído; la demanda química de oxígeno (DQO), mediante el método espectrofotométrico (Clesceri, 1989; Orozco, Pérez, González, Rodríguez y Alfayate, 2004; Skoog, Holler y Nicman, 2005; López, 1994).

Los datos fueron procesados a través del *software Microsoft Office Excel* 2003 y el Sistema Estadístico *STATGRAPHICSplus for Windows*, versión 5.1. Para cada análisis se reportaron cuatro réplicas, su valor medio (U) y coeficiente de variación C_v (%).

Usos frecuentes de la vinaza

El compostaje es una técnica centenaria que se aplica para residuos secos y fibrosos. No es aplicable a la vinaza líquida ni concentrada en sí, pero las vinazas pueden ser añadidas al proceso de compostaje de otros residuos (cocompostaje). La cachaza de los ingenios azucareros es un sustrato ideal para compostaje, que permite reducir su humedad, volumen y peso, y en consecuencia reducir sus costos de transporte y de aplicación. Por esta razón este compostaje suele justificarse económicamente con y sin adición de vinazas (Conil, 2008).

La metanización o degradación anaerobia de los efluentes es una tecnología muy eficiente para remover la carga de las vinazas. Permite remover más del 90 % de su DBO, aunque solo un 70 % de su DQO (Demanda Química de Oxígeno), pues una parte de la DQO está en forma no biodegradable; esta fracción es muy baja cuando la materia prima es jugo de caña, muy alta cuando es melaza e intermedia cuando se utilizan mieles A o B. También generar olores por escapes de biogás no captado o por descargas del efluente con biogás disuelto (Conil, 2008).

Otra posibilidad a ser considerada es la combustión de la vinaza, aprovechando su poder calorífico para la generación de energía térmica y eléctrica. Es preciso concentrar la vinaza hasta que contenga un 65 % de sólido para que adquiera un poder calorífico suficiente para su combustión. También es necesario un

combustible soporte que garantice la combustión correcta y total, al respecto ya existen experiencias con fuelóleo y gas natural (Moreno y Teixeira 2014).

A continuación se resumen las alternativas de utilización de la vinaza:

- 1. Tratamiento anaeróbico para producir biogás
- 2. Tratamiento aeróbico para la producción unicelular
 - Producción de levadura torula
 - Producción de saccharomyces
- 3. Abono orgánico compost y fertirriego
- 4. Concentración en evaporadores a múltiple efecto e incineración
- 5. Otras

Entre las alternativas industriales de tratamiento de vinazas de destilerías, la mejor solución desde el punto de vista técnico y económico es el sistema integrado por la digestión anaerobia de la materia orgánica y como consecuencia la generación de una fuente renovable de energía (biogás) y la disposición final de los efluentes líquidos y sólidos (lodos), generados en el proceso como agua de riego y enmienda orgánica respectivamente, en el cultivo de la caña de azúcar, con lo cual se cierra de esta forma el ciclo de los residuales (Chanfón Curbelo, L. Acosta, 2014).

RESULTADOS

En la Tabla 1 se presenta el comportamiento estadístico de los parámetros evaluados para las vinazas de los Complejos Agroindustriales (CAI) Argeo Martínez y Arquímedes Colina. Se realizó la comparación estadística entre los resultados obtenidos de las vinazas de las dos destilerías, se demostró que existen diferencias significativas entre ellos, para un 95 % de confianza. Estas diferencias pueden estar vinculadas a la calidad de las materias primas, cepas empleadas, diferencias en los procesos tecnológicos, entre otras.

Ciencia en su PC, №2, abril-junio, 2018. Roberto Ibarra-Camacho y Leandro León-Duharte

Tabla 1. Comportamiento estadístico de las características físico-químicas de las vinazas

Parámetros	U/M	CAI Argeo Martínez		CAI Arquímedes Colina	
1 arametros		Promedio	C _v (%)	Promedio	C _v (%)
Temperatura	°C	98.3	-	98.5	-
рН	U	3.95	0.15	4.35	0.14
Conductividad Eléctrica	ms/m	1686.53	0.66	1560.04	0.51
Densidad	g/cm ³	1.0152	0.03	1.0182	0.06
Índice de Refracción	u	1.3401	0.03	1.3416	0.03
% Cenizas	%	0.93	0.5	0.69	1.4
Sólidos Totales (ST)	mg/L	42877.5	0.5	47600.0	1.7
Sólidos Totales Fijos (STF)	mg/L	9432.5	1.04	6685.0	0.51
Sólidos Totales Volátiles (STV)	mg/L	33430.0	1.62	40 957.5	1.63
Viscosidad	сР	1.08	0.10	1.19	0.42
DQO	g/L	51.53	5.77	54.25	2.90
Nitrógeno	%	0.73	11.1	0.63	12.8

En la Tabla 2 se muestran los valores de la concentración de los metales analizados. El hierro fue el que alcanzó un mayor valor de concentración para ambas vinazas, esto puede estar asociado a los materiales de construcción de los fermentadores.

Tabla 2. Resultados de los análisis de metales en la vinaza

Metales (mg/L)	CAI Argeo Martínez	CAI Arquímedes Colina
Sodio	45.61	48.25
Potasio	67.91	69.02
Cobalto	0.045	0.063
Cobre	0.567	1.213
Hierro	33.790	33.982
Manganeso	2.232	2.174
Molibdato	0.011	0.215
Níquel	0.208	0.142
Vanadio	0.028	0.100
Cinc	0.591	0.764

En Santiago de Cuba se realizaba la producción de alcohol y aguardiente a partir de las mieles finales de caña de azúcar y el vertimiento de las vinazas se hacía en los efluentes del río Yarayó. En las evaluaciones realizadas a la vinaza de la Destilería Hatuey se demostraron las características contaminantes de la misma. En la tabla 3 se reflejan los resultados de ensayos realizados por el Instituto de Hidroeconomía del Ministerio de la Construcción en 2002.

Tabla 3. Comportamiento de las características físico-químicas de la vinaza de Destilería Hatuey

Parámetros	U/M	Destileria Hatuey
Temperatura	°C	96.2
pH	U	4.6
Conductividad Eléctrica	μs/m	9980
Densidad	g/cm ³	
Índice de Refracción	u	
% Cenizas	%	0.96
Sólidos Totales (ST)	mg/L	80900
Sólidos Totales Fijos (STF)	mg/L	9200
Sólidos Totales Volátiles (STV)	mg/L	60000
Viscosidad	сР	1.08
DQO	g/L	73.6
Nitrógeno	%	48.2
NO ₃	mg/L	2.170
NO ₂	mg/L	0.822
NH ₄	mg/L	14.200
PO ₄	mg/L	10.860

DISCUSIÓN

Comparación de las vinazas de destilería objeto de estudio con vinazas de destilerías cubanas

Como se puede observar, en la tabla 3 se muestran los rangos de valores promedios de varios parámetros analizados para este tipo de residual y se comparan con los reportados en la literatura para 12 destilerías cubanas, manteniendo siempre como característica principal que la materia prima utilizada es la miel final de caña de azúcar.

Tabla 4. Comparación de parámetros físico—químicos de varias vinazas obtenidas a partir de mieles finales de caña

Análisis	Unidad	VD1	VD2	Destilerías
				cubanas
Brix	%	5.83	6.71	7.7-10.2
pН	U	3.95	4.355	4.2-4.4
Nitrógeno Total	%	0.73	0.63	0.73-0.83
Sólidos Totales	%	4.22	4.67	7.1-9.5
Ceniza	%	0.93	0.70	1.3-2.3
DQO	g/L	51.53	54.25	35.06-71.20

Los valores reportados muestran que las dos vinazas en estudio presentan una gran variabilidad en su composición, pero se encuentran dentro de los límites reportados para este tipo de residual en nuestro país. Estos resultados pueden tener variación de acuerdo con la materia prima, las condiciones climáticas, el suelo y el proceso de elaboración del alcohol (Lezcano y Mora, 2006; Valdés, 2007).

Por lo que, de forma general, las vinazas de destilerías a partir de mieles de cañas son estables y mantienen sus características dentro de cierto rango; de ahí su importancia, ya que cualquier tratamiento o aprovechamiento de las mismas serviría para cualquiera de las 12 destilerías del país.

Comparación de los parámetros químico-físicos con las normativas vigentes

En la tabla 5 se muestran los resultados obtenidos de los parámetros de mayor interés de las vinazas estudiadas y los valores de los límites máximos permisibles (LMP) reportados por la norma cubana de vertimiento de aguas residuales a la zona costera y aguas marinas.

Tabla 5. Comparación de los parámetros químico-físicos con los límites máximos permitidos (LMP) de según la NC 521:2007 para vertimiento de residuales líquidos

Parámetros	UM	LMP*	CAI Argeo Martínez	CAI Arquímedes Colina
рН	U	5.5-9.0	3.9	4.3
Temperatura	°C	40	98.3	98.5
DQO	mg/L	190	51530	54250
Nitrógeno Total	mg/L	20	7377.4	6448.3
Cobre	mg/L	2.000	0.567	1.213
Hierro	mg/L	10.000	33.790	33.982
Níquel	mg/L	4.000	0.208	0.142
Zinc	mg/L	10.000	0.591	0.764

^{*}LMP: Límite Máximo Permisible

Todas las muestras de vinazas analizadas presentaron un pH ácido, por lo que el vertido directo de este desecho, sin control alguno, puede ocasionar el deterioro del suelo o de cuerpos receptores de agua. Esta característica de la vinaza es común en vinazas obtenidas de caña de azúcar, pH 4,2. El pH tiene un comportamiento ácido similar a los declarados en otros estudios realizados en las destilerías cubanas. Esto se debe a la acidificación del mosto con ácido sulfúrico o la presencia de ácidos orgánicos. Según la bibliografía consultada, todo residual que disminuya el pH a valores menores que 6 o lo aumente sobre 7 se considerará como perjudicial (Chanfón Curbelo, L. Acosta, 2014).

La conductividad eléctrica está entre 15 mS/cm y 17 mS/cm. Son valores de conductividad específica relativamente altos, lo que indica que la vinaza contiene una concentración relativamente alta de sales solubles, debido a la gran cantidad de minerales disueltos, fundamentalmente sodio, potasio y hierro.

Un parámetro importante para medir el grado de contaminación de un desecho es la demanda química de oxígeno (DQO). Los valores obtenidos para este parámetro para las vinazas tipo I y II fueron superiores a los permitidos para desechos líquidos vertidos directa o indirectamente a cuerpos de agua, los cuales no deben exceder los 190 mg/L. El vertido de este desecho, sin tratamiento previo, en la única fuente de agua de la zona causaría un deterioro de su calidad.

La relación STV / ST para ambas vinazas es de 0.78 y 0.86 respectivamente, lo que indica que la mayor parte de los sólidos va a estar asociada a los sólidos totales volátiles, lo cual corrobora el gran contenido de materia orgánica que posee este residual, a pesar de no haberse realizado dicho análisis(Lezcano y Mora, 2006).

El nitrógeno total incluye todos los productos naturales, como las proteínas y los péptidos, y aminoácidos, entre otros; la importancia de la determinación de este parámetro radica en la posibilidad del uso de la vinaza del cocui como materia prima en la elaboración de compost o de alimentos para animales. El valor máximo permisible de nitrógeno total para el vertido de desechos líquidos al agua, según la NC 521:2007, es 20 mg/L. El contenido de nitrógeno total para los dos tipos de vinaza analizados se encuentra por encima del LMP que establece la norma, según el cuerpo receptor; por lo que una disposición inadecuada de este desecho podría causar un gran impacto ambiental.

Entre los metales analizados resalta el hierro, cuyos valores para las dos vinazas estudiadas se encuentran por encima de los LMP establecidos en la norma. En resumen, los parámetros pH, temperatura, DQO, contenido de nitrógeno total y hierro se encuentran por encima de los LMP establecidos por la norma, lo cual indica el poder contaminante de la vinaza obtenida del proceso de destilación de alcohol.

No obstante, uno de los aspectos que más incrementa el efecto contaminante de las vinazas es precisamente los volúmenes que se generan, que incrementan la carga contaminante por día, pues no basta con el análisis de los parámetros, es necesario tener en cuenta el volumen de residual generado, aspecto que permite tener una idea más precisa del efecto contaminante del residual analizado y que se encuentra en la norma NC 521:2007.

En la tabla 6 se compara la carga contaminante de las vinazas de los Complejos Agroindustriales (CAI) Argeo Martínez y Arquímedes Colina con la NC 521:2007 en algunos aspectos.

Tabla. 6 Comparación de la carga contaminante de las vinazas evaluadas con la NC 521:2007

Contaminante	NC 521:2007	Argeo Martínez	Arquímedes Colina
рН	Menor de 5.5 o mayor de 9.0	Menor de 5.5	Menor de 5.5
Temperatura	Superior a 40°C	Superior a 40°C	Superior a 40°C
DQO (g/d)	10200	6697600	7052500
Cobre (g/d)	16	73.71	157.69
Hierro (g/d)	16	4392.7	4417.66
Níquel (g/d)	1.60	27.04	18.46
Nitrógeno Total (g/d)	850	959010	838240
Zinc (g/d)	16	76.83	99.32

En la tabla puede verse que las vinazas estudiadas tienen un poder contaminante alto no solo según los parámetros indicados en la norma, sino por todos los parámetros estudiados debido a los altos volúmenes que se generan de este residual, siendo la cantidad que se genera uno de los principales problemas.

CONCLUSIONES

A partir de las características físico-químicas de las dos vinazas estudiadas se corrobora el poder contaminante de este residual líquido, en el mismo inciden varios parámetros como pH, DQO y nitrógeno total principalmente. Se encontró que los parámetros evaluados: Temperatura, DQO, conductividad eléctrica, pH, nitrógeno total y contenido de hierro no cumplen con los límites máximos permisibles de la norma.

Las vinazas provocan impactos negativos sobre el medioambiente cuando no son tratadas o dispuestas adecuadamente. Los principales daños se evidencian en la calidad del agua, la flora y fauna de los cuerpos receptores, así como en la atmósfera y la población; sin embargo, tiene un potencial de empleo como materia prima para la producción biogás, de alimento animal, compost, mediante su valorización a través de otros procesos, así como la concentración y combustión.

REFERENCIAS BIBLIOGRÁFICAS

Chanfón Curbelo, L. Acosta (abril-junio, 2014). Alternativas de tratamiento de las vinazas de destilería. Experiencias nacionales e internacionales. *Revista Centro Azúcar*, 41.

Clesceri, L. (1989). Standars Methods for Examination of Water and Wastewater (17 edition). Washington: APHA – AWWA - WPCF.

Conil, P. (diciembre, 2008). Manejo de Vinazas: Metanización y Compostaje. Aplicaciones Industriales. *Revista Tecnicaña*, p. 26-30.

Espinosa, R. y Ovando, C. (2014). Producción de Etanol en el cultivo de la caña de azúcar en Guatemala. Artemis y Edinter. Guatemala. CENGICAÑA. p. 382-419.

Gómez, R. (1987). Completamiento de las vinazas de destilerías para su utilización más eficiente en la producción de levadura forrajera. *Revista ICIDCA*, *XXI*(3).

Lezcano, P. y Mora P. L. M. (2006). Las vinazas de destilería de alcohol. Contaminación ambiental o tratamiento para evitarlo. La Habana, Cuba: Instituto de Ciencia Animal.

López Calvet, J. (mayo, 1994). Determinación de nitrógeno por formaldehído. *Revista Técnica de Laboratorio*, *II*(191).

Moreno M. y Teixeira Coelho, S. (2014). Bionergy international, 22, 38-39.

NC 521 (2007). Vertimiento de aguas residuales a la zona costera y aguas marinas. Especificaciones. 1. Edición ICS: 13.060.30.

Orlando, F. J. y Leme, E. J. (1984). Utilização agrícola dos residuos da agroindustria canaveira. En *Simposio sobre Fertilizantes la Agricultura Brasileira*. Brasilia, Brasil.

Orozco, C., Pérez, A., González, M., Rodríguez, F. y Alfayate, J. (2004). *Contaminación ambiental: una visión desde la Química*. España: Ed. Paraninfo S. A.

Skoog, D. A., Holler, F.G. y Nicman (2005). *Principios del Análisis Instrumental* (5ta Edición). USA: Ed. McGraw Hill.

Valdés, A. (junio, 2007). Empleo de la biomasa azucarera como fuente de alimento, energía, derivados y su relación con la preservación del medio ambiente (BAZDREAM). Pirassununga.

Recibido: octubre de 2017 Aprobado: febrero de 2018