

Revista CENIC Ciencias Químicas

ISSN: 1015-8553 ISSN: 2221-2442

Centro Nacional de Investigaciones Científicas

Quijano Celis, Clara E.; Pino, Jorge A.; Echeverri, Daniel Compuestos volátiles en tres variedades de piña cultivadas en Colombia Revista CENIC Ciencias Químicas, vol. 51, núm. 2, 2020, Julio-Diciembre, pp. 284-297 Centro Nacional de Investigaciones Científicas

Disponible en: https://www.redalyc.org/articulo.oa?id=181676102009

Número completo

Más información del artículo

Página de la revista en redalyc.org

abierto

Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso

ARTICULO INVESTIGATIVO

COMPUESTOS VOLÁTILES EN TRES VARIEDADES DE PIÑA CULTIVADAS EN COLOMBIA

Volatile compounds from three pineapple varieties grown in Colombia.

Clara E. Quijano Celisa*, Jorge A. Pinob, c, Daniel Echeverrid

Recibido: 18 de junio de 2020. **Aceptado**: 3 de noviembre de 2020.

RESUMEN

La piña (*Ananas comosus* [L.] Merr.) es una de las frutas tropicales más importante y popular, debido al aroma y sabor atractivos. Varios cientos de variedades se cultivan en varias partes del mundo y que es conocido que poseen marcadas diferencias en sus características sensoriales. La aplicación de la extracción líquida-líquida combinada con la cromatografía de gases-espectrometría de masas y los valores de actividad del olor fueron usados para analizar los compuestos volátiles de las variedades de piña fresca Oromiel, Cayena y Manzana cultivadas en Colombia, y para estimar los compuestos más activos del aroma. Se identificaron 194 constituyentes, distribuidos en 183 (17,51 mg/kg), 173 (11,39 mg/kg) y 153 (9,14 mg/kg) compuestos en las variedades Oromiel, Cayena y Manzana, respectivamente. La composición de los extractos estuvo constituida mayoritariamente por ésteres, seguidos de aldehídos, alcoholes, ácidos, terpenos, furanos y otros de distinta naturaleza química, pero cuantitativamente fueron predominantes los ésteres y tioésteres. Las tres variedades coincidieron en tener como predominante al hexanoato de metilo con una nota de piña. Las variedades Oromiel y Manzana coincidieron en tener como segundo predominante al 3-(metiltio)-propanoato de metilo con una nota olfativa a bajas concentraciones que recuerda a la piña, mientras que en la Cayena fue el octanoato de metilo (nota frutal). Un total de 35, 37 y 30 compuestos son contribuyentes activos del aroma de las variedades Oromiel, Cayena y Manzana, respectivamente. La contribución al aroma de cada uno de ellos difiere según la variedade.

Palabras clave: piña, compuestos volátiles, aroma, cromatografía de gases-espectrometría de masas, valores de actividad de olor.

ABSTRACT

La piña (*Ananas comosus* [L.] Merr.) is one of the most important and popular of tropical fruits, mainly due to its attractive flavor. Several hundreds of varieties are grown in various parts of the world and are known to vary markedly in their sensory characteristics. Application of liquid-liquid extraction combined with gas chromatography-mass spectrometry and odor activity value was used to analyze volatile compounds from fresh pineapple varieties Oromiel, Cayena and Manzana grown in Colombia, and to estimate the most aroma-active compounds. A total of 194 volatile compounds were identified, which were distributed in 183 (17.51 mg/kg), 173 (11.39 mg/kg) y 153 (9.14 mg/kg) constituents in the varieties Oromiel, Cayena and Manzana, respectively. The composition of the extracts was constituted by esters, aldehydes, alcohols, acids, terpenes, furans and other of different chemical nature, but quantitatively esters and thioesters were predominant. Ethyl hexanoate was the major compound in the three varieties, with a pineapple note. Oromiel and Manzana varieties agreed with methyl 3-(methylthio)-propanoate as the second major constituent, with a pineapple-like note at low concentrations, while in Cayena pineapple was methyl octanoate (fruity note). A total of 35, 37 and 30 of them were aroma active compounds of the varieties Oromiel, Cayena y Manzana, respectively. The contribution of each one was different among the varieties.

Keywords: pineapple, volatile compounds, aroma, gas chromatography-mass spectrometry, odor activity value

^a Dpto. Química. Universidad de los Andes, Cra. 1a Este N°18-A-10, Bogotá, Colombia. cquijano@uniandes.edu.co

^b Instituto de Investigaciones para la Industria Alimentaria. La Habana CP 19200, Cuba.

^{&#}x27;Dpto. Alimentos. Instituto de Farmacia y Alimentos. Universidad de La Habana, Cuba.

^dProductos de la Vega, Carrera 13 # 13-40, Pereira, Risaralda, Colombia.

INTRODUCCIÓN

Nativa de América del Sur, la piña (*Ananas comosus* [L.] Merr.) está extensamente distribuida en todas las regiones tropicales del mundo. En años recientes, la piña se ha vuelto una de las frutas exóticas más populares en la demanda mundial (FAO, 2016). Las variedades de piña son abundantes en el mundo, de ellas las más conocidas en Colombia son la Oromiel, Cayena y Manzana. La primera es una fruta muy apetecida por su sabor y aroma dulce, seguida por la piña Manzana menos dulce pero el cultivo es más delicado y la Cayena que es más ácida, pero más resistente en fibra y muy usada industrialmente. Los cultivos más conocidos son en Santander, Valle del Cauca y Meta (Agronegocios, 2018).

Debido a su aroma y sabor atractivos, la piña se consume ampliamente como fruta fresca y procesada, como jugos simples o concentrados, purés, confituras y segmentos (Hossain, 2016).

Los componentes volátiles de la piña se han estudiado extensivamente y se conocen más de 380 compuestos de estudios en fruta fresca o procesada (Montero-Calderón et al., 2010a; Pino, 2018). Los compuestos volátiles que producen el aroma característico de la piña dependen de varios factores, entre los que cabe mencionar a la variedad, áreas de cosecha, época de recolección, grado de madurez, conservación poscosecha y parte de la fruta. El estudio de los compuestos volátiles de distintas variedades, cultivadas en diferentes condiciones y estado de madurez ha mostrado que la fruta está constituida por una variedad de ésteres, lactonas, ácidos, compuestos azufrados, furanos, terpenos y compuestos carbonílicos (Zhang et al., 2009a,b; Liu et al., 2009, 2011; Braga et al., 2010; Wei et al., 2011a,b; Kaewtathip & Charoenrein, 2012; Denon et al., 2014; Steingass et al., 2014, 2015).

Aunque mucho trabajo se ha hecho, la determinación de la contribución de cada compuesto volátil al aroma fresco de la piña es escasa. La determinación de los valores de actividad de olor (VAO), calculados a partir de la relación entre la concentración y el umbral de detección del olor, es una vía para conocer la contribución de los compuestos volátiles al aroma bajo la consideración de que si el VAO > 1, entonces el compuesto debe aportar al aroma, a éstos se les conoce como compuestos activos del aroma (Song y Liu, 2018). Así, se han encontrado como contribuyentes importantes al 4-hidroxi-2,5-dimetil-3(2*H*)-furanona, 2-metilbutanoato de metilo, 2-metilbutanoato de etilo, hexanoato de etilo, butanoato de etilo, 2-metilpropanoato de etilo, hexanoato de metilo, 3-(metiltio)propanoato de metilo, 3-(metiltio)propanoato de etilo, (3*E*,5*Z*)-1,3,5-undecatrieno, acetato de 3-metilbutilo y (3*E*,5*Z*,8*Z*)-1,3,5,8-undecatetraeno en distintas variedades (Takeoka *et al.*, 1989; Brat *et al.*, 2004; Tokitomo *et al.*, 2005; Montero-Calderón *et al.*, 2010b; Pino, 2013; Pino y Aragüez, 2020).

Los objetivos de este trabajo fueron identificar y cuantificar los compuestos volátiles aislados por extracción líquida-líquida, así como determinar los principales compuestos activos del aroma en tres variedades de piña (Oromiel, Cayena y Manzana) cultivadas en Colombia.

MATERIALES Y MÉTODOS

Materiales

Las piñas de las variedades Oromiel, Cayena y Manzana, obtenidas de cultivos tecnificadas a una altura de 940 m sobre el nivel del mar, en la región de la Unión, Valle del Cauca, Colombia. Las frutas seleccionadas mostraron un estado de madurez de consumo similar e inmediatamente, transportadas vía aérea y llevadas al laboratorio del Dpto. de Química de la Universidad de los Andes en el Laboratorio de Ciencias Agroalimentarias y del Aroma (CALIM) en Bogotá, para su estudio. De cada variedad se hicieron tres grupos, conformados por tres frutas cada uno. A cada una se le retiró la corteza, por pelado manual, se eliminó el centro conocido como corazón y las pulpas fueron cortadas en cubos de aproximadamente 2 cm de arista. Los tres grupos fueron usados por separado para los subsiguientes análisis.

Análisis químicos estándar

A las muestras se le hicieron determinaciones de sólidos solubles refractométricos, acidez valorable y pH por métodos estandarizados (AOAC, 2012).

Aislamiento de los compuestos volátiles

Los compuestos volátiles se aislaron por extracción líquido-líquido (ELL). Los cubos de frutas (200 g) se mezclaron con 400 mL de agua destilada y homogeneizaron en una licuadora comercial por 5 min. El líquido resultante se trasvasó, a través de una malla de 100 μm, a un extractor líquido-líquido. Previamente se adicionó 1 μL de nonanoato de metilo como estándar interno y se sometió a la extracción con 25 mL de *n*-pentano/éter etílico (1:1 v/v) durante 6 h (Quijano y Pino, 2007). El extracto fue secado sobre sulfato de sodio anhidro y concentrado por destilación fraccionada en un equipo Kuderna-Danish hasta 1 mL y después, mediante una corriente suave de nitrógeno se llevó aron hasta 0,2 mL.

Análisis por cromatografía de gases-espectrometría de masas

El análisis se hizo en un equipo Hewlett-Packard 6890N serie II (Agilent, Palo Alto, CA, USA) con columna capilar (30 m x 0,25 mm x 0,25 μm) HP-5 ms (Agilent, Palo Alto, CA, USA). El programa de temperatura fue 50 °C por 2 min, después hasta 280 °C a 4 °C min/min e isotérmico por 10 min. El gas portador fue helio a 1 mL/min. El detector de masas operó con una energía de ionización 70 eV, temperaturas de la fuente iónica y conexiones 250 °C. La adquisición fue en modo barrido electrónico (m/z 35 a 400 u). La identificación de los compuestos se hizo por comparación de índices de retención lineales (determinados con una serie homóloga de *n*-parafinas) y espectros de masas de sustancias patrones, así como las reportadas en bases de datos (NIST05, Wiley 6, NBS 75 k y Adams, 2001). La cuantificación se efectuó por el método de estándar interno considerando un valor de uno para el factor de respuesta y los resultados se expresaron como μg equivalente de nonanoato de metilo por kg de fruta fresca.

Determinación de los valores de actividad de olor

Los VAO se calcularon a partir de la relación entre la concentración y el umbral de detección de olor del compuesto. Los umbrales fueron tomados de una base de datos del Dpto. de Aromas del IIIA en La Habana (Almora *et al.*, 2001).

RESULTADOS Y DISCUSIÓN

La Tabla 1 muestra la caracterización general de las pulpas de las tres variedades. En general, los índices medidos son típicos de variedades de piña (Brat *et al.*, 2004).

Los extractos de aroma de las variedades de piña fueron evaluados olfativamente por dos expertos a partir de una gota aplicada a una tira de papel de filtro. Después de evaporado los disolventes, los expertos coincidieron en que el olor de los extractos fue semejante al de las frutas de partida, pero con una nota más dulce para la piña Oromiel, seguida de las variedades Manzana y Cayena. Es por ello por lo que se consideró que el método de aislamiento usado fue adecuado.

En total, fueron aislados 194 compuestos volátiles en las tres variedades, distribuidos en 183, 173 y 153 compuestos en las variedades Oromiel, Cayena y Manzana, respectivamente (Tabla 2). Este orden coincide con el contenido total de compuestos volátiles que fue 17,51; 11,39 y 9,14 mg/kg en las variedades Oromiel, Cayena y Manzana, respectivamente. La composición de los extractos estuvo constituida mayoritariamente por ésteres, seguidos de aldehídos, alcoholes, ácidos, terpenos, furanos y otros de distinta naturaleza química. Todos los compuestos han sido reportados anteriormente en esta fruta.

La distribución de los componentes mayoritarios (>500 μg/kg) se muestra en la Fig. 1, donde se aprecia que, aunque muchos constituyentes coinciden como mayoritarios en las tres variedades, la magnitud de sus concentraciones no es igual. Todos ellos correspondieron a ésteres y tioésteres. Las tres variedades coincidieron en tener como predominante al hexanoato de metilo, el cual posee una nota olfativa de piña (Takeoka *et al.*, 1989; Brat *et al.*, 2004; Montero-Calderón *et al.*, 2010b; Pino, 2013; Pino y Aragüez, 2020; Sinuco *et al.*, 2004; Zheng *et al.*, 2012). Las variedades Oromiel y Manzana coincidieron en tener como segundo predominante al 3-(metiltio)-propanoato de metilo con una nota olfativa a bajas concentraciones que recuerda a la piña (Berger *et al.*, 1985; Takeoka *et al.*, 1989; Brat *et al.*, 2004; Pino y Aragüez, 2020; Zheng *et al.*, 2012), mientras que en la Cayena fue el octanoato de metilo con una nota olfativa frutal (Takeoka *et al.*, 1989; Pino y Aragüez, 2020).

La Tabla 3 muestra los VAO calculados en las tres variedades. Merece señalarse que para algunos compuestos volátiles no se encontró información de sus umbrales de detección de olor. Los resultados sugieren que 35, 37 y 30 compuestos deben contribuir al aroma característico de las variedades Oromiel, Cayena y Manzana, respectivamente. La contribución al aroma de cada uno de ellos es diferente según la variedad.

Los ésteres representan el grupo químico cuantitativamente más representativo en el aroma de la piña. En general, el 2-metilbutanoato de etilo (frutal), hexanoato de etilo (piña), 2-metilbutanoato de metilo (dulce, frutal), 3-(metiltio)-propanoato de etilo (frutal, piña) y butanoato de metilo (manzana-piña) son los principales contribuyentes en las tres variedades. Otros ésteres lo hacen en una menor cuantía. Todos ellos han sido reportados como contribuyentes importantes del aroma de la piña (Takeoka *et al.*, 1989; Brat *et al.*, 2004;

Tokitomo et al., 2005; Montero-Calderón et al., 2010b; Pino, 2013; Pino y Aragüez, 2020; Sinuco et al., 2004; Zheng et al., 2012). Se aprecia una tendencia a que el aporte de estos ésteres es menor en la variedad Manzana.

El (3*E*,5*Z*,8*Z*)-1,3,5,8-undecatetraeno y (3*E*,5*Z*)-1,3,5-undecatrieno son contribuyentes importantes al aroma de la piña fresca (Tabla 2). Estos alquenos conjugados combinan un olor fragrante con un umbra de detección de olor extremadamente bajo, como ha sido informado antes (Tokitomo *et al.*, 2005; Pino, 2013; Pino y Aragüez, 2020; Berger *et al.*, 1985; Akioka y Umano, 2008). La menor contribución de ellos corresponde a la variedad Manzana.

Otros constituyentes importantes son la 4-hidroxi-2,5-dimetil-3(2*H*)-furanona, conocida comúnmente como furaneol, que posee una nota de piña cocida (Burdock, 2010) y las lactonas como γ-octalactona, γ-decalactona, γ-undecalactona y γ-dodecalactona, a las que se atribuyen notas frutal-dulce y de melocotón (Burdock, 2010). Estos compuestos también han sido encontrados como odorantes importantes de otras variedades de piña (Takeoka *et al.*, 1989; Brat *et al.*, 2004; Tokitomo *et al.*, 2005; Montero-Calderón *et al.*, 2010b; Pino, 2013; Pino y Aragüez, 2020; Sinuco *et al.*, 2004; Zheng *et al.*, 2012). En general, el aporte de estos compuestos es mayor en la variedad Oromiel.

Para profundizar este estudio es necesario realizar estudios sensoriales con las mezclas de los odorantes encontrados para poder confirmar la contribución en cada variedad, que incluyan experimentos modelos y de omisión.

Tabla 1. Características generales de las tres variedades de piñas

Índice	Oromiel	Cayena	Manzana
Sólidos solubles (°Brix)	15,84	14,09	14,99
Acidez (% m/m, ácido cítrico)	0,31	0,72	0,45
рН	3,86	3,45	3,74

Tabla 2. Compuestos volátiles ($\mu g/kg$) en variedades de piña cultivadas en Colombia.

Compuesto	IRL	Oromiel	Cayena	Manzana
Acetato de etilo	612	862	502	231
Propanoato de metilo	646	196	149	56
3-Metilbutanal	654	tr	1	2
1-Penten-3-ol	683	nd	nd	tr
2-Metilpropanoato de metilo	690	85	73	40
<i>n</i> -Heptano	700	tr	tr	2
2,3-Pentanodiona	703	tr	tr	2
Acetato de propilo	707	tr	13	4
Propanoato de etilo	717	46	12	2
Butanoato de metilo	728	703	625	542
3-Metilbutan-1-ol	740	tr	tr	1
2-Metilbutan-1-ol	744	tr	tr	1
2-Metilpropanoato de etilo	751	13	8	5
Acetato de 2-metilpropilo	758	tr	11	12
2-Metilbutanoato de metilo	772	1383	1257	521
3-Metil-3-butenoato de metilo	790	tr	tr	tr
(<i>Z</i>)-3-Hexenal	796	tr	tr	nd
Hexanal	802	tr	tr	1
Butanoato de etilo	806	111	59	19
1,1-Dietoxipropano	812	nd	tr	tr
Acetato de butilo	817	7	4	3
Ácido butanoico	821	tr	nd	tr
Pentanoato de metilo	828	53	55	26
2-Metilbutanoato de etilo	851	331	177	178
(E)-Crotonato de etilo	855	tr	nd	tr
3-Metilbutanoato de etilo	857	5	3	tr
(<i>Z</i>)-3-Hexen-1-ol	859	tr	nd	nd
3-Hidroxibutanoato de metilo	862	tr	nd	2
Tiglato de metilo	873	tr	1	1
1-Metoxi-2-acetoxipropano	877	17	6	3
Acetato de 3-metilbutilo	881	51	24	16
Acetato de 2-metilbutilo	884	35	24	11
Acetato de 3-metil-3-buten-1-ilo	886	2	2	1
Heptan-2-ona	892	4	1	nd
2-Hidroxi-3-metilbutanoato de metilo	895	2	nd	1
2-Acetoxibutan-3-ona	897	tr	tr	nd
n-Nonano	900	1	tr	1
Pentanoato de etilo	902	17	8	1
3-(Metiltio)propanal	905	4	1	12
2-(Metiltio)acetato de metilo	910	6	2	4
5-Hexenoato de metilo	912	19	20	14
2-Hidroxibutanoato de metilo	914	6	2	nd
Hexanoato de metilo	927	3115	3064	2155
Malonato de dimetilo	929	86	15	97
(Z)-3-Hexenoato de metilo	936	tr	5	33
3-Hidroxi-2-metilbutanoato de metilo	938	4	nd	3

Tabla 2 (cont.)

Compuesto	IRL	Oromiel	Cayena	Manzana
(E)-3-Hexenoato de metilo	940	50	40	40
α-Pineno	942	nd	5	nđ
Benzaldehído	960	3	1	2
(E)-2-Hexenoato de metilo	965	3	2	7
β-Pineno	979	1	tr	1
Mirceno	991	13	10	4
Ácido hexanoico	995	17	14	7
Hexanoato de etilo	997	938	394	36
Octanal	999	nd	2	nd
(Z)-3-Hexenoato de etilo	1001	77	8	1
Acetato de hexilo	1009	5	4	tr
α-Terpineno	1017	tr	tr	nd
(E,E)-2,4-Hexadienoato de metilo	1120	2	tr	21
3-(Metiltio)propanoato de metilo	1023	2566	950	1051
<i>p</i> -Cimeno	1025	tr	tr	tr
Limoneno	1027	tr	tr	tr
2-Hidroxihexanoato de metilo	1029	nd	tr	11
1,8-Cineol	1031	tr	nd	tr
2-Etilhexan-1-ol	1034	tr	1	1
(Z)-β-Ocimeno	1037	49	47	tr
3-Acetoxibutanoato de metilo	1040	103	22	3
3-Hidroxihexanoato de metilo	1049	82	nd	tr
(E)-β-Ocimeno	1050	169	170	3
γ-Hexalactona	1057	82	10	48
γ-Terpineno	1059	11	4	6
4-Metoxi-2,5-dimetil-3(2 <i>H</i>)-furanona	1061	3	tr	tr
4-Hidroxi-2,5-dimetil-3(2 <i>H</i>)-furanona	1064	380	59	2
Acetofenona	1067	tr	5	5
(Z)-Óxido de linalol	1070	12	2	4
Malonato de dietilo	1072	tr	nd	nd
Diacetato de threo-butano-2,3-diol	1075	14	3	4
2-Metil-3-oxobutanoato de metilo	1078	173	54	27
Terpinoleno	1089	nd	tr	nd
<i>p</i> -Cimeneno	1091	tr	tr	tr
Benzoato de metilo	1096	5	tr	14
3-(Metiltio)propanoato de etilo	1098	567	130	77
Nonanal	1101	6	4	4
(Z)-4-Octenoato de metilo	1120	65	60	86
Octanoato de metilo	1125	1399	1340	796
3-Hidroxihexanoato de etilo	1128	19	4	4
(E)-3-Octenoato de metilo	1130	2	14	13
(Z)-4-Octenoato de metilo	1135	2	1	1
Alcanfor	1146	4	tr	2
2-Metiloctanoato de metilo	1158	36	29	25
Acetato de bencilo	1162	4	1	tr
<i>p</i> -Menta-1,5-dien-8-ol	1167	tr	tr	nd

Tabla 2 (cont.)

Compuesto	IRL	Oromiel	Cayena	Manzana
(E)-2-Octenoato de metilo	1169	2	3	5
Benzoato de etilo	1171	2	nd	nd
(3 <i>E</i> ,5 <i>Z</i>)-1,3,5-Undecatrieno	1173	19	15	3
(3E,5Z,8Z)-1,3,5,8-Undecatetraeno	1176	35	29	16
Terpinen-4-ol	1178	tr	tr	tr
Fenilacetato de metilo	1179	3	tr	tr
Naftaleno	1181	tr	tr	tr
(3 <i>E</i> ,5 <i>E</i>)-1,3,5-Undecatrieno	1183	27	11	5
(3E,5E,8Z)-1,3,5,8-Undecatetraeno	1185	63	33	21
(Z)-4-Octenoato de etilo	1187	50	25	9
α-Terpineol	1189	28	2	nd
Ácido octanoico	1191	9	tr	34
Acetato de 1-feniletilo	1194	tr	tr	tr
(E)-4-Octenoato de etilo	1196	tr	nd	34
Octanoato de etilo	1198	401	170	30
Decanal	1202	nd	8	36
3-Acetoxihexanoato de metilo	1207	347	125	720
4-Acetoxihexanoato de metilo	1233	180	50	596
2-Fenilacetato de etilo	1247	3	nd	nd
Hexanoato de 3-metilbutilo	1252	tr	tr	1
γ-Octalactona	1254	29	10	nd
5-Acetoxihexanoato de metilo	1256	0	81	nd
Acetato de 2-feniletilo	1259	372	10	nd
(E)-2-Decenal	1264	nd	1	nd
δ-Octalactona	1290	tr	tr	tr
Ácido nonanoico	1297	tr	2	12
n-Tridecano	1300	5	2	20
5-Acetoxihexanoato de etilo	1302	66	22	43
Nonanoato de etilo	1320	9	2	nd
Decadienoato de metilo	1324	21	210	107
Decanoato de metilo	1326	135	114	56
δ-Elemeno	1338	tr	3	nd
Eugenol	1359	tr	tr	tr
Ciclosativeno	1371	13	10	nd
1,3,5-Undecatrien-9-ona	1373	tr	3	4
α-Ilangeno	1375	tr	9	nd
Ácido decanoico	1377	33	tr	3
α-Copaeno	1379	258	195	tr
Acetato de geranilo	1381	tr	tr	tr
(E)-4-Decenoato de etilo	1383	20	9	4
Decadienoato de etilo	1385	43	24	nd
Hexanoato de hexilo	1387	tr	nd	nd
β-Elemeno	1391	nd	tr	nd
3-Hidroxioctanoato de metilo	1394	21	21	107
Decanoato de etilo	1396	51	2	1
n-Tetradecano	1400	5	3	tr

Tabla 2 (cont.)

Compuesto	IRL	Oromiel	Cayena	Manzana
Metil eugenol	1406	4	2	1
α-Gurjuneno	1410	26	21	nd
5-Acetoxioctanoato de metilo	1415	32	15	262
(E)-Cariofileno	1419	19	6	tr
β-Сораепо	1432	26	18	nd
Octanoato de 3-metilbutilo	1451	tr	2	1
trans-Muurola-3,5-dieno	1453	12	4	nd
α-Humuleno	1455	15	4	tr
(E)-β-Farneseno	1458	5	3	nd
γ-Decalactona	1467	10	5	5
Germacreno D	1485	69	55	nd
(E)-β-Ionona	1488	tr	nd	6
β-Selineno	1490	14	3	tr
(Z,E) - α -Farneseno	1492	56	42	nd
δ-Decalactona	1494	tr	nd	7
α-Muuroleno	1500	220	191	4
β-Bisaboleno	1505	10	7	1
Miristicina	1519	nd	1	5
δ-Cadineno	1523	67	48	5
trans-Cadina-1(2),4-dieno	1535	9	6	6
α-Calacoreno	1546	4	4	3
β-Calacoreno	1564	tr	6	nd
Ácido dodecanoico	1568	53	4	62
γ-Undecalactona	1571	tr	tr	2
Espatulenol	1579	10	5	2
Dodecanoato de etilo	1594	7	4	nd
n-Hexadecano	1600	6	3	5
Tetradecanal	1613	4	nd	1
1,10-di- <i>epi</i> -Cubenol	1618	7	6	nd
Benzofenona	1629	nd	nd	1
<i>epi</i> -α-Muurolol	1642	5	4	nd
α-Muurolol	1645	6	1	nd
α-Eudesmol	1653	3	nd	nd
Selin-11-en-4-α-ol	1660	9	10	nd
γ-Dodecalactona	1678	33	13	5
n-Heptadecano	1700	18	13	5
Tetradecanoato de metilo	1723	5	2	2
Hexanoato de geranilo	1755	11	9	nd
Ácido tetradecanoico	1779	8	21	tr
14-Hidroxi-α-muuroleno	1783	55	48	nd
Tetradecanoato de etilo	1796	3	2	1
n-Octadecano	1800	11	6	7
Acetato de (<i>E,E</i>)-farnesilo	1843	6	4	4
Octanoato de 2-feniletilo	1847	2	1	nd
Ácido pentadecanoico	1868	16	5	30

Tabla 2 (cont.)

Compuesto	IRL	Oromiel	Cayena	Manzana
n-Nonadecano	1900	12	6	6
Hexadecanoato de metilo	1921	3	tr	4
Ácido hexadecanoico	1960	67	6	80
Hexadecanoato de etilo	1993	6	4	2
<i>n</i> -Eicosano	2000	6	3	5
Octadecan-1-ol	2078	23	3	8
<i>n</i> -Heneicosano	2100	20	7	37
Octadecanoato de metilo	2123	1	nd	tr
Ácido octadecanoico	2180	102	22	86
Octadecanoato de etilo	2195	4	1	tr
<i>n</i> -Tricosano	2300	109	23	296
TOTAL		17 510	11 390	9 140

IRL: índice de retención lineal. nd: no detectado. tr: <1 μg/kg.

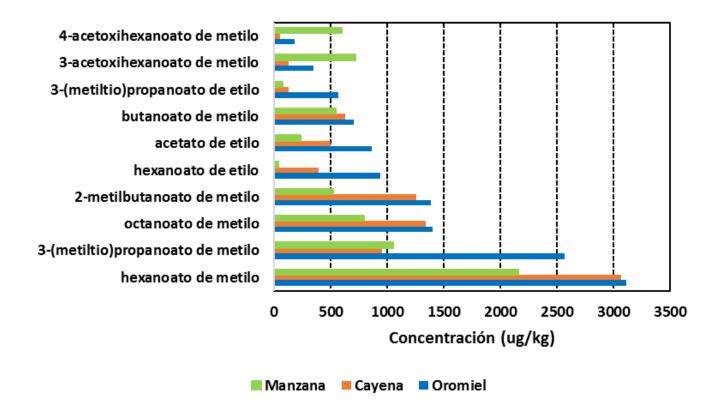


Fig. 1. Distribución de los componentes volátiles mayoritarios en variedades de piña cultivadas en Colombia.

Tabla 3. Valores de actividad de olor de los compuestos volátiles.

Compuesto	UDO ^a (ug/kg)	Oromiel	Cayena	Manzana	Descriptor de olor ^b
Propanoato de metilo	10	20	15	6	frutal
3-Metilbutanal	3	<1	<1	1	manzana
2-Metilpropanoato de metilo	6,3	14	12	6	piña
Propanoato de etilo	10	5	1	<1	piña
Butanoato de metilo	59	145	121	108	manzana-piña
2-Metilpropanoato de etilo	0,1	130	81	52	frutal, dulce
2-Metilbutanoato de metilo	2	692	629	261	dulce, frutal
(Z)-3-Hexenal	0,25	<1	1	<1	verdoso
Butanoato de etilo	1	111	59	19	frutal, piña
Pentanoato de metilo	20	3	3	1	frutal
2-Metilbutanoato de etilo	0,2	1656	883	892	frutal
3-Metilbutanoato de etilo	0,1	49	28	5	frutal
Acetato de 3-metilbutilo	2	26	12	8	plátano
Acetato de 2-metilbutilo	5	7	5	2	piña
Pentanoato de etilo	5	3	2	<1	frutal
3-(Metiltio)propanal	0,2	18	4	59	papa cocida
Hexanoato de metilo	70	45	44	31	piña
α-Pineno	6	<1	1	<1	madera
Hexanoato de etilo	1	938	394	36	frutal, piña
Octanal	0,7	<1	3	<1	cítrico
(Z)-3-Hexenoato de etilo	1	77	8	1	piña
Acetato de hexilo	2	2	2	<1	frutal
3-(Metiltio)propanoato de metilo	180	14	5	6	piña al diluirse
(Z)-β-Ocimeno	34	1	1	<1	herbáceo, dulce-floral
4-Hidroxi-2,5-dimetil-3(2 <i>H</i>)-furanona	10	38	6	<1	piña cocida
Benzoato de metilo	0,5	10	<1	29	frutal
3-(Metiltio)propanoato de etilo	1	567	130	77	frutal, piña
Nonanal	2,8	2	1	1	floral
Octanoato de metilo	200	7	7	4	frutal, vinoso
(3 <i>E</i> ,5 <i>Z</i>)-1,3,5-Undecatrieno	0,02	938	770	161	piña fresca
(3 <i>E</i> ,5 <i>Z</i> ,8 <i>Z</i>)-1,3,5,8-Undecatetraeno	0,002	17407	14550	7934	piña fresca
Fenilacetato de metilo	0,025	134	<1	<1	miel intenso
(3 <i>E</i> ,5 <i>E</i> ,8 <i>Z</i>)-1,3,5,8-Undecatetraeno	20	3	2	1	dulce, frutal
(<i>Z</i>)-4-Octenoato de etilo	50	1	1	<1	frutal
Octanoato de etilo	192	2	1	<1	floral, frutal
Decanal	0,1	<1	77	360	floral, cítrico
γ-Octalactona	7	4	1	<1	melocotón
Acetato de 2-feniletilo	5	74	2	<1	rosa, miel
(E)-2-Decenal	1	<1	<1	1	naranja
γ-Decalactona	0,43	24	11	12	frutal, dulce
(E)-β-Ionona	3,5	<1	<1	2	floral
γ-Undecalactona	2,1	<1	<1	1	frutal, melocotón
-					
γ-Dodecalactona	7	5	2	1	frutal, dulce

Tabla 3. (cont.)

Con valores de actividad de olor <1

Acetato de etilo, 1-penten-3-ol, 3-metilbutan-1-ol, 2-metilbutan-1-ol, 2,3-pentanediona, acetato de 2-metilpropilo, acetato de propilo, hexanal, acetato de butilo, ácido butanoico, (Z)-3-hexen-1-ol, 2-heptanona, 5-hexenoato de metilo, benzaldehído, β -pineno, ácido hexanoico, p-cimeno, limoneno, 1,8-cineol, 2-etilhexan-1-ol, γ -hexalactona, 4-metoxi-2,5-dimetil-3(2H)-furanona, acetofenona, óxido de (Z)-linalol, terpinoleno, alcanfor, acetato de bencilo, benzoato de etilo, terpinen-4-ol, (3E,5E)-1,3,5-undecatrieno, α -terpineol, ácido octanoico, 2-fenilacetato de etilo, δ -octalactona, ácido nonanoico, nonanoato de etilo, eugenol, ácido decanoico, acetato de geranilo, decanoato de etilo, (E,Z)-2,4-decadienoato de etilo, hexanoato de hexilo, metileugenol, (E)-cariofileno, α -humuleno, δ -decalactona, ácido nonanoico, ácido dodecanoico, dodecanoato de etilo, tetradecanal, benzofenona, ácido tetradecanoico, tetradecanoato de metilo, ácido pentadecanoico, hexadecanoico de metilo, ácido hexadecanoico, hexadecanoato de etilo, octadecan-1-ol, octadecanoato de metilo, ácido octadecanoico, octadecanoato de etilo

CONCLUSIONES

Los perfiles de compuestos volátiles de las tres variedades estudiadas fueron distintos. Se aislaron 183, 173 y 153 compuestos volátiles en las variedades Oromiel, Cayena y Manzana, respectivamente, con un contenido total de 17,51; 11,39 y 9,14 mg/kg en cada una de ellas. La composición de los extractos estuvo constituida mayoritariamente por ésteres, seguidos de aldehídos, alcoholes, ácidos, terpenos, furanos y otros de distinta naturaleza química. Basado en la determinación de los valores de actividad de olor, 35, 37 y 30 compuestos deben contribuir al aroma característico de las variedades Oromiel, Cayena y Manzana, respectivamente. La contribución al aroma de cada uno de ellos difiere según la variedad.

REFERENCIAS BIBLIOGRÁFICAS

- Agronegocios (2018). URL https://www.agronegocios.co/agricultura/la-produccion-de-pina-en-colombia-llegaria-a-118-millones-de-toneladas-al-finalizar-el-ano-2895397. Visitado 20 Abril 2020.
- Akioka, T., & Umano, K. (2008). Volatile components and characteristic odorants in headspace aroma obtained by vacuum extraction of Philippine pineapple (*Ananas comosus* [L.] Merr.). En: H. Tamura (Ed.), *Food Flavor* (pp. 57-67). Washington, DC: American Chemical Society.
- Almora, K., Pino, J. A., & Ortega, A. (2001). Desarrollo de una base de datos para umbrales de detección de olor de compuestos volátiles. *Cienc. Tecnol. Alim.*, 11(2), 39-45.
- AOAC. (2012). Official Methods of Analysis. 19th edn., Washington DC: Association of Official Analytical Chemists.
- Berger, R. G., Drawert, F., Kollmannsberger, H., Nitz, S., & Schraufstetter, B. (1985). Novel volatiles in pineapple fruit and their sensory properties. *J. Agric. Food Chem.*, 33, 232-235.

- Braga, A. M. P., Silva, M. A., Pedroso, M. P., Augusto, F., & Barata, L. E. S. (2010). Volatile composition changes of pineapple during drying in modified and controlled atmosphere. *Int. J. Food Eng.*, *6*(1), article 12.
- Brat, P., Thi Hoang, L. N., Soler, A., Reynes, M., & Brillouet, J.M. (2004). Physicochemical characterization of a new pineapple hybrid (FLHORAN41 Cv.). *J. Agric. Food Chem.*, 52, 6170-6177.
- Burdock, G. A. (2010). Fenaroli's Handbook of Flavor Ingredients. Boca Raton, FL: Taylor & Francis Group.
- Denon, Q., Baenst, I., Sürengil, G., De Baets, B., & Devlieghere, F. (2014). Effect of initial headspace oxygen level on growth and volatile metabolite production by the specific spoilage microorganisms of fresh-cut pineapple. *LWT Food Sci. Technol.*, 55, 224-231.
- FAO (2016). FAO database. URL http://faostat.fao.org/. Visitado 27 Abril 2020.
- Hossain, M. F. (2016). World pineapple production: An overview. *Afr. J. Food Agric. Nutr. Dev.*, 16(4), 11443-11456.
- Kaewtathip, T., & Charoenrein, S. (2012). Changes in volatile aroma compounds of pineapple (*Ananas comosus*) during freezing and thawing. *Int. J. Food Sci. Technol.*, 47, 985-990.
- Liu, C. H., Liu, Y., Xie, S. L., Ke, K. W., Zhong, Y., Jiang, B., Zhou, J. H., & Yi, G. J. (2009). Analysis of aroma components of pineapple fruit at different ripening stages. *Chin. J. Trop. Crops*, 30, 234-237.
- Liu, C. H., Liu, Y., Yi, G. J., Li, W. L., & Zhang, G.P. (2011). Comparison of aroma components of pineapple fruits ripened in different seasons. *Afr. J. Agric. Res.*, 6, 1771-1778.
- Montero-Calderón, M., Rojas-Graü, A., & Martín-Belloso, O. (2010a). Pineapple (*Ananas comosus* [L.] Merril) flavor. En: Y. H. Hui (Ed.), *Handbook of Fruit and Vegetable Flavors* (pp. 391-414). Hoboken, NJ: John Wiley & Sons, Inc.
- Montero-Calderón, M., Rojas-Graü, A., & Martín-Belloso, O. (2010b). Aroma profile and volatiles odor activity along Gold cultivar pineapple flesh. *J. Food Sci.*, 75, 506-512.
- Pino, J. A. (2013). Odour-active compounds in pineapple (*Ananas comosus* [L.] Merril cv. Red Spanish). *Int. J. Food Sci. Technol.*, 48, 564-570.
- Pino, J. A. (2018). Pineapple fruit aroma compounds: State of the art research. En: L. Hampton (Ed.), *The Pineapple. Production, Utilization and Nutritional Properties* (pp. 1-42). New York: Nova Science Publishers, Inc.
- Pino, J. A., & Aragüez, Y. (2020). Compuestos activos del aroma de la piña cv. Española Roja determinados por extracción líquida-líquida. *Cienc. Tecnol. Alim.*, 30(2) (aceptado).

- Quijano, C. E., & Pino, J. A. (2007). Analysis of volatile compounds of camu-camu (*Myrciaria dubia* (HBK) mcvaugh) fruit isolated by different methods. *J. Essent. Oil Res.*, 19, 527-523.
- Sinuco, D. C., Morales, A. L., & Duque, C. (2004). Free and glycodisically bound volatile components from pineapple (*Ananas comosus* L.) Var. Perolela. *Rev. Colomb. Quím., 33*, 47-56.
- Song, H. & Liu, J. (2018). GC-O-MS technique and its applications in food flavor analysis. *Food Res. Int. 114*, 187-198.
- Steingass, C. B., Grauwet, T., & Carle, R. (2014). Influence of harvest maturity and fruit logistics on pineapple (*Ananas comosus* [L.] Merr.) Volatiles assessed by headspace solid phase microextraction and gas chromatography–mass spectrometry (HS-SPME-GC/MS). *Food Chem.*, 150, 382-391.
- Steingass, C. B., Jutzi, M., Müller, J., Carle, R., & Schmarr, H.-G. (2015). Ripening-dependent metabolic changes in the volatiles of pineapple (*Ananas comosus* (L.) Merr.) Fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry. *Anal. Bioanal. Chem.*, 407, 2609-2624.
- Takeoka, G., Buttery, R. G., Flath, R. A., Teranishi, R., Wheeler, E. L., Wieczorek, R. L., & Guentert, M. (1989). Volatile constituents of pineapple (*Ananas comosus* [L.] Merr.). En: R. Teranishi, R. G. Buttery, & F. Shahidi (Eds.). *Flavor Chemistry: Trends and Developments* (pp. 221-237), Washington, DC, USA: American Chemical Society.
- Tokitomo, Y., Steinhaus, M., Büttner, A., & Schieberle, P. (2005). Odor-active constituents in fresh pineapple (*Ananas comosus* [L.] Merr.) By quantitative and sensory evaluation. *Biosci. Biotechnol. Biochem.*, 69(7), 1323-1330.
- Wei, C. B., Liu, S. H., Liu, Y. G., Zang, X. P., Lu, L. L., & Sun, G. M. (2011a). Changes and distribution of aroma volatile compounds from pineapple fruit during postharvest storage. *Acta Hortic.*, 902, 431-436.
- Wei, C. B., Liu, S. H., Liu, Y. G., Lv, L. L., Yang, W. X., & Sun, G.M. (2011b). Characteristic aroma compounds from different pineapple parts. *Molecules, 16*, 5104-5112.
- Zhang, X. M., Du, L. Q., Sun, G. M., Liu, S. H., Wei, C. B., Liu, Z. H., & Xie, J.H. (2009a). Analysis of aromatic components in pineapple varieties. *Food Sci., 30*, 275-279.
- Zhang, X. M., Du, L. Q., Sun, G. M., Wei, C. B., Liu, S. H., & Xie, J.H. (2009b). Changes of aroma components in Yellow Mauritius pineapple during fruit development. *J. Fruit Sci.*, 26, 245-249.
- Zheng, L. Y., Sun, G. M., Liu, Y. G., Lv, L. L., Yang, W. X., Zhao, W. F., & Wei, C.B. (2012). Aroma volatile compounds from two fresh pineapple varieties in China. *Int. J. Mol. Sci.*, 13, 738392.