Secciones
Referencias
Resumen
Servicios
Descargas
HTML
ePub
PDF
Buscar
Fuente


The population structure of Lonchocarpus cultratus in an Atlantic Forest riparian zone of the upper Paraná River, Brazil
Estrutura populacional de Lonchocarpus cultratus em formação florestal ripária de Mata Atlântica no alto rio Paraná, Brasil
Acta Scientiarum. Biological Sciences, vol. 38, no. 4, pp. 411-417, 2016
Universidade Estadual de Maringá

Ecologia e Limnologia



Received: 29 December 2015

Accepted: 03 October 2016

Abstract: The goal of this study was to evaluate the population structure of Lonchocarpus cultratus located in a riparian zone in the flood plain of the upper Paraná River. Data were collected on the stem diameter at breast height (DBH) and the plant height from two phytosociological inventories, which were performed with a 14-year interval, using data collected in studies conducted in 1992 and 2006 in an Atlantic Forest riparian zone remnant of Paraná State, Brazil. Class intervals for DBH and plant height were defined using the Spiegel equation, and the measured values were distributed between the different distinct classes. The distribution of individuals between the different DBH classes was analyzed using de Liocourt’s quotient (q). For both stages of the study, the DBH distribution resulted in an inverted-J curve, as expected for uneven-aged forests. The distribution of the height values was irregular, as expected for an early succession species. The de Liocourt q indicated an unbalanced distribution for both stages. However, there was a tendency towards balance in the second stage. The results imply that the studied population was maturing and maintaining its self-regenerating capacity while tending towards balance and presenting behavior characteristic of early succession species.

Keywords: Diameter structure, forest dynamics, forest fragmentation, recruitment rate.

Resumo: Com o objetivo de avaliar a estrutura populacional de Lonchocarpus cultratus em um trecho de floresta ripária localizado na planície de inundação do alto rio Paraná, analisaram-se os dados de diâmetro e altura obtidos a partir de dois inventários fitossociológicos realizados com intervalo de 14 anos, utilizando-se dados coletados em estudos desenvolvidos em 1992 e 2006 em um remanescente ripário de Mata Atlântica, no Estado do Paraná, Brasil. Os valores de diâmetro e de altura foram distribuídos em intervalos de classes definidos pela fórmula de Spiegel e o quociente “q” de Liocourt foi aplicado para a análise da distribuição de indivíduos entre as classes de diâmetro. A distribuição diamétrica, nas duas etapas do estudo, resultou em uma curva na forma de J-invertido, como esperado para florestas inequiâneas. A distribuição dos valores de altura mostrou-se irregular, característica de espécies de estágios iniciais de sucessão. O quociente “q” de Liocourt apresentou-se com uma distribuição não balanceada para ambas as etapas, porém observou-se uma tendência ao balanceamento na segunda etapa. Concluiu-se que a população analisada encontra-se em processo de amadurecimento, mantendo a capacidade autorregenerante, com tendência ao balanceamento e comportamento característico de espécies de estágios iniciais de sucessão.

Palavras-chave: Estrutura diamétrica, dinâmica florestal, fragmentação florestal, taxa de recrutamento.

Introduction

The patterns in the structures and dynamics of plant populations result from complex interactions between the biotic and abiotic factors that act on individual plants. Studies on this topic can focus on different plant characteristics, such as the size, age or spatial distribution of a given population. Analyses of population structures, which exist in a given environment at a given moment, can be performed using one-off surveys. However, periodic and long-

term surveys are needed for population dynamics analyses because such surveys quantify demographic data such as mortality, recruitment and growth (Harper, 1990; Schiavini, Resende, & Aquino, 2001; Aquino, Oliveira, Ribeiro, & Schiavini, 2002; Aquino, Walter, & Ribeiro, 2007; Lopes, 2007).

Several authors have studied forest succession dynamics by analyzing changes in plant height and diameter at determined time intervals (Rosa & Schiavini, 2006; Braga & Rezende, 2007; Santana, Vieira, Pacheco, & Oliveira, 2011). In this aspect, the diametric distribution analysis of forests uneven-aged[1] enables better knowledge and understanding of the species that make up the forest, allowing better planning for the establishment of appropriate strategies for the conservation and management (Batista et al., 2015). Several studies have been developed for determining the diameter distributions in uneven-aged stands forests. In this way, the diameter distribution assumes considerable importance in raising the horizontal structure of a forest by allowing characterize a forest type and also to be an inventory indicator growth species. Besides that, provides data for decision making and planning of sustainable forest management (Carim, Guillaumet, Guimarães, & Tostes, 2013; Abreu, Guedes, Guedes, & Batista, 2014; Santos et al., 2016).

These types of data have also been used to make inferences about possible past disturbances, such as selective cuttings, fires and deforestations (Arantes & Schiavini, 2011).

The flood plain of the upper Paraná River (in the States of Paraná and Mato Grosso do Sul, Brazil) is located in the Atlantic Forest (Mata Atlântica) phytogeographical domain. The plain contains riparian formations that vary from fields to forests. Floristic and phytosociological inventories, performed since 1986, have revealed a heterogeneous plant cover that is affected by variables such as exposure to flooding and anthropic influences; effects resulting from the construction of hydroelectric are particularly impactful. Fortunately, the creation of Conservation Units and the application of riparian zone protection laws have allowed ecological succession to progress in several zones (Campos & Souza, 2002, 2003; Souza et al., 2004; Corradini, Fachini, & Stevaux, 2006; Souza, Kawakita, Slusarski, & Pereira, 2009; Slusarski & Souza, 2012).

Lonchocarpus cultratus (Vell.) Azevedo-Tozzi & H. C. Lima (Leguminosae-Faboideae) is a tree species native to Brazil, where it is widely distributed (Silva & Tozzi, 2012). Its manner of seed dispersion is anemochorous (Carmo & Morellato, 2000). L. cultratus is classified as a heliophyte, and depending on the environment, it can behave as a pioneer (Lorenzi, 2002), early secondary (Durigan, Figliolia, Kawabata, Garrido, & Baitello, 1997) or late secondary (Ferretti et al., 1995) species. Due to its good adaptation to low fertility conditions, it has been recommended for planting in dry or humid degraded areas, where it can tolerate periodic flooding (Durigan et al., 1997).

In the Upper Paraná River Flood Plain (UPRFP), the distribution of L. cultratus is restricted to the left bank of the Paraná River (Slusarski & Souza, 2012). There, it presents as a phytosociological representative of a remnant forest called Mata do Araldo; the distribution’s importance value index (IVI) was found to be the highest of those in two separate surveys, which were performed approximately 14 years apart (Souza, 1998; Slusarski, 2009).

Considering the high IVI observed for L. cultratus in those two surveys (Souza, 1998; Slusarski, 2009), the goal of the present study was to compare its population structures at the two survey times using stem diameter and plant height. This study’s hypothesis is that variations in the population structure occurred during this time interval and that these variations may be associated with the succession dynamics of L. cultratus within the community.

Material and methods

Study site

The study site is located in the South region of Brazil and includes a fragment of disturbed forest, called Mata do Araldo (Figure 1). That forest is on a stretch of the left bank of the Paraná river belonging to the Upper Paraná River Flood Plain (UPRFP), in the municipality of Porto Rico, State of Paraná (PR), Brazil (22º47’ S and 53º19’ W), at an altitude of 240-260 m. The region’s climate is a Cfa type, according to the Köppen climate classification, and is characterized as subtropical, humid and mesothermal, with hot summers and 1,500 mm average annual rainfall (IAPAR, 2012).

The studied forest remnant has an area of approximately 20 ha and is included in the Atlantic Forest biome (EMBRAPA, 1996; Brasil, 2006) and the Semideciduous Seasonal Forest Phytoecological Region (IBGE, 2012). It is a disturbed area that had been exposed to fires, trail construction and cattle treading before the 1990s (Souza, 1998). Phytosociological surveys of the tree components of this forest remnant were performed in a 1-hectare area in two stages. Sixty-two species were observed in Stage 1 (April to December 1992) (Souza, 1998), and 66 species were identified in Stage 2 (November 2005 to February 2006) (Slusarski, 2009). Lonchocarpus cultratus was found to be the dominant community in both surveys, presenting high IVI values (78.2 for Stage 1 and 83.8 for Stage 2) (Table 1).


Figure 1
Mata do Araldo localization, riparian forest remnant, UPRFP, municipality of Porto Rico, PR, Brazil. (Map credit: Jaime Luis Lopes Pereira/Nupélia/UEM, 2010)

Table 1
The phytosociological parameters of Lonchocarpus cultratus, as obtained in two surveys performed at the same sampling site in different stages. The sampling site was the Mata do Araldo riparian forest remnant, UPRFP, municipality of Porto Rico, PR, Brazil

Data collection and analysis

Values for the stem diameter at breast height (DBH ≥ 4.8 cm) and the plant height of L. cultratus individuals were obtained from two phytosociological surveys performed at an approximate 14 year interval (Table 1). The survey area was a 1 ha (100 x 100 m) plot, delimited by the river margin and subdivided in 50 subplots of 200 m² (20 x 10 m) each (Souza, 1998; Slusarski, 2009).

DBH and plant height values were distributed between different classes. Class intervals were determined using the Spiegel equation: CI = A/NC, where A = amplitude, NC (number of classes) = 1 + 3.3 log (n) and n = number of individuals (Felfili, 1995). Calculations were performed using values from Stages 1 and 2 (Arantes & Schiavini, 2011).

The recruitment of individuals from one class to another was determined based on DBH data and using the de Liocourt q, which was calculated by dividing the number of individuals in one class by the number of individuals in the class immediately before (Carvalho & Nascimento, 2009; Carvalho, Jacobson, Costa, Santos, & Hay, 2009). The de Liocourt q is based on the decline in number of trees of a given diameter class relative to the higher diameter found (Alves Júnior et al., 2010).

Results

During Stage 1, 318 individuals were sampled, with 18.4 cm and 12.8 m average values of DBH and plant height, respectively. During Stage 2, 310 individuals were sampled, with 21.7 cm and 20.8 m average values of DBH and plant height, respectively (Table 2). With time, an increase was observed in the maximum values of both DBH (from 76.5 to 84.6 cm) and plant height (from 27.0 to 37 m).

Table 2
he stem diameter and height of Lonchocarpus cultratus, as determined by phytosociological surveys performed in two stages with an approximate 14 year interval. The sampling site was the Mata do Araldo riparian forest remnant, UPRFP, municipality of Porto Rico, PR, Brazil (SD = standard deviation)

* Minimum value established in the sampling criteria

A 10.5 cm class interval was determined for the DBH, establishing eight different classes (Table 3). It should be highlighted that class eight exclusively included individuals from Stage 2. Negative exponential curves (inverted-J shape) were obtained for the distribution of the number of individuals per class in each of the two survey stages. This result indicates a decrease in the smaller classes in favor of the larger classes over time.

Table 3
The stem diameter (DBH) classes with their respective intervals and numbers of Lonchocarpus cultratus individuals. The sampling site was the Mata do Araldo riparian forest remnant, UPRFP, municipality of Porto Rico, PR, Brazil

A 22.3% decrease in the number of individuals belonging to the first class was observed between Stages 1 and 2, whereas the remaining classes increased in population with class 4 being the largest (93%).

The average value of q, which indicates the recruitment of individuals from one class to another, was different for the two stages (0.45 for Stage 1 and 0.56 for Stage 2) (Figure 2). In Stage 1, the class q value closest to the overall average was 0.48, found for q1 (classes 1-2). The values obtained for q3 and q5 were lower than the average, and higher values were found for q2, q4 and q6. This indicates that q1 presented balanced recruitment rates and mortality during Stage 1. For the remaining classes, the values differed from the average without a continuity pattern, indicating low recruitment rates in q2, q4 and q6 and high rates in q3 and q5. During Stage 2, however, values closer to the average were observed in multiple classes (0.57 for q2 and 0.60 for q3 and q6). Values lower than the stage average were found for q4 and q5, and higher values were found for q1 and q7. This observation indicates that the population was more balanced during the second stage, as it presented class values closer to the overall average (Figure 2).

A 3.7 m interval was determined for plant height using the Spiegel equation, establishing ten different classes. Classes 8, 9 and 10 exclusively included individuals from Stage 2. Higher evenness in the distribution of the number of individuals per class was observed in Stage 1; those population values increased up to class 3, where a peak in number of individuals was reached (23.6%), and then decreased for higher classes (Table 4).


Figure 2
The de Liocourt q values and averages (Stage 1 = 0.45 and Stage 2 = 0.56) for a Lonchocarpus cultratus population, which was surveyed in two stages with an approximate 11-year interval. The sampling site was the Mata do Araldo riparian forest remnant, UPRFP, municipality of Porto Rico, PR, Brazil

In both stages, the individual distribution was observed to be uneven for higher classes. Up to class 6, there was a decrease in the number of individuals, but increases were observed from classes 7 and up, particularly for class 9 and its 56 individuals (Table 4).

Table 4
The distribution of individuals of a Lonchocarpus cultratus population between different plant height classes with 3.7 m intervals. The sampling site was the Mata do Araldo riparian forest remnant, UPRFP, municipality of Porto Rico, PR, Brazil

Discussion

The L. cultratus population studied presented increasing averages and maximum values of DBH between Stages 1 and 2. The sampling space was occupied by a higher number of individuals with a higher stem diameter, regardless of the decrease in the total number of individuals found during the studied period. This evidence indicates that the population is maturing (Schaaf, Figueiredo-Filho, Galvão, & Sanquetta, 2006). The area occupied by L. cultratus increased exclusively due to the higher number of individuals with larger stem diameters, as the total number of individuals decreased between Stages 1 and 2.

In both stages, the distribution of individuals between the different diameter classes presented the expected behavior for uneven-aged forests, i.e., a negative exponential distribution (Harper, 1990; Felfili, 1997; Felfili, Silva Júnior, & Nogueira, 1998; Silva Júnior, 2004; Schaaf et al., 2006). This distribution indicates a self-regenerating population because it presents individuals in all stem diameter classes and shows a higher number of individuals in the lower stem diameter classes (Arantes & Schiavini, 2011), which guarantees the survival of natural plant populations (Santana et al., 2011). However, the structure data are not sufficient to predict a possible expansion of the species at the studied site, and further long term studies of the population dynamics are needed (Arantes & Schiavini, 2011).

The obtained results indicated the success of the L. cultratus regeneration. However, the de Liocourt q values obtained for the two stages of the study, with values differing from the average, indicated that the recruitment and mortality rates were not balanced between the different DBH classes. Thus, the forest structure changes over time, a result of the discrepancy between its mortality and recruitment rates (Felfili et al., 1998).

The de Liocourt q determines the shape of the stem diameter distribution curve (Felfili et al., 1998). This parameter has been used to infer recruitment and mortality rates in forests and to estimate whether the community or the population is balanced (Alves Júnior et al., 2010). The stem diameter distribution is considered balanced when the decrease in the number of individuals from one class to the following class occurs at a constant rate (Felfili, 1997; Nascimento, Felfili, & Meirelles, 2004; Alves Júnior, Ferreira, Silva, Maragon, & Costa Júnior, 2009; Alves Júnior et al., 2010). The diameter distribution of the population behaved as expected for uneven-aged stands forests due to present diametric distribution curve, resembling a "J-reverse", showing that, in native forests, there is a tendency of balance between mortality and recruitment (Meira, Cabacinha, Gama, Martins, & Figueiredo, 2016). The presence of q values lower than the calculated average indicates a high capacity for population regeneration, whereas q values above the average indicate low recruitment rates (Carvalho & Nascimento, 2009). According to Alves Júnior et al., (2010), most of the studies on the diameter structure of natural forests in Brazil only describe and discuss the shape of the curve (inverted-J), while few report q values.

The distribution of individuals between the different plant height classes varied in the two studied stages. Individuals recruited in previous years were observed to move to the following, higher, plant height classes. The variation in distributions between the different plant height classes may be related to the natural dynamics of L. cultratus, which invests in stem elongation to the detriment of stem diameter, presenting many tall and thin individuals at Stage 1 (Souza, 1998). This characteristic is associated with species of early succession stages, which are light demanding but can tolerate shade in the early phases of development, presenting moderate to fast initial growth (Renner, Bittencourt, Oliveira, & Radomski, 2010). At the interior of the Mata do Araldo, L. cultratus presents the behavior of an early secondary species, germinating in the shade, with individuals that can outgrow the canopy height (Souza, 1998).

The expansion of the studied population seems to be favored by the forest maintenance process. However, it cannot be concluded that the studied population is in continuous expansion based only on the collected data, and periodic monitoring of recruitment and mortality events over several years of study is needed to establish the population dynamics.

Conclusion

In both stages, the studied Lonchocarpus cultratus population presented behavior characteristic of early succession species. The population was also observed to be maturing, maintaining the capacity for self-regeneration and non-compensatory recruitment rates but with a tendency towards balance. The results suggest that the Mata do Araldo L. cultratus population tends towards a community equilibrium, which supports our initial hypothesis. Further periodic evaluations, including other species of the community with higher IVI values, are essential to a better understanding of the succession dynamics of the studied forest remnant.

References

Abreu, J. C., Guedes, M. C., Guedes, A. C. L., & Batista, E. M. (2014). Estrutura e distribuição espacial de andirobeiras (Carapa spp.) em Floresta de Várzea do Estuário Amazônico. Ciência Florestal, 24(4), 1007-1016.

Alves Júnior, F.T., Ferreira, R. L. C., Silva, J. A. A., Marangon, L. C., & Costa Júnior, R. F. (2009). Estrutura diamétrica de um fragmento de Floresta Atlântica em matriz de cana-de-açúcar, Catende, Pernambuco. Revista Brasileira de Engenharia Agrícola e Ambiental, 13(3), 328-333.

Alves Júnior, F. T., Ferreira, R. L. C., Silva, J. A. A., Marangon, L. C., Costa Júnior, R. F., & Silva, S. O. (2010). Utilização do quociente de De Liocourt na avaliação da distribuição diamétrica em fragmentos de Floresta Ombrófila aberta em Pernambuco, Brasil. Ciência Florestal, 20(2), 307-319.

Aquino, F. G., Oliveira, M. C., Ribeiro, J. F., & Schiavini, I. (2002). Ecologia populacional de espécies arbóreas na Estação Ecológica do Panga (Uberlândia - MG) (Boletim de pesquisa e desenvolvimento, 26). Planaltina, DF: Embrapa Cerrados.

Aquino, F. G., Walter, B. M. T., & Ribeiro, J. F. (2007). Dinâmica de populações de espécies lenhosas de cerrado, Balsas, Maranhão. Revista Árvore, 31(5), 793-803.

Arantes, C. S., & Schiavini, I. (2011). Estrutura e dinâmica da população de Amaioua guianensis Aubl. (Rubiaceae) em fragmento urbano de Floresta Estacional Semidecidual - Urbelândia, Minas Gerais. Bioscience Journal, 27(2), 312-321.

Batista, A. P. B., Aparicío, W. C. S., Aparício, P. S., Santos, V. S., Lima, R. B., & Mello, J. M. (2015). Caracterização estrutural em uma floresta de terra firme no estado do Amapá, Brasil. Pesquisa Florestal Brasileira, 35(81), 21-33.

Braga, F. M. S., & Rezende, A. V. (2007). Dinâmica da vegetação arbórea da mata de galeria do Catetinho, Brasília-DF. Cerne, 13(2), 138-148.

Brasil. (2006). Lei nº 11.428, de 22 de dezembro de 2006. Diário Oficial, Brasília, DF, Seção 1 (Retificada no DOU de 9 jan. 2007). Retrieved from http://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2006/Lei/L11428.htm.

Campos, J. B., & Souza, M. C. (2002). Arboreous vegetation of an alluvial riparian forest and their soil relations: Porto Rico island, Paraná River, Brasil. Brazilian Archives of Biology and Technology, 45(2), 137-149.

Campos, J. B., & Souza, M. C. (2003). Potencial for natural florest regeneration from seed bank in an upper Paraná River floodplain, Brazil. Brazilian Archives of Biology and Tecnology, 46(4), 625-639.

Carim, M. J. V., Guillaumet, J. L. B., Guimarães, J. R. S., & Tostes, C. L. (2013). Composição e estrutura de floresta ombrófila densa do extremo norte do estado do Amapá, Brasil. Biota Amazônia, 3(2), 1-10.

Carmo, M. R. B., & Morellato, L. P. C. (2000). Fenologia de árvores e arbustos das matas ciliares da Bacia do rio Tibagi, Estado do Paraná, Brasil. In R. R. Rodrigues, & H. F. Leitão Filho (Eds.), Matas Ciliares: conservação e recuperação (p. 125-141) São Paulo, SP: Edusp.

Carvalho, F. A., Jacobson, T. K. B., Costa, A. F., Santos, A. A. B., & Hay, J. V. (2009). Estrutura e distribuição espacial do Barbatimão (Stryphnodendron polyphyllum) em uma área de cerrado no sudeste de Goiás. Revista Trópica - Ciências Agrárias e Biológicas, 3, 14-20.

Carvalho, F. A., & Nascimento, M. T. (2009). Estrutura diamétrica da comunidade e das principais populações arbóreas de um remanescente de Floresta Atlântica Submontana (Silva Jardim, RJ, Brasil). Revista Árvore, 33(2), 327-337.

Corradini, F. A., Fachini, M. P., & Stevaux, J. C. (2006). Controle geomorfológico da distribuição da vegetação ripária do rio Paraná: Parte I - Unidades geomórficas da planície de inundação. Revista UnG - Geociências, 5(1), 13-21.

Daniels, R. F., & Burkhart, H. E. (1988). An integrated system of forest stand models. Foresty Ecology Manegement, 23, 159-177.

Durigan, G., Figliolia, M. B., Kawabata, M., Garrido, M. A. O., & Baitello, J. B. (1997). Sementes e mudas de árvores tropicais. São Paulo, SP: Instituto Florestal.

Empresa Brasileira de Pesquisa Agropecuária [EMBRAPA]. (1996). Atlas do meio ambiente do Brasil. (2a ed.). Brasília, DF: Embrapa - SPI; Terra Viva.

Felfili, J. M. (1995). Growth, recruitment and mortality in the Gama gallery forest in central Brazil over a six-year period (1985-1991). Journal of Tropical Ecology, 11(1), 67-83.

Felfili, J. M. (1997). Diameter and height distributions in a gallery florest community and some of its main species in central Brazil over six-year period (1985-1991). Revista Brasileira de Botânica, 20(2), 155-162.

Felfili, J. M., Silva Júnior, M. C., & Nogueira, P. E. (1998). Levantamento da vegetação arbórea na região de Nova Xavantina, MT. Boletim do Herbário Ezechias Paulo Heringer, 3, 63-81.

Ferretti, A. R., Kageyama, P. Y., Arboez, G. F., Santos, J. D., Barros, M., Lorza, R. F., & Oliveira, C. (1995). Classificação das espécies arbóreas em grupos ecofisiológicos para revegetação com nativas no estado de São Paulo. Florestar Estatístico, 3(7), 73-77.

Harper, J. L. (1990). Population biology of plants. London, Academic Press.

Instituto Agronômico do Paraná [IAPAR]. (2015). Monitoramento Agroclimático do Paraná. Retrieved from http://200.201.27.14/Site/Sma/index.html

Instituto Brasileiro de Geografia e Estatística [IBGE]. (2012). Manual técnico da vegetação brasileira: série manuais técnicos em geociências (2a.ed.). Rio de Janeiro, RJ: IBGE.

Lopes, M. A. (2007). Population structure of Eschweilera coriacea (DC.) S. A. Mori in florest fragments in eastern Brazilia’n Amazonia. Revista Brasileira de Botânica, 30(3), 509-519.

Lorenzi, H. (2002). Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil, 2. (2a ed.). Nova Odessa, SP: Instituto Plantarum.

Meira, M. R., Cabacinha, C. D., Gama, A. T., Martins, E. R., & Figueiredo, L. S. (2016). Caracterização estrutural do barbatimão (Stryphnodendron adstringens (Mart.) Coville) no cerrado do norte de Minas Gerais. Ciência Florestal, 26(2), 627-638.

Nascimento, A. R., Felfili, J. M., & Meirelles, E. M. (2004). Florística e estrutura da comunidade arbórea de um remanescente de Floresta Estacional Decidual de encosta, Monte Alegre, GO, Brasil. Acta Botanica Brasilica, 18(3), 659-669.

Renner, R. M., Bittencourt, S. M., Oliveira, E. B., & Radomski, M. I. (2010). Comportamento de espécies florestais plantadas pelo Programa Mata Ciliar no Estado do Paraná (Documentos, Embrapa Florestas, 196). Colombo, PR: Embrapa.

Rosa, A. G., & Schiavini, I. (2006). Estrutura da comunidade arbórea em um remanescente florestal urbano (Parque do Sabiá, Uberlândia, MG). Bioscience Journal, 22(1), 151-162.

Santana, J. A. S., Vieira, F. A., Pacheco, M. V., & Oliveira, P. R. S. (2011). Padrão de distribuição e estrutura diamétrica de Caesalpinia pyramidalis Tull. (Catingueira) na Caatinga do Seridó. Revista de Biologia e Ciências da Terra, 11(1), 116-122.

Santos, R. O., Abreu, J. C., Lima, R. B., Aparício, P. S., Sotta, E. D., & Lima, R. C. (2016). Distribuição diamétrica de uma comunidade arbórea na Floresta Estadual do Amapá, Brasil. Biota Amazônia, 6(2), 24-31.

Schiavini, I., Resende, J. C. F., & Aquino, F. G. (2001). Dinâmica de populações de espécies arbóreas em matas de galeria e mata mesófila na margem do Ribeirão Panga, MG. In J. F. Ribeiro, C. E. L. Fonseca, & J. C. Souza-Silva (Eds.), Cerrado: caracterização e recuperação de matas de galeria (p. 267-299), Planaltina, GO: Embrapa-CPAC.

Schaaf, L. B., Figueiredo-Filho, A., Galvão, F., & Sanquetta, C. R. (2006). Alteração na estrutura diamétrica de uma Floresta Ombrófila Mista no período entre 1979 e 2002. Revista Árvore, 30(2), 283-295.

Silva, M. J., & Tozzi, A. M. G. A. (2012). Lonchocarpus in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Retrieved from http:\\floradobrasil. jbrj.gov.br/2012/FB023052

Silva Júnior, M. C. (2004). Fitossociologia e estrutura diamétrica da mata de galeria do Taquara, na Reserva Ecológica do IBGE, DF. Revista Árvore, 28(3), 419-428.

Slusarski, S. R. (2009). Avaliação temporal da estrutura de um remanescente florestal ripário na planície de inundação do alto rio Paraná, Porto Rico, Paraná, Brasil. (Tese de Doutorado). Departamento de Biologia, Universidade Estadual de Maringá, Maringá.

Slusarski, S. R., & Souza, M. C. (2012). Analysis of floristic similarity between Forest remnants from the upper Paraná river floodplain, Brazil. Acta Scientiarum. Biological Science, 34(3), 343-352.

Souza, M. C. (1998). Estrutura e composição florística da vegetação de um remanescente florestal da margem esquerda do rio Paraná (Mata do Araldo), Município de Porto Rico, PR. (Tese de Doutorado). Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro.

Souza, M. C., Kita, K. K., Romagnolo, M. B., Tomazini, V., Albuquerque, E. C. Secorun, A. C., & Miola, D. T. B. (2004). Riparian vegetation of the upper Paraná river floodplain, Paraná and Mato Grosso do Sul states, Brazil. In A. A. Agostinho, L. Rodrigues, L. C. Gomes, S. M. Thomaz, & L. E. Miranda (Eds.), Structure and functioning of the Paraná river and its floodplain: LTER - Site 6 (p. 233-238). Maringá, PR: Eduem.

Souza, M. C., Kawakita, K., Slusarski, S. R., & Pereira, G. F. (2009). Vascular flora of the Upper Paraná River floodplain. Brazilian Journal Biology, 69(2), 735-745.

Notes

[1] A forest is defined as even-aged when the variation of tree age is at the maximum 30% of the forest rotation time. Forests in which the variation of the tree age is higher than that limit are defined as uneven-aged or all-aged (Avery & Burkhart 1983, apud Daniels & Burkhart 1988).

Author notes

crisguilherme@gmail.com



Buscar:
Ir a la Página
IR
Scientific article viewer generated from XML JATS4R by