

Revista CENIC Ciencias Químicas

ISSN: 1015-8553 ISSN: 2221-2442

Centro Nacional de Investigaciones Científicas

Pino, Jorge A.; Pérez-Santana, Danae
Characterisation of volatile compounds of cocoa husk using headspace solid-phase microextraction and gas chromatography-olfactometry analysis
Revista CENIC Ciencias Químicas, vol. 51, no. 2, 2020, July-December, pp. 224-237
Centro Nacional de Investigaciones Científicas

Available in: https://www.redalyc.org/articulo.oa?id=181676102005



Complete issue

More information about this article

Journal's webpage in redalyc.org



Scientific Information System Redalyc

Network of Scientific Journals from Latin America and the Caribbean, Spain and Portugal

Project academic non-profit, developed under the open access initiative

#### ARTICULO INVESTIGATIVO

# CHARACTERISATION OF VOLATILE COMPOUNDS OF COCOA HUSK USING HEADSPACE SOLID-PHASE MICROEXTRACTION AND GAS CHROMATOGRAPHY-OLFACTOMETRY ANALYSIS

Caracterización de los compuestos volátiles de la cascarilla de cacao mediante microextracción en fase solida del espacio de cabeza y análisis por cromatografía de gases-olfatometría

Jorge A. Pino<sup>a-b</sup> y Danae Pérez-Santana<sup>b</sup>

<sup>a</sup> Food Industry Research Institute. Carretera al Guatao km 3½, Havana, P.O.B. 19200, Cuba. jpino@iiia.edu.cu

**Recibido**: 03 de agosto de 2020. **Aceptado**: 04 de diciembre de 2020.

#### **ABSTRACT**

Cocoa seeds (Theobroma cacao L.) are known for their variety of products exhibiting pleasant sensory properties. Cocoa husk is a residue from the cocoa industry which can be used as flavouring material. A headspace solid-phase microextraction (HS-SPME) procedure followed by gas chromatography-olfactometry (GC-O) analysis is proposed to determine aroma-active compounds in cocoa husk. To determine optimal extraction conditions of the HS-SPME technique: fiber type (100 µm polydimethylsiloxane, 85 µm Carboxen/polydimethylsiloxane, 65 µm polydimethylsiloxane/divinylbenzene and 50/30 µm divinylbenzene/Carboxen/polydimethylsiloxane), extraction time (15, 20 and 25 min) and temperature (40, 50 and 60 °C) were evaluated using surface response design. Response variables were global odour from the fibers and total chromatographic areas. GC-O in combination with HS-SPME using divinylbenzene/Carboxen/polydimethylsiloxane fiber operated at 60 °C for 22 min could isolate most of the volatile compounds from cocoa husk. A total of 169 of them were identified, including 28 acids, 23 esters, 22 pyrazines, 16 terpenes, 12 ketones, 8 alcohols, 3 aldehydes, among others. Among them, the most odour-active compounds were acetic acid, 2,3-diethyl-5-methylpyrazine, 2-ethyl-3,5dimethylpyrazine, 3-methylbutanal, phenylacetaldehyde, 3,5-diethyl-2-methylpyrazine, 4-hidroxy-2,5-dimethyl-3(2H)furanone, 3-methylbutanoic acid, 2-ethyl-5-methylpyrazine, 2,6-dimethylpyrazine, dimethyl trisulfide, 2,3,5,6tetramethylpyrazine, 2,3,5-trimethylpyrazine, 2-methylbutanal, 2-methylpyrazine, 2-phenylacetic acid, linalool, butanoic acid, 2-methylbutanoic acid, 2,5-dimethylpyrazine and 2-phenylethyl acetate. The present method may be applied as a quality control tool for industrial laboratories.

Keywords: cocoa husk; aroma-active compounds; HS-SPME; GC-O.

#### **RESUMEN**

Las semillas del cacao (Theobroma cacao L.) son conocidas por su variedad de productos que exhiben propiedades sensoriales placenteras. La cascarilla de cacao es un residuo de la industria del cacao que puede ser usado como un material saborizante. En este trabajo se propone un procedimiento basado en la microextracción en fase solida del espacio de cabeza (HS-SPME) seguido del análisis gas cromatográfico-olfatometría (GC-O) para determinar los compuestos activos del aroma en la cascarilla de cacao. Para determinar las condiciones de extracción óptimas por la técnica de HS-SPME, se evaluaron: tipo de fibra (100 μm polidimetilsiloxano, 85 μm Carboxen/polidimetilsiloxano, 65 μm polidimetilsiloxano/divinilbenceno y 50/30 μm divinilbenceno/Carboxen/polidimetilsiloxano), tiempo de extracción (15, 20 y 25 min) y temperatura (40, 50 y 60 °C), con ayuda del diseño de superficie de respuesta. Las variables de respuesta fueron el olor global desprendido de las fibras y las áreas cromatográficas totales. La GC-O combinada con la HS-SPME usando la fibra de divinilbenceno/Carboxen/polidimetilsiloxano operada a 60 °C por 22 min pudo aislar la mayoría de los compuestos volátiles de la cascarilla de cacao. Un total de 169 de ellos fueron identificados, que incluyeron 28 ácidos, 23 ésteres, 22 pirazinas, 16 terpenos, 12 cetonas, 8 alcoholes, 3 aldehídos, entre otros. Entre ellos, los compuestos más activos del aroma fueron ácido acético, 2,3-dietil-5-metilpirazina, 2-etil-3,5-dimetilpirazina, 3-metilbutanal, fenilacetaldehído, 3,5-dietil-2metilpirazina, 4-hidroxi-2,5-dimetil-3(2H)-furanona, ácido 3-metilbutanoico, 2-etil-5-metilpirazina, 2,6-dimetilpirazina, trisulfuro de dimetilo, 2,3,5,6-tetrametilpirazina, 2,3,5-trimetilpirazina, 2-metilbutanal, 2-metilpirazina, ácido 2-fenilacético, linalol, ácido butanoico, ácido 2-metilbutanoico, 2,5-dimetilpirazina y acetato de 2-feniletilo. El presente método puede ser aplicado como una herramienta para el control de calidad en los laboratorios de la industria.

Palabras clave: cascarilla de cacao; compuestos activos del aroma; HS-SPME; GC-O.

<sup>&</sup>lt;sup>b</sup> Pharmacy and Food Institute, University of Havana. Calle 222 No. 2317, Havana, P.O.B. 13600, Cuba

## INTRODUCCIÓN

Chocolate is amongst the most popular favour worldwide and it is prepared by different technologies with cocoa products as main raw material mixed with other ingredients. Therefore, the flavour of cocoa products (cocoa powder, cocoa butter or cocoa liquor) is one of the most important organoleptic attribute which impacts its quality. The pleasant flavour of cocoa is mainly the result of bean genotype, geographical origin, and post-harvest treatments (fermentation and drying), roasting and storage (Afoakwa *et al.*, 2008; Kongor *et al.*, 2016).

Cocoa processing manufacturing is an important industry producing cocoa products and chocolate, but which also generate great amounts of wastes (Afoakwa, 2016). Some of these residues could provide other innovative by-products attractive to the food industry, and such is the case of cocoa husk, which can be used to yield high-value-added products as a source of valuable natural substances due the presence of polyphenols with antioxidant activity and theobromine with many stimulatory effects, and dietary fibers (Nguyen & Nguyen, 2017). Considering its intense cocoa flavour, another interesting probable use is as flavouring material.

Headspace solid-phase microextraction (HS-SPME) has been widely used to analyse the composition of food flavours (Jeleń *et al.*, 2012; Souza-Silva *et al.*, 2015). HS-SPME is a solventless technique, with simplicity and effectiveness in rapid sampling, as well as high sensitivity and reproducibility, therefore simplifying and speeding up sample preparation and analysis standardization. HS-SPME is a valuable tool for preparing samples for gas chromatography–olfactometry (GC-O) analysis, which is a procedure for the detection of aroma-active compounds in foods (Feng *et al.*, 2016).

HS-SPME has been applied to evaluate the volatile compounds from several cocoa products and chocolate, such as cocoa mass (de Brito *et al.*, 2002), cocoa powders and chocolate (Ducki *et al.*, 2008), dark chocolate (Afoakwa *et al.*, 2009), cocoa liquors (Pini *et al.*, 2004; Di Carro *et al.*, 2015), cocoa beans (Rodriguez-Campos et al., 2011, 2012; Tran et al., 2015), cocoa products and chocolate (Ascrizzi *et al.*, 2017), and microencapsulated cocoa liquor (Sanchez-Reinoso *et al.*, 2017). In some of those studies the isolation conditions were optimised because difference in the matrix of the samples generally influences the composition of the headspace, but in those reports (de Brito *et al.*, 2002; Pini *et al.*, 2004; Ducki *et al.*, 2008; Rodriguez-Campos *et al.*, 2012) the optimal conditions were selected bearing in mind only the highest number and content of volatile compounds without considering the sensory response of the HS-SPME isolated fraction.

The aim of the present research was to investigate the typical volatile compounds found in cocoa husk and their contribution to the aroma of this by-product using HS-SPME and GC-O analysis. This investigation optimised the analytical conditions, so that they can be reproduced in other researches and for quality control.

#### **MATERIALS AND METHODS**

## Materials and sample

The SPME holder for manual sampling and fibers used were purchased from Supelco (Bellefonte, PA, USA). Fibers tested were 100  $\mu$ m polydimethylsiloxane (PDMS), 85  $\mu$ m

Carboxen/polydimethylsiloxane (CAR/PDMS), 65 µm polydimethylsiloxane/divinylbenzene (PDMS/DVB) and 50/30 µm divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS).

A representative sample of cocoa husk (30 kg) was obtained from the major Cuban company Derivados del Cacao Baracoa (Guantánamo, Cuba). Cocoa beans were roasted in the proper industry by a progressive heating until 150 °C was reached (total roasting process time 20 min). The raw material was ground and sieved to a finely powder with a mean diameter of  $550 \pm 21$  µm. The ground material was packed in 1-kg portions in polyethylene bags and stored at 25 °C until analysis.

# Headspace solid-phase microextraction procedure

Extractions were performed in 8-mL vial PTFE/silicone septa vials (Supelco, Bellefonte, PA, USA) with 0.2 g of ground sample conditioned for 10 min at the selected temperature. The fiber was then exposed to the headspace for the selected time. To determine optimal extraction conditions of the HS-SPME technique: fiber type, extraction time and temperature were evaluated. Four fibers; extraction time (15, 20 and 25 min) and temperature (40, 50 and 60 °C) were tested. For the selection of the fiber, some initial conditions were fixed: 10 min pre-extraction and 20 min extraction at 60 °C. All analyses were made in triplicate for each sample.

#### Gas chromatography-mass spectrometry analysis

Gas chromatography-mass spectrometry analysis was carried out using a QP-2010 Ultra (Shimadzu, Japan) equipped with a FID and DB-5 ms (30 m  $\times$  0.25 mm i.d., 0.25  $\mu$ m film thickness; J&W Scientific, Folsom, CA, USA) capillary column. Oven temperature was held at 50 °C for 2 min, increased at 4 °C/min up to 230 °C and held for 10 min. Carrier gas was helium at 1 mL/min. Thermal desorption was carried out at 250 °C for PDMS, PDMS/DVB and DVB/CAR/PDMS fibers, and at 280 °C for CAR/ PDMS fiber in splitless mode for 2 min, using and inlet liner of 0.75  $\mu$ m i.d. The mass spectrometer was setup with the source at 250 °C, electronic ionization energy 70 eV and the mass range from 35 to 350 u.

Compounds were preliminarily identified using NIST05, Wiley 7, NBS 75k, ADAMS 2001 and in-house Flavourlib mass spectra databases, then the identities of most were confirmed by comparison of their linear retention indices, relative to  $C_6$ – $C_{28}$  n-alkanes, with those of reference standards or with reported data in NISTwebbook (2020). Relative concentration was calculated based on the area of the corresponding GC peak. Each measurement was conducted in triplicate.

## Direct SPME-Gas chromatography-Olfactometry

SPME-GC-O was performed following the methodology described earlier (Pino & Roncal, 2016). A HP-6890 (Hewlett-Packard Co., Palo Alto, CA, USA) was used. The injector was connected via a deactivated fused silica capillary (25 cm × 0.25 mm) to a sniffing port consisted of a cylindrically shaped aluminium device with a bevelled top and a central drill hole housing the capillary. The oven was maintained at 250 °C. Because no chromatographic separation was carried out by the short capillary, volatile compounds arrived simultaneously at the sniffing port. Three trained sniffers perceived and evaluated the resulting global odour. Sniffers were asked to smell first the ground cocoa husk (1 g) contained in a plastic cup sealed

with a pierced cap at 25°C and memorise the odour. Then they evaluated with the direct GC-O device the different SPME extracted samples, rating their similarity to the reference using a 10-cm line scale ranging from 0 (close to the reference) to 10 (far from the reference). Panelists had to smell the reference before each sample evaluation. All analyses were replicated three times.

## Gas chromatography-olfactometry analysis

Gas chromatography analysis was performed in a HP-6890 (Hewlett-Packard Co., Palo Alto, CA, USA) fitted with the same capillary column and GC setup used in GC-MS. The end of the capillary column was connected to a deactivated Y-shaped glass splitter dividing the effluent into two equal parts, which were transferred via two deactivated fused silica capillaries (25 cm × 0.25 mm) to a sniffing port and an FID, respectively. Two trained sniffers (replaced at 30 min intervals to avoid fatigue) evaluated the effluents.

An approach of the analysis extract dilution analysis (AEDA) developed for GC-O analysis of roasted pistachios to estimate the odour contribution of the volatile compounds was applied in the present study (Aceña *et al.*, 2011). A series of sequentially reduced samples of cocoa husk (0.2–0.0016 g, each trial half the weight of the preceding trial) were subjected to SPME–GC–O. To these amounts were assigned FD factors of 2, 4, 8, 16, 32, 64, and 128. For each analysis, panelists recorded the detection time and gave an odour description until no odours were perceived in the GC–O effluent. The last dilution step where an odourant was detected was its flavour dilution (FD) factor. To check the linear recovery of the procedure previously described, the total peak area of the GC analyses of the initial sample and the successively reduced samples was measured and correlated with the proper sample reduction.

## Statistical analysis

Results for fiber selection were processed by one-way ANOVA and Duncan's multiple range test.

The optimisation of the HS-SPME procedure was evaluated by response surface methodology. The response evaluated during the experiments was the total peak area from the volatile compounds by the GC-FID analysis. The experimental factors extraction time and temperature were evaluated by a 2-factor-3-level design with four replicates at the centre point was selected using Design-Expert 8.07 (Stat-Ease Inc., Minneapolis, MN). The second-order polynomial models were assessed by the analysis of variance, determination coefficients and test for the lack of fit. Numeric optimisation was made to find a stationary point set as maximum total peak area.

#### **RESULTS AND DISCUSSION**

#### **Selection of fiber coatings**

Different types of HS-SPME fibers were compared for the extraction of the volatile compounds from cocoa husk: PDMS, CAR/PDMS, DVB/CAR/PDMS, and PDMS/DVB. In general, GC-MS analyses showed that more than 200 volatile compounds were isolated by the four fibers. The extracted components with LRI from less than 700 (LRI = 645 for acetic acid) to almost 2200 (LRI = 2197 for ethyl octadecenoate). A total of 169 of them were

identified (Table 1), including 28 acids, 23 esters, 22 pyrazines, 16 terpenes, 12 ketones, 8 alcohols, 3 aldehydes, among others. These volatile compounds have been reported in previous studies related to cocoa products (Counet *et al.*, 2002; Pini *et al.*, 2004; Serra-Bonvehí, 2005; Frauendorfer & Schieberle, 2006; Krings *et al.*, 2006; Ducki *et al.*, 2008; Rodriguez-Campos *et al.*, 2011, 2012; Tran *et al.*, 2015; Di Carro *et al.*, 2015; Sanchez-Reinoso *et al.*, 2017; Ascrizzi *et al.*, 2017).

The chromatographic areas of several constituents grouped according to their chemical nature (Table 2) clearly indicate that the apolar PDMS fiber had the lowest affinity whereas the DVB/CAR/PDMS fiber had the highest affinity for the volatile compounds from cocoa husk. The dual-coated fiber only was overcome by the CAR/PDMS fiber in the extraction of acids and terpenes; however, it had the highest extraction of pyrazines, aldehydes and ketones, which has been related to chocolate and cocoa odours (Counet *et al.*, 2002; Frauendorfer & Schieberle, 2006; Krings *et al.*, 2006). Nevertheless, considering that this study was to develop a procedure based on the use of HS-SPME-GC-O to analyse the volatile compounds from cocoa husk, it is important to evaluate the global odour of the extracts at the sniffing port. The similarity scaling resulted for the four SPME global odours with respect to the reference sample were DVB/CAR/PDMS (1.0  $\pm$  0.3), PDMS/DVB (3.3  $\pm$  0.2), CAR/PDMS (6.2  $\pm$  0.3), and PDMS (8.3  $\pm$  0.4). Therefore, the DVB/CAR/PDMS fiber was selected to characterize the volatile compounds from cocoa husk based on the use of SPME-GC-O.

# Selection of temperature and extraction time

The experimental factors extraction time and temperature were evaluated by response surface methodology considering total peak area as the response, which is one of the most useful parameters for the optimisation of the HS-SPME conditions (Table 3). The regression model with coded values for the variables is given by the following equation:

$$Y = 2.42 \times 10^5 + 1.32 \times 10^5 A + 1.29 \times 10^4 B + 4.93 \times 10^3 AB + 7.86 \times 10^4 A^2 + 3.98 \times 10^3 B^2$$

where Y is the total peak area, A is the coded temperature and B is the coded extraction time.

The *F*-value was highly significant (p  $\leq$  0.001) and the lack of fit *F*-values was not significant, whereas the determination coefficient (R<sup>2</sup>) was 0.99. Therefore, the fitted model was suitable to assess the response variables as function of the selected factors.

Both factors were significant and their positive values indicate that by increasing them, the total peak area increased too. Higher extraction temperatures were not considered because Pini *et al.* (2004) found that for temperatures higher than 60 °C, Maillard reactions are likely to occur in cocoa samples. From the 15 predicted solutions, the optimal values for temperature and extraction time were 60 °C and 22 min, respectively, were selected. At this point, the desirability function hits the maximum value of 0.99 and the highest total peak area was obtained. Therefore, the selected conditions were: DVB/CAR/PDMS fiber, 0.2 g ground cocoa husk, 10 min pre-extraction, extraction at 60 °C for 22 min, and GC desorption at 250 °C in splitless mode for 2 min.

Other reported optimum HS-SPME conditions were extraction at 60 °C and 45 min for cocoa mass (de Brito et al., 2002) and cocoa liquors (Pini et al., 2004), 60 °C and 15 min for cocoa and chocolate powders (Ducki et al., 2008), and 60 °C and 30 min for cocoa beans

(Rodriguez-Campos *et al.*, 2012). These differences in extraction time should be explained considering the different type of matrix analysed in each study. Thus, the high fat content in samples like cocoa mass and liquor causes a low release of volatile compounds affecting their extraction (Ducki *et al.*, 2008).

## GC-O analysis

With the SPME technique, no physical extract is obtained contrary to other conventional techniques and therefore, the usual AEDA cannot be practical. However, the AEDA approach based of the analysis of sequentially reduced samples from the initial sample could be a valuable tool for ranking aroma-active compounds according to their relative odour potency. The linear recovery of the volatile compounds was confirmed via correlation of the total peak area of the GC analyses of the initial sample and the successively reduced samples with the ratio 1/FD factor. The determination coefficient (R²) was 0.99, significant at p  $\leq$  0.001. No bias was found because the confidence limits of the independent variable included the zero. Likewise, the slope of the line resulted significantly different from zero, and hence there is proportionality of the chromatographic response. Because there were no deviations from the linear trend in total peak areas, it was assumed that this procedure can be applied to assess FD factors of the aroma-active compounds considering the last sample reduction.

Under the HS-SPME optimum conditions the cocoa husk was analysed by the described AEDA (Table 4). The results yielded 21 aroma-active compounds in the FD factor range of 4–128, so they are probably very important to the aroma of cocoa husk. According to their chemical group, the most aroma-active compounds in cocoa husk were 9 pyrazines, 5 acids, 3 Strecker aldehydes (3-methylbutanal, 2-methylbutanal, and phenylacetaldehyde), and one furanone (4-hidroxy-2,5-dimethyl-3(2*H*)-furanone), sulphur-compound (dimethyl trisulfide), terpene (linalool) and ester (2-phenylethyl acetate). Compounds with the highest FD factors (128–64) were acetic acid, 2,3-diethyl-5-methylpyrazine, and 2-ethyl-3,5-dimethylpyrazine followed by 3-methylbutanal, phenylacetaldehyde, 3,5-diethyl-2-methylpyrazine, and 4-hidroxy-2,5-dimethyl-3(2*H*)-furanone. A somewhat lower FD factors of 32–16 were found for 3-methylbutanoic acid, 2-ethyl-5-methylpyrazine, 2,6-dimethylpyrazine, dimethyl trisulfide, and 2,3,5,6-tetramethylpyrazine. A last group, with FD factors of 8–4, was constituted by 2,3,5-trimethylpyrazine, 2-methylbutanal, 2-methylpyrazine, 2-phenylacetic acid, linalool, butanoic acid, 2-methylbutanoic acid, 2,5-dimethylpyrazine, and 2-phenylethyl acetate.

These results confirmed the important role of acids, pyrazines, and Strecker aldehydes in the aroma of cocoa husk. Excepting linalool and acids, the rest of volatile compounds were related to the thermal degradation during roasting of cocoa beans where the Maillard reactions occur (Belitz *et al.*, 2009).

In good agreement with most of the earlier studies in cocoa products (Serra-Bonvehí, 2005; Krings *et al.*, 2006; Frauendorfer & Schieberle, 2006, 2008; Liu *et al.*, 2017) these volatile compounds were found as potent odourants.

**Table 1.** Volatile compounds identified in cocoa husk by SPME-GC-MS.

| Compound                  | LRIª |
|---------------------------|------|
| Acetic acid               | 645  |
| 3-Methylbutanal           | 654  |
| 2-Methylbutanal           | 658  |
| 2,3-Pentanedione          | 702  |
| Propanoic acid            | 711  |
| 3-Hydroxy-2-butanone      | 718  |
| 3-Methylbutan-1-ol        | 741  |
| Dimethyl disulfide        | 744  |
| Ethyl 2-methylpropanoate  | 751  |
| Pyridine                  | 753  |
| 2-Methylpropanoic acid    | 785  |
| 2,3-Butanediol            | 789  |
| Ethyl 2-hydroxypropanoate | 815  |
| Butanoic acid             | 821  |
| 2-Methylpyrazine          | 826  |
| 2-Furfural                | 836  |
| Ethyl 2-methylbutanoate   | 851  |
| 2-Furfuryl alcohol        | 854  |
| Ethyl 3-methylbutanoate   | 859  |
| 3-Methylbutyl acetate     | 881  |
| 3-Methylbutanoic acid     | 883  |
| 2-Heptanone               | 890  |
| 2-Methylbutanoic acid     | 895  |
| <i>n</i> -Nonane          | 900  |
| Heptanal                  | 905  |
| Pentanoic acid            | 907  |
| 2-Acetylfuran             | 910  |
| 2-Ethylpyridine           | 913  |
| γ-Butyrolactone           | 918  |
| 2,5-Dimethylpyrazine      | 919  |
| 2,6-Dimethylpyrazine      | 920  |
| Methyl hexanoate          | 927  |
| 2,3-Dimethylpyrazine      | 935  |
| α-Pinene                  | 939  |
| 2-Methylbutylpyridine     | no   |
| Benzaldehyde              | 960  |
| 4-Methylpentanoic acid    | 965  |
| Dimethyl trisulfide       | 976  |
| 2-Methylbutylpyrazine     | 977  |
| β-Pinene                  | 979  |
| Phenol                    | 981  |

# Table 1. (continued)

| Compound                                       | LRIª |
|------------------------------------------------|------|
| Benzonitrile                                   | 984  |
| 6-Methyl-5-hepten-2-one                        | 986  |
| Methyl 2-hidroxy-4-methylpentanoate            | 988  |
| Myrcene                                        | 990  |
| 2-Octanone                                     | 991  |
| Methyl 2-hidroxy-3-methylpentanoate            | 993  |
| 1,3,5-Trimethylbenzene                         | 996  |
| 2-Ethyl-5-methylpyrazine                       | 999  |
| Hexanoic acid                                  | 1002 |
| 2,3,5-Trimethylpyrazine                        | 1005 |
| 2-Methyl-2-pentenoic acid                      | 1012 |
| 1,4-Cineole                                    | 1015 |
| 2-Pyrrolaldehyde                               | 1018 |
| 2-Acetylpyrazine                               | 1023 |
| <i>p</i> -Cymene                               | 1025 |
| Limonene                                       | 1028 |
| 2-Ethyl-1-hexanol                              | 1030 |
| 1,8-Cineole                                    | 1031 |
| 2-Acetylpyridine                               | 1034 |
| Benzyl alcohol                                 | 1032 |
| 3-Hidroxy-4,4-dimethyl-dihydrofuran-2-one      | 1037 |
| Phenylacetaldehyde                             | 1041 |
| 3-Ethyl-2-methylpyrazine                       | 1044 |
| 1-Ethyl-2-formylpyrrole                        | 1046 |
| 4-Hidroxy-2,5-dimethyl-3(2 <i>H</i> )-furanone | 1055 |
| γ-Hexalactone                                  | 1059 |
| γ-Terpinene                                    | 1060 |
| 1-Phenylethanol                                | 1063 |
| Acetophenone                                   | 1065 |
| 2-Acetylpyrrole                                | 1070 |
| cis-Linalool oxide                             | 1073 |
| 2-Acetyl-5-methylpyrrole                       | 1075 |
| 2-Ethyl-3,5-dimethylpyrazine                   | 1078 |
| Heptanoic acid                                 | 1080 |
| 2,3,5,6-Tetramethylpyrazine                    | 1086 |
| <i>p</i> -Cymenene                             | 1091 |
| 2-Nonanone                                     | 1090 |
| Methyl benzoate                                | 1101 |
| Linalool                                       | 1097 |
| 2-(2-Methylpropyl)-5-methylhex-2-enal          | 1103 |
| Nonanal                                        | 1105 |

Table 1. (continued)

| Table 1. (continued)                                |                  |
|-----------------------------------------------------|------------------|
| Compound                                            | LRI <sup>a</sup> |
| Maltol                                              | 1111             |
| 2-Phenylethanol                                     | 1107             |
| 2-Ethylhexanoic acid                                | 1120             |
| Isophorone                                          | 1122             |
| 1-Phenyl-2-propanone                                | 1124             |
| 2-Formyl-5-methylpyrrole                            | 1127             |
| 2,3-Dimethyl-5-propylpyrazine                       | 1130             |
| Terpinen-1-ol                                       | 1134             |
| Phenylacetonitrile                                  | 1142             |
| 6,7-Dihydro-5-methyl-5 <i>H</i> -cyclopentapyrazine | 1145             |
| Veratrole                                           | 1145             |
| 4-Ketoisophorone                                    | 1148             |
| cis-β-Terpineol                                     | 1150             |
| 3,5-Diethyl-2-methylpyrazine                        | 1159             |
| 5-Methylundecane                                    | 1156             |
| 2,3-Diethyl-5-methylpyrazine                        | 1163             |
| Benzoic acid                                        | 1170             |
| Methyl phenylacetate                                | 1179             |
| 2-(3-Methylbutyl)pyrazine                           | 1180             |
| Octanoic acid                                       | 1185             |
| Terpinen-4-ol                                       | 1183             |
| Methyl salicylate                                   | 1195             |
| α-Terpineol                                         | 1189             |
| 2-Decanone                                          | 1192             |
| Ethyl octanoate                                     | 1197             |
| Decanal                                             | 1202             |
| 2,5-Dimethyl-3-(2-methylpropyl)pyrazine             | 1208             |
| hexylcyclohexane                                    | 1237             |
| Ethyl 2-phenylacetate                               | 1247             |
| Carvone                                             | 1243             |
| 2-Phenylacetic acid                                 | 1252             |
| 2-(3-Methylbutyl)-6-methylpyrazine                  | 1262             |
| 2-Phenylethy acetate                                | 1268             |
| 2-Phenyl-2-butenal                                  | 1291             |
| Nonanoic acid                                       | 1295             |
| 2-Undecanone                                        | 1293             |
| 2-Methylnaphthalene                                 | 1297             |
| 2-(2-Methylpropyl)-3,5,6-trimethylpyrazine          | 1298             |
| Carvacrol                                           | 1299             |
| <i>n</i> -Tridecane                                 | 1300             |
| Undecanal                                           | 1307             |

**Table 1.** (continued)

| Table 1. (continued)                       |                  |
|--------------------------------------------|------------------|
| Compound                                   | LRI <sup>a</sup> |
| 2,5-Dimethyl-3-(3-methylbutyl)pyrazine     | 1323             |
| Phenylpropionic acid                       | 1333             |
| Methyl anthranilate                        | 1337             |
| Eugenol 5 Mahultai dasana                  | 1357             |
| 5-Methyltridecane                          | 1360             |
| γ-Nonalactone                              | 1363             |
| Decanoic acid                              | 1386             |
| 2,3,5-Trimethyl-6-(3-methylbutyl)-pyrazine | 1390             |
| Vanillin                                   | 1394             |
| n-Tetradecane                              | 1400             |
| <i>cis-</i> α-Bergamotene                  | 1413             |
| Coumarin                                   | 1434             |
| Geranyl acetone                            | 1455             |
| 5-Methyl-2-phenyl-2-hexenal                | 1486             |
| n-Pentadecane                              | 1500             |
| β-Bisabolene                               | 1506             |
| Tridecanal                                 | 1510             |
| 5-Methylpentadecane                        | 1551             |
| Dodecanoic acid                            | 1568             |
| Ethyl dodecanoate                          | 1595             |
| n-Hexadecane                               | 1600             |
| Benzophenone                               | 1628             |
| Tridecanoic acid                           | 1677             |
| <i>n</i> -Heptadecane                      | 1700             |
| (Z)-9-Tetradecenoic acid                   | 1780             |
| Tetradecanoic acid                         | 1784             |
| Ethyl tetradecanoate                       | 1796             |
| n-Octadecane                               | 1800             |
| (Z,E)-Farnesyl acetate                     | 1822             |
| Pentadecanoic acid                         | 1868             |
| 1-Hexadecanol                              | 1876             |
| Ethyl pentadecanoate                       | 1895             |
| n-Nonadecane                               | 1900             |
| Methyl hexadecanoate                       | 1922             |
| (Z)-9-Hexadecenoic acid                    | 1953             |
| Hexadecanoic acid                          | 1960             |
| Ethyl hexadecanoate                        | 1993             |
| n-Eicosane                                 | 2000             |
| 2-Methylpropyl hexadecanoatoe              | 2025             |
| Heptadecanoic acid                         | 2053             |
| Manool                                     | 2057             |
|                                            | 200,             |

Table 1. (continued)

| Compound             | LRIª |
|----------------------|------|
| Methyl octadecenoate | 2125 |
| Oleic acid           | 2141 |
| Octadecanoic acid    | 2170 |
| Ethyl oleate         | 2179 |
| Ethyl octadecanoate  | 2197 |

<sup>&</sup>lt;sup>a</sup> Linear retention indices in DB-5ms capillary column.

**Table 2.** Effect of fiber type on the chromatographic area (×107 area units) of volatile compounds from cocoa husk<sup>a</sup>

| Compound    | PDMS   | PDMS/DVB | CAR/PDMS  | DVB/CAR/PDMS |
|-------------|--------|----------|-----------|--------------|
| Acids       | 605 d  | 13,498 с | 116,643 a | 106,425 b    |
| Esters      | 692 b  | 733 a    | 324 c     | 876 a        |
| Pyrazines   | 146 с  | 4069 b   | 12,380 a  | 13,112 a     |
| Aldehydes & |        |          |           |              |
| ketones     | 778 d  | 5964 c   | 52,948 b  | 68,952 a     |
| Alcohols    | 315 d  | 23,804 c | 66,475 b  | 119,885 a    |
| Terpenes    | 22 c   | 2006 b   | 5428 a    | 1870 b       |
| Total       | 2557 d | 50,074 c | 254,199 b | 311,120 a    |

<sup>&</sup>lt;sup>a</sup>Different letters in the same row indicate significant difference at  $p \le 0.05$ .

**Table 3**. Matrix of the experimental design for SPME optimization

| Run | Temperature<br>(min) | Extraction<br>time (° C) | Total peak area (x 10 <sup>7</sup> ) |
|-----|----------------------|--------------------------|--------------------------------------|
| 1   | 50                   | 25                       | 253,483                              |
| 2   | 60                   | 25                       | 465,232                              |
| 3   | 50                   | 20                       | 241,631                              |
| 4   | 40                   | 20                       | 189,467                              |
| 5   | 50                   | 20                       | 237,345                              |
| 6   | 40                   | 25                       | 190,438                              |
| 7   | 50                   | 20                       | 242,426                              |
| 8   | 60                   | 20                       | 451,340                              |
| 9   | 60                   | 15                       | 432,421                              |
| 10  | 50                   | 15                       | 222,187                              |
| 11  | 50                   | 20                       | 245,576                              |
| 12  | 40                   | 15                       | 177,342                              |

**Table 4.** Odour-active compounds found in coca husk.

| Compound                               | Odour quality       | FD <sup>a</sup> |
|----------------------------------------|---------------------|-----------------|
| Acetic acid                            | sour                | 128             |
| 2,3-Diethyl-5-methylpyrazine           | nutty               | 128             |
| 2-Ethyl-3,5-dimethylpyrazine           | coffee              | 128             |
| 3-Methylbutanal                        | malty, chocolate    | 64              |
| Phenylacetaldehyde                     | honey               | 64              |
| 3,5-Diethyl-2-methylpyrazine           | cocoa, chocolate    | 64              |
| 4-Hidroxy-2,5-dimethyl-3(2 <i>H</i> )- | caramel-like        | 64              |
| furanone                               |                     |                 |
| 3-Methylbutanoic acid                  | rancid, cheese-like | 32              |
| 2-Ethyl-5-methylpyrazine               | cocoa               | 32              |
| 2,6-Dimethylpyrazine                   | cocoa               | 16              |
| Dimethyl trisulfide                    | onion               | 16              |
| 2,3,5,6-Tetramethylpyrazine            | coffee              | 16              |
| 2,3,5-Trimethylpyrazine                | toasted, cacao      | 8               |
| 2-Methylbutanal                        | malty, chocolate    | 8               |
| 2-Methylpyrazine                       | toasted, chocolate  | 8               |
| 2-Phenylacetic acid                    | honey               | 8               |
| Linalool                               | flowery             | 8               |
| Butanoic acid                          | butter              | 4               |
| 2-Methylbutanoic acid                  | sweaty              | 4               |
| 2,5-Dimethylpyrazine                   | popcorn             | 4               |
| 2-Phenylethyl acetate                  | honey               | 4               |

<sup>&</sup>lt;sup>a</sup> Flavour dilution factor.

#### **CONCLUSIONS**

Gas chromatography-olfactometry in combination with headspace solid-phase microextraction using divinylbenzene/Carboxen/polydimethylsiloxane fiber operated at 60 °C for 22 min could isolate most of the volatile compounds from cocoa husk. The identified 21 odourants were originated from wide range of acids, pyrazines, Strecker aldehydes, and one furanone, sulphur compound, terpene, and ester. The combined procedure is a simple, sensitive, reproducible, rapid and low-cost method which may be applied as a quality control tool for industrial processing of cocoa husk.

#### **BIBLIOGRAPHIC REFERENCES**

- Aceña, L., Vera, L., Guasch, J., Busto, O., & Mestres, M. (2011). Determination of roasted pistachio (*Pistacia vera* L.) key odourants by headspace solid-phase microextraction and gas chromatography-olfactometry. *J. Agric. Food Chem.*, *59*, 2518-2523.
- Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2008). Flavour formation and character in cocoa and chocolate: A critical review. *Crit. Rev. Food Sci. Nutr.*, 48 (9), 840-857.
- Afoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2009). Matrix effects on flavour volatiles release in dark chocolates varying in particle size distribution and fat content using GC–mass spectrometry and GC–olfactometry. *Food Chem.*, 113, 208-215.
- Afoakwa, E. O. (2016). World cocoa production, processing and chocolate consumption pattern. In: E. O. Afoakwa (Ed), *Chocolate: Science and Technology*. Chichester, UK: John Wiley & Sons Ltd, 2nd edn, 17-48.
- Ascrizzi, R., Flamini, G., Tessieri, C., & Pistelli, L. (2017). From the raw seed to chocolate: Volatile profile of Blanco de Criollo in different phases of the processing chain. *Microchem. J.*, 133, 474-479.
- Belitz, H.-D., Grosch, W., & Schieberle, P. (2009). *Food Chemistry*. Heidelberg, Germany: Springer-Verlag.
- Counet, C., Callemien, D., Ouwerx, C., & Collin, S. (2002). Use of gas chromatographyolfactometry to identify key odourant compounds in dark chocolate. Comparison of samples before and after conching. *J. Agric. Food Chem.*, 50, 2385-2391.
- de Brito, N. N. E. S., Pezoa García, N. H., Valente, A. L. P., & Pini, G. F. (2002). Effect of glucose and glycine addition to cocoa mass before roasting on Maillard precursor consumption and pyrazine formation. *J. Sci. Food Agric.*, 82, 534-537.
- Di Carro, M., Ardini, F., & Magi, E. (2015). Multivariate optimization of headspace solid-phase microextraction followed by gas chromatography-mass spectrometry for the determination of methylpyrazines in cocoa liquors. *Microchem. J.*, 121, 172-177.
- Ducki, S., Miralles-Garcia, J., Zumbé, A., Tornero, A., & Storey, D. M. (2008). Evaluation of solid-phase micro-extraction coupled to gas chromatography—mass spectrometry for the headspace analysis of volatile compounds in cocoa products. *Talanta*, 74, 1166-1174.
- Feng, Y., Su, G., Sun-Waterhouse, D., Cai, Y., Zhao, H., Cui, C., & Zhao, M. (2016). Optimization of headspace solid-phase micro-extraction (HS-SPME) for analyzing soy sauce aroma compounds via coupling with direct GC-Olfactometry (D-GC-O) and gas chromatography-mass spectrometry (GC-MS). *Food Anal. Meth.* 9, 713-726.
- Frauendorfer, F., & Schieberle, P. (2006). Identification of the key aroma compounds in cocoa powder based on molecular sensory correlations. *J. Agric. Food Chem.*, *54*, 5521-5529.

- Frauendorfer, F., & Schieberle, P. (2008). Changes in key aroma compounds of criollo cocoa beans during roasting. *J. Agric. Food Chem.*, *56*, 10244-10251.
- Jeleń, H. H., Majcher, M., & Dziadas, M. (2012). Microextraction techniques in the analysis of food flavour compounds: A review. *Anal. Chim. Acta*, 738, 13-26.
- Kongor, J. E., Hinneh, M., Van de Walle, D., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (*Theobroma cacao*) bean flavour profile A review. *Food Res. Int.*, 82, 44-52.
- Krings, U., Zelena, K., Wu, S., & Berger, R. G. (2006). Thin-layer high-vacuum distillation to isolate volatile flavour compounds of cocoa powder. *Eur. Food Res. Technol.*, 223, 675-681.
- Liu, M., Liu, J., He, C., Song, H., Liu, Y., Zhang, Y., Wang, Y., Guo, J., Yang, H., & Su, X. (2017). Characterization and comparison of key aroma-active compounds of cocoa liquors from five different areas. *Int. J. Food Prop.*, 20 (10), 2396-2408.
- Nguyen, V. T., & Nguyen, N. H. (2017) Proximate composition, extraction, and purification of theobromine from cacao pod husk (*Theobroma cacao* L.). *Technologies* 5, 14. https://doi.org/10.3390/technologies5020014
- NISTwebBook (2020). National Institute of Standards and Technology. Gaithersburg, Maryland, USA. http://webbook.nist.gov/chemistry.html. Accessed 20 February 2020.
- Pini, G. F., de Brito, E. S., García, N. H. P., Valente, A. L. P., & Augusto, F. (2004). A headspace solid phase microextraction (HS-SPME) method for the chromatographic determination of alkylpyrazines in cocoa samples. *J. Braz. Chem. Soc.*, 15 (2), 267-271.
- Pino, J. A., & Roncal, E. (2016). Characterisation of odour-active compounds in cherimoya (*Annona cherimola* Mill.) fruit. *Flav. Fragr. J.*, 31, 143-148.
- Rodriguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E., & Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa (*Theobroma cacao* L.) during fermentation and drying processes using principal components analysis. *Food Res. Int.*, 44, 250-258.
- Rodriguez-Campos, J., Escalona-Buendía, H. B., Contreras-Ramos, S. M., Orozco-Avila, I., Jaramillo-Flores, E., & Lugo-Cervantes, E. (2012). Effect of fermentation time and drying temperature on volatile compounds in cocoa. *Food Chem.*, *132*, 277-288.
- Sanchez-Reinoso, Z., Osorio, C., & Herrera, A. (2017). Effect of microencapsulation by spray drying on cocoa aroma compounds and physicochemical characterisation of microencapsulates. *Powder Technol.*, 318, 110-119.
- Serra-Bonvehí, J (2005). Investigation of aromatic compounds in roasted cocoa powder. *Eur. Food Res. Technol.*, 221, 19-29.

- Souza-Silva, E. A., Gionfriddo, E., & Pawliszyn, J. (2015). A critical review of the state of the art of solid-phase microextraction of complex matrices II. Food analysis. *Trends Anal. Chem.*, 71, 236-248.
- Tran, P. D., Van de Walle, D., De Clercq, N., De Winne, A., Kadow, D., Lieberei, R., Messens, K., Trand, D. N., Dewettinck, K., & Van Durme, J. (2015). Assessing cocoa aroma quality by multiple analytical approaches. *Food Res. Int.*, 77, 657-669.