

Ciencia en su PC

ISSN: 1027-2887

manuela@megacen.ciges.inf.cu

Centro de Información y Gestión Tecnológica de Santiago de Cuba

Cuba

Ferrera-Toujague, Hazel de la Caridad; Candebat-Sánchez, Darío; González-Díaz, Liliana COMPORTAMIENTO ESTRUCTURAL ANTE ACCIONES SÍSMICAS DE UNA NAVE INDUSTRIAL DE ACERO EN SANTIAGO DE CUBA Ciencia en su PC, vol. 1, núm. 4, 2018, Octubre-Diciembre 2019, pp. 1-10 Centro de Información y Gestión Tecnológica de Santiago de Cuba Cuba

Disponible en: https://www.redalyc.org/articulo.oa?id=181358509001

Número completo

Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

COMPORTAMIENTO ESTRUCTURAL ANTE ACCIONES SÍSMICAS DE UNA NAVE INDUSTRIAL DE ACERO EN SANTIAGO DE CUBA

SEISMIC STRUCTURAL BEHAVIOR OF AN INDUSTRIAL STEEL BUILDING IN SANTIAGO DE CUBA

Autores:

Hazel de la Caridad Ferrera-Toujague, hazel@santiago.geocuba.cu. Grupo Empresarial Geocuba. División Oriente-Sur. Santiago de Cuba, Cuba. Darío Candebat-Sánchez, dario@cenais.cu. Centro Nacional de Investigaciones Sismológica (Cenais). Santiago de Cuba, Cuba. Liliana González-Díaz, liliana@uo.edu.cu. Universidad de Oriente. Santiago de Cuba, Cuba.

RESUMEN

Se presentan los resultados del análisis del comportamiento de edificaciones industriales de acero, expuestas a cargas sísmicas. La estructura está localizada en la zona industrial de Santiago de Cuba (zona 5 de acuerdo con los criterios de la Norma Cubana NC 46: 2017). El estudio muestra una evaluación cualitativa del estado técnico de la edificación, así como un análisis de los aspectos relacionados con su estabilidad, conjuntamente con los aspectos que influyen en su respuesta dinámica. Asimismo, se presenta una evaluación cuantitativa del comportamiento global de la estructura, el cual parte de la elaboración de un modelo matemático que permite obtener parámetros globales, tales como el período fundamental de vibración, los desplazamientos máximos y la correlación entre los modos significativos. Palabras clave: comportamiento, cargas sísmicas, período, evaluación.

ABSTRACT

The results concerning the dynamic behavior of industrial steel building, exposed to seismic loads, is presented. This structure is located in the industrial area of Santiago de Cuba city (zone 5 according to the criteria of Cuban seismic code, NC 46, 2017). A qualitative evaluation of the technical condition of the building, as well as, the analysis of aspects related to its stability and dynamic response, is performed. Finally results associated to the quantitative evaluation of the global behavior of the structure are obtained, supporting in a mathematical model performed with structural analysis software (SAP 2000 v. 19) that allows getting the mains global parameters, such as, periods, displacements, correlations between modes, among other. **Key words**: behavior, seismic loads, period, evaluation.

INTRODUCCIÓN

Para la evaluación de la seguridad sísmica estructural de edificaciones individuales es necesario contar con estudios detallados que permitan conocer la susceptibilidad de las mismas a sufrir un determinado nivel de daño, para un movimiento especificado. En dicho contexto se analiza la seguridad sísmica estructural que presenta una nave industrial metálica de tres luces (Ver figura 1), ubicada en la provincia Santiago de Cuba (zona 5, según NC 46, 2017, Cuba. Comité Estatal de Normalización).

Figura 1. Vista parcial de la edificación objeto de estudio

La edificación que se analiza es una nave industrial metálica de tres luces de 18 m cada una, conformada por dos módulos: uno de 9 intercolumnios y otro de 11 m, conectados mediante puente grúa. Dicha estructura cuenta, además, con monitores y aleros que se comportan dinámicamente como apéndices; los muros exteriores, para el cierre de la nave, son del tipo prefabricados (losas cajón).

MATERIALES Y MÉTODOS

El análisis de la seguridad sísmica de la edificación objeto de estudio se realiza a partir de la revisión del proyecto técnico ejecutivo y de la hipótesis de que el nivel de seguridad sísmica de dicha edificación se encuentra condicionado, fundamentalmente, por estos aspectos:

- La fecha de diseño y construcción de la edificación.
- La tipología estructural.
- Detalles constructivos del sistema estructural utilizado.
- Capacidad resistente de los elementos estructurales del sistema ante la acción de

las fuerzas sísmicas.

- Tipo de suelo del área de emplazamiento.
- Ocurrencia de fenómenos inducidos: licuación del suelo y deslizamiento del terreno.
- Nivel de peligrosidad sísmica del área.

Cada uno de estos aspectos tiene una influencia decisiva en el comportamiento global de la estructura, por lo que se analizan en detalle.

Para el análisis estructural se utiliza el *software* de análisis SAP 2000 v. 19, el cual permite obtener resultados de la repuesta local de los elementos que soportan las cargas sísmicas y de la repuesta global, relacionados con su rigidez (período de vibración fundamental, desplazamientos y derivas) y con su resistencia (capacidad resistente ante las solicitaciones máximas generadas por el sismo de diseño, con 475 años de período de retorno, para un 10 % de probabilidad de excedencia).

RESULTADOS

Evaluación de la seguridad asociada a la tipología y detalles constructivos

Las estructuras de las naves industriales metálicas son proyectadas y construidas para soportar y resistir las solicitaciones de fuerzas axiales, momentos y cortantes; los cuales son producidos por el peso propio de la estructura, el uso que se hace de ella y las fuerzas de la naturaleza (viento, sismo, lluvia, etc.). En estas estructuras para garantizar la rigidez y resistencia necesarias para soportar las fuerzas producidas por el viento, el sismo, la grúa viajera, entre otras, se disponen de arriostramientos, tanto en el techo como en las fachadas, por lo general con perfiles L, dispuestos habitualmente en cruces; los cuales son los encargados de canalizar y transmitir las solicitaciones a los cimientos de la estructura. Es oportuno mencionar que algunas normas extranjeras contemplan el uso de las láminas de la cubierta como diafragmas que contribuyen a la resistencia y rigidez lateral de las naves.

Análisis de la estabilidad global de la estructura

El carácter reversible de las acciones sísmicas exige la disposición de arriostramientos diagonales o excéntricos. El uso de los arriostramientos

demanda, a su vez, ciertos cuidados que no resulten contraproducentes, como los que se enumeran a continuación.

- 1. Debe existir completa continuidad en elevación, para no proporcionar mecanismos de fallas frágiles por la presencia de irregularidades estructurales, como las de entrepisos blandos (poca rigidez) y de entrepiso débil (poca resistencia). En el caso particular de las naves industriales, debe existir continuidad entre los arriostramientos del techo y el de las fachadas.
- 2. A menos que se estudie la torsión en planta y se tomen precauciones de proyecto y construcción, es preferible que los arriostres se dispongan simétricamente (simetría de rigideces y ubicación) en la planta.
- 3. Se debe tener presente que los arriostramientos inciden en el período natural de la estructura, y por consiguiente en la respuesta dinámica del sistema estructural.
- 4. Los anclajes de los arriostramientos son los sitios de descarga de las solicitaciones de la estructura a los cimientos y el suelo que los soporta.
- 5. Cuando por algún motivo no pueda darse continuidad en fachada a un arriostramiento del techo, debe dotarse de suficiente resistencia y estabilidad lateral a los miembros intermedios, que transfieren las reacciones a los arriostramientos del techo.

Estado actual de la edificación

En un análisis preliminar realizado a dicha edificación se detectaron las siguientes irregularidades:

- 1. Altos niveles de corrosión y oxidación en los pernos de la base de las columnas.
- 2. Pernos sin tuercas y en mal estado.
- 3. Ausencia e insuficiencia de arriostres en cubierta y laterales.
- Ausencia de tranques laterales.
- Falta de continuidad en el sistema de arriostres.
- Falta de agarre mecánico entre elementos estructurales.
- 7. Pedestales en mal estado técnico, con pérdida de sección transversal.
- 8. Elementos de fachada en mal estado.
- 9. Presencia de monitores sin arriostrar.

Evaluación de la seguridad sísmica estructural

El análisis de la respuesta de construcciones sometidas a las acciones sísmicas en particular requiere una evaluación de su comportamiento dinámico. Esta cuestión se torna, por demás, compleja en los casos reales, ya que, por un lado, se tiene la realidad de la construcción misma, que pocas veces admite la representación con modelos teóricos suficientemente sencillos como para que el análisis sea posible con los medios disponibles; y por el otro, se tiene la complejidad de la excitación que en el caso de los sismos es de características caóticas, tanto en lo que se refiere a la evolución de la acción en el tiempo, como en lo que se refiere a la intensidad máxima que la misma puede tener y que tampoco admite esquematizaciones teóricas sencillas.

Para determinar el nivel de seguridad ante las acciones sísmicas de diseño que presenta la edificación objeto de estudio, se elabora un modelo de cálculo matemático (ver figura 2), utilizando como herramienta el *software* profesional SAP2000, en el que la carga sísmica se analiza de acuerdo con las consideraciones establecidas en el código de diseño NC 46: 2017.

Luego, el método de cálculo utilizado es el de Análisis Modal simplificado como método del Espectro de Respuesta, mediante el empleo como fórmula de superposición de la Combinación Cuadrática Completa (CQC), que resuelve el problema de los valores propios por el método de los vectores de Ritz, considerando en el análisis todos aquellos modos representativos de la respuesta estructural.

En el análisis se considera un modelo espacial de la estructura, que toma en cuenta las deformaciones existentes en cada uno de los elementos componentes de la misma. Para la modelación de las acciones sísmicas se considera un modelo de masas discretas, simulando el efecto de distribución de estas en cada uno de los pisos, con tres grados de libertad dinámicos (traslacionales). No se considera en el análisis estructural los efectos de segundo orden por geometría.

Figura 2. Modelo geométrico del edificio

Para la construcción del espectro de respuesta de aceleraciones se utilizan los datos mostrados en la Tabla 1.

Tabla 1. Datos de peligro sísmico que caracterizan al municipio Santiago de Cuba

$S_0(g)$	S _s (g)	S₁(g)	T _L (seg)
0.513	1.035	0.428	6.00

El espectro de diseño de aceleraciones obtenido, para un suelo tipo D (establecido para la zona de emplazamiento), se muestra en la figura 3.

Figura 3. Espectro de respuesta, terremoto de diseño, 475 años de período de retorno y 10 % de probabilidad de excedencia. Perfil de suelo Tipo D. Santiago de Cuba

Para la evaluación del comportamiento dinámico de la estructura se han tenido en cuenta las siguientes hipótesis de análisis.

- 1. El sistema de cubierta se considera flexible con poca rigidez en su plano.
- 2. El material posee un comportamiento elástico lineal.
- 3. El edificio puede ser reducido a una barra ficticia con rigideces equivalentes en la dirección de los desplazamientos considerados.
- 4. La respuesta del edificio ante el sismo es oscilatoria.
- 5. El grado de amortiguamiento de la estructura es bajo, de modo que se desprecia en el cálculo de los valores propios.
- 6. Se considera la base de suelo soportante como rígida.

Parámetros de control

Para el análisis estructural de la edificación se ha tenido en cuenta una serie de parámetros de control, que ofrecen el testimonio acerca del comportamiento dinámico de la estructura analizada. Entre dichos parámetros se encuentran: períodos correspondientes a las formas propias, factores de participación modal de las masas, coeficientes sísmicos correspondientes a las direcciones de acción sísmica, reacciones modales en la base, desplazamientos laterales en ambas direcciones, influencia de los efectos P-Delta y solicitaciones extremas. A continuación, se comenta cómo se comportan algunos de estos parámetros.

Períodos correspondientes a las formas propias

Según NC 046:2017, el período fundamental de vibración de la edificación se estima en forma empírica y genérica de acuerdo con la siguiente formulación.

$$Ta = C_T h_n^x = 0.049 \cdot 10.68^{0.75} = 0.289$$
 (1)

En la edificación que se analiza los períodos fundamentales de vibración, para ambas direcciones, se manifiestan en los modos 22 y 28 (ver tabla 2), ya que son los modos donde se observan las mayores contribuciones al cortante basal (ver tabla 2). Este resultado es consecuencia de la existencia de apéndices (monitor, puente grúa) que manifiestan movimientos propios e independientes del cuerpo principal de la estructura y que definen los valores de período en los primeros

modos resultantes del análisis modal espectral. Luego el período fundamental de vibración de la edificación puede asumirse que ocurre en el modo 22.

DISCUSIÓN

El período alcanzado en dicho modo supera significativamente el período esperado (0.289<0.757). Este comportamiento es atribuible a los problemas de estabilidad que la estructura presenta, debido en lo fundamental al incorrecto arriostramiento de la misma.

Tabla 2. Períodos y reacciones modales en la base

Caso de	Tipo	Número	Período
salida		de paso	(seg)
MODAL	Modo	22	0.757669
MODAL	Modo	28	0.514273

Modo	Caso	F1	F2
22	Ex	579.09	0.316
28	Ey	-23.74	768.22

Participación modal de las masas

Se definen 40 modos para alcanzar más del 90 % de participación de las masas en el comportamiento dinámico de la edificación (Ver tabla 3).

La selección del número de modos participativos se basa en los siguientes criterios:

- 1. La suma de las masas modales efectivas para los modos que se toman en cuenta equivale como mínimo al 90 % de la masa total de la estructura.
- 2. Todos los modos con masas modales efectivas mayores que el 5 % de la masa total son considerados.

Tabla 3. Proporciones de participación de carga modal

Caso de salida	Elemento	Estático	Dinámico
MODAL	UX	100 %	96.7504 %
MODAL	UY	100 %	94.3004 %

Correlaciones modales

Al analizar las correlaciones entre los modos 22 y 28 no se observa correlación entre los mismos, dado por el hecho de que a valores significativos de masas en

Hazel de la Caridad Ferrera-Toujague, Darío Candebat-Sánchez y Liliana González-Díaz

una dirección les corresponden pequeños valores de masas en la otra dirección.

Tabla 4. Participación modal de las masas

Tipo de paso	Número de paso	UX	UY
Modo	22	0.2713	8.083E-08
Modo	28	0.0003	0.31609

Desplazamientos

Al analizar los desplazamientos, se significa que los desplazamientos relativos, evaluados desde la base de la columna hasta su extremo superior, se encuentran en un rango aceptable y dentro de los valores permitidos por el código de diseño; no obstante, se aprecia que los desplazamientos máximos que se producen en el tope de la estructura, a la altura del monitor, son altos. Esta condición obedece a la falta de rigidez del sistema de cubierta. En la Tabla 5 se muestran los valores de desplazamientos máximos determinados en el tope de la estructura.

Tabla 5. Valores de desplazamientos máximos en el tope de la estructura

Nivel	Desplazamientos máximos (m)				
Tuvoi	Dirección longitudinal	Permisible	Dirección transversal	Permisible	
Monitor	0.99	0.0199	0.036	0.0199	
Cumbrera	0.49	0.0178	0.034	0.0178	

Solicitaciones máximas

Para el análisis de la influencia que ejercen los valores de solicitaciones máximas en la seguridad sísmica estructural, se revisan aquellos elementos comprometidos con la respuesta de la estructura ante las acciones sísmicas, tales como: columnas, vigas de cubierta, arriostres, tranques, etc. A continuación, se muestran los resultados de la revisión estructural de los elementos principales. Ver Tabla 6.

Tabla 6. Resumen de los elementos que fallan ante las acciones sísmicas

Elementos	Cantidad	Fallan	%
Columnas	92	32	3.5
Vigas de cubierta	132	14	10.61
Purling	1104	13	1.18
Paneles de cierre	184	0	0.0
Ariostres laterales	12	7	58.33
Tranques laterales	159	0	0.0
Total	1683	66	3.92

CONCLUSIONES

- La edificación que se analiza no muestra un buen comportamiento, teniendo en cuenta los problemas observados en cuanto a períodos, desplazamientos y cantidad de elementos que fallan.
- 2. Los valores de períodos obtenidos son superiores a los establecidos por la norma cubana vigente para su tipología estructural. Esto se debe a la ausencia de elementos rigidizadores verticales en el sentido longitudinal de la edificación, tanto en las paredes como en la cubierta.
- Al evaluar la respuesta dinámica de la edificación en términos de períodos, se observa la influencia de los apéndices (aleros, monitores y puente grúa) en el nivel de respuesta ante carga sísmica.
- 4. El estado técnico actual que presenta la edificación influye considerablemente en el nivel de respuesta de la misma ante la carga sísmica.
- 5. No se aprecia influencia de los efectos de segundo orden P- Δ .

REFERENCIAS BIBLIOGRÁFICAS

Cuba. Comité Estatal de Normalización (2017). Norma Cubana NC 46-2017: Construcciones Sismo-resistentes. Requisitos básicos para el diseño y construcción. La Habana: autor.

Recibido: junio de 2018

Aprobado: septiembre de 2018