Servicios
Servicios
Buscar
Idiomas
P. Completa
Fish parasite diversity in the Amambai river, State Mato Grosso do Sul, Brazil
Emily Soares Pereira; Juliana Rosa Carrijo Mauad; Ricardo Massato Takemoto;
Emily Soares Pereira; Juliana Rosa Carrijo Mauad; Ricardo Massato Takemoto; Sidnei Eduardo Lima-Junior
Fish parasite diversity in the Amambai river, State Mato Grosso do Sul, Brazil
Diversidade dos parasitas de peixes do rio Amambai, Estado do Mato Grosso do Sul, Brasil
Acta Scientiarum. Biological Sciences, vol. 40, 2018
Universidade Estadual de Maringá
resúmenes
secciones
referencias
imágenes

Abstract: This study aimed to describe the diversity of fish parasites in the Amambai River, in the Mato Grosso do Sul State, and generate information to facilitate studies of the biotic integrity of the region. During the period of September 2015 and July 2015, 48 specimens of 11 species of fish were analyzed for parasites. A total of 56.25% of the fish sampled from the Amambai River were infected with one or more metazoan species. A total of 21,514 parasite specimens belonging to 24 different species we found; they were distributed among six groups: Acanthocephala (Neoechinorhynchida), Cestoda (Proteocephalidea), Crustacea (Ergasilidae), Digenea (Cladorchiidae, Dadaytrema), Monogenea (Dactylogyridae) and Nematoda (Atractidae, Cucullanidae, Camallanidae, Rhabdochonidae). Of these, a monogenean, Mymarothecium sp. and four nematodes – Cucullanus sp.; Procamallanus (Spirocamallanus) inopinatus Travassos, Artigas, and Pereira, 1928; Rabdochona acuminate (Molin, 1860); and Rondonia rondoni Travassos, 1920 – were recorded for the first time on new hosts. This is the first work to gather information about the parasite fauna of fish from Amambai River in the Mato Grosso do Sul State, and provides records that contribute new reports of the occurrence of parasites in new locations.

Keywords:endoparasitesendoparasites, ectoparasites ectoparasites, biodiversity biodiversity, parasite ecology parasite ecology.

Resumo: Este estudo teve por objetivo descrever a diversidade dos parasitos de peixes do rio Amambai, Estado do Mato Grosso do Sul, a fim de gerar informações que possam servir como subsídios para estudos de integridade biótica da região. Entre o período de setembro de 2014 e julho de 2015 foram coletados e analisados 48 espécimes de peixes, pertencentes a 11 espécies. No rio Amambai, no período estudado, um total de 56,25% dos peixes estavam parasitados por pelo menos uma espécie de metazoário. Foram encontrados 21.514 espécimes de parasitos pertencentes a 24 espécies diferentes, distribuídos em seis grupos: Acanthocephala (Neoechinorhynchida), Cestoda (Proteocephalidea), Crustacea (Ergasilidae), Digenea (Cladorchiidae, Dadaytrema), Monogenea (Dactylogyridae) e Nematoda (Atractidae, Cucullanidae, Camallanidae, Rhabdochonidae). Destes, um Monogenea, Mymarothecium sp. e quatro Nematoda – Cucullanus sp.; Procamallanus (Spirocamallanus) inopinatus Travassos, Artigas, and Pereira, 1928; Rabdochona acuminate (Molin, 1860); e Rondonia rondoni Travassos, 1920 – foram registrados pela primeira vez em novos hospedeiros. Este é o primeiro trabalho que reúne informações sobre a fauna parasitária de peixes provenientes do rio Amambai, no Estado do Mato Grosso do Sul, onde os registros ampliam a lista de novos relatos de ocorrência de parasitos em novas localidades.

Palavras-chave: endoparasitos, ectoparasitos, biodiversidade, ecologia de parasitos.

Carátula del artículo

Ecologia

Fish parasite diversity in the Amambai river, State Mato Grosso do Sul, Brazil

Diversidade dos parasitas de peixes do rio Amambai, Estado do Mato Grosso do Sul, Brasil

Emily Soares Pereira
Universidade Estadual do Mato Grosso do Sul, Brasil
Juliana Rosa Carrijo Mauad
Universidade Federal da Grande Dourados, Brasil
Ricardo Massato Takemoto
Universidade Estadual de Maringá, Brasil
Sidnei Eduardo Lima-Junior
Universidade Estadual do Mato Grosso do Sul, Brasil
Acta Scientiarum. Biological Sciences, vol. 40, 2018
Universidade Estadual de Maringá

Received: 21 March 2017

Accepted: 06 December 2017

Introduction

The continental waters of Brazil possess great species richness and diversity of living organisms, including parasites of natural fish populations (Agostinho, Thomaz, & Gomes, 2005). Parasites are components of most ecosystems and are involved in numerous food webs and all trophic levels. Most vertebrate species serve as a host of one or more parasite species (Lagrue, Kelly, Hicks, & Poulin, 2011). Among vertebrates, fish have the highest rates of infection by parasites because of the unique characteristics of their aquatic environment, which facilitate the spread, reproduction and life-cycle completion of each parasite group.

The parasite fauna of freshwater fish can vary in composition depending on the host species, its level in the food chain, the age, size and sex of individual fish, and other biotic and abiotic factors (Takemoto & Lizama, 2010).

Knowledge of the parasite fauna of fish can provide information on the biology of the host, the host-parasite relationship, zoonotic potential and/or importance for fish farming. Fish parasites also constitute an important instrument for biodiversity assessment (Abdallah, Azevedo, & Luque, 2004), and can help to more completely understand the biosphere (Luque & Poulin, 2007).

Introduction

The continental waters of Brazil possess great species richness and diversity of living organisms, including parasites of natural fish populations (Agostinho, Thomaz, & Gomes, 2005). Parasites are components of most ecosystems and are involved in numerous food webs and all trophic levels. Most vertebrate species serve as a host of one or more parasite species (Lagrue, Kelly, Hicks, & Poulin, 2011). Among vertebrates, fish have the highest rates of infection by parasites because of the unique characteristics of their aquatic environment, which facilitate the spread, reproduction and life-cycle completion of each parasite group.

The parasite fauna of freshwater fish can vary in composition depending on the host species, its level in the food chain, the age, size and sex of individual fish, and other biotic and abiotic factors (Takemoto & Lizama, 2010).

Knowledge of the parasite fauna of fish can provide information on the biology of the host, the host-parasite relationship, zoonotic potential and/or importance for fish farming. Fish parasites also constitute an important instrument for biodiversity assessment (Abdallah, Azevedo, & Luque, 2004), and can help to more completely understand the biosphere (Luque & Poulin, 2007).

According to Pavanelli, Eiras, and Takemoto (2008), wild fish are parasitized by a great variety of species, however, they rarely show clinical signs of disease. This may be due to an equilibrium between their nutritional and physiological state and the environment, which may prevent the manifestation of diseases.

In this context, taxonomic studies of parasites are of great importance because one of the first steps in parasitology is to know what organisms are being dealt with. Furthermore, there remains a large number of species yet to be described (Ranzani-Paiva, Takemoto, & Lizama, 2004), since many fish are not necropsied with the intention of studying their parasites.

Knowledge regarding the parasite fauna of Brazilian fish, and especially in the Mato Grosso do Sul State, is poor, especially considering their great diversity. Therefore, the objective of the present study was to identify and list the species of fish parasites in the Amambai River, in order to generate information to facilitate studies of the biotic integrity of the region.

Material and methods

The parasite species list presented herein was based on samples collected at three sites on the Amambai River (Site 1: 23° 31’ 192” S 53° 83’ 460” W; Site 2: 23° 13’ 803” S 54° 20’ 133” W; Site 3: 22° 92’ 257” S 54° 62’ 900” W), in the Mato Grosso do Sul State, Brazil. Fish were captured during December 2014 and July 2015 by local fishermen using gill nets and cast nets of various mesh sizes.

Gills were removed from collected individuals for analysis of ectoparasites and the visceral cavity opened and the intestines exposed for analysis of endoparasites (according to Eiras, Takemoto, & Pavanelli, 2006). Parasites were then collected with the aid of a stereomicroscope.

The parasite species list provided here follows the classification and systematic arrangements of the following studies: Thatcher (2006) for acanthocephalans and cestodes; Boxshall and Halsey (2004) for crustaceans; Kohn, Fernandes, and Cohen (2007) for digenetic trematodes; Cohen and Kohn (2008) and Thatcher (2006) for monogenetic trematodes and Moravec (1998) for nematodes. In addition, checklists of the parasites of Brazilian fish, and works specific for each group of parasites, where used when necessary. This work was performed at the Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia) of the Universidade Estadual de Maringá – Maringá (Paraná State).

Results and discussion

Forty-eight fish of 11 species were collected from the Amambai River for analysis: Salminus brasiliensis Cuvier, 1816 (n = 5), Salminus hilarii Valenciennes, 1850 (n = 1), Serrasalmus marginatus Valenciennes, 1837 (n = 3), Raphiodon vulpinus Spix and Agassiz, 1829 (n = 2), Schizodon borelli (Boulenger, 1900) (n = 3), Prochilodus lineatus Valenciennes, 1837 (n = 16), Sorubim lima (Bloch & Schneider, 1801) (n = 1), Pseudoplatystoma corruscans (Spix & Agassiz, 1829) (n = 3), Auchenipterus osteomystax (Ribeiro, 1918) (n = 1), Pterodoras granulosus Valenciennes, 1840 (n = 4) and Pterygoplichthys ambroseti (Holmberg, 1893) (n = 9). Of these, a total of 27 (56.25%) were parasitized by at least one metazoan species. Of the parasitized fish, 70.3% were parasitized by ectoparasites, 51.8% by endoparasites and 29.6% by both.

A total of 21,514 specimens of parasites of 24 different taxa were found (Figure 1, Table 1) (Acanthocephala – Neoechinorhynchida; Cestoda – Proteocephalidea; Crustacea – Ergasilidae; Digenea – Cladorchiidae, Dadaytrema; Monogenea – Dactylogyridae; and Nematoda – Atractidae, Cucullanidae, Camallanidae, Rhabdochonidae), including five new host records (NHR): a monogenean, Mymarothecium sp. Kritsky, Boeger, and Jégu, 1996; and four nematodes: Cucullanus sp.; Procamallanus (Spirocamallanus) inopinatus Travassos, Artigas, and Pereira, 1928; Rabdochona acuminate (Molin, 1860); and Rondonia rondoni Travassos, 1920. (Error 1: La referencia: Table 1 está ligada a un elemento que ya no existe)

The main sites of infection were the gills, where 12 different parasite species were collected including monogeneans and crustaceans. The intestine had the second highest number of species (five), including digeneans, cestodes, nematodes and acanthocephalans.

Salminus brasiliensis was the most parasitized fish species, with seven species of metazoan parasites. Of all the ectoparasites found, crustaceans exhibited the lowest parasitic specificity since the copepod Ergasilus sp. was found parasitizing three different species of fish (P. lineatus, S. brasiliensis and S. marginatus). The endoparasite with the lowest parasitic specificity was the nematode Procamallanus (Spirocamallanus) inopinatus Travassos, Artigas, and Pereira, 1928, which was parasitizing two different host species (R. vulpinus and S. marginatus). The species Rhabdochona acuminata was the only component of the parasitic fauna of Auchenipterus osteomistax. Rondonia rondoni had the highest abundance of Pterodoras granulosus and Pterigoplichthys ambrosetti, with the latter being a new species for that host.


Figure 1.
Species richness of fish parasites according to taxonomic group from the Amambai River, Upper Paraná River, Brazil.

Table 1.
Species and total number of parasites recorded, their prevalence (%) and their hosts.

Only three digeneans were encountered in the present study, Dadaytrema oxycephala and Cladorchidae as adults, and an unidentified metacercaria in larval form. Acanthocephalans were found only in Prochilodus lineatus.

There are more than 300 described species of monogeneans in Brazil, mainly belonging to two families, Dactylogyridae and Gyrodactylidae (Takemoto, Luque, Bellay, Longhini, & Graça, 2013). In the present study, we found only species of the family Dactylogyridae, which were collected from the gill arches of hosts. It is estimated that more than 95% of monogeneans are ectoparasites found on the gills or cutaneous regions of fish (Euzet & Combes, 1998). It appears as though most monogeneans have a high degree of parasitic specificity, occurring only on one host, or a few hosts that are phylogenetically very closely related (Cone & Kurt, 1982).

A new species of Monogenea, Mymarothecium, was reported for Pterygoplichthys ambroseti. This is the first report of a Mymarothecium infecting a species of Siluriformes, with the only previously known hosts being characids, including Piaractus brachypomus, Piaractus mesopotamicus and Colossoma macropomum (Cohen & Kohn, 2005; Leão, São-Clemente, & Cohen, 2015).

The nematode Procamallanus inopinatus was found on Serrasalmus marginatus and Raphiodon vulpinus, which is a new parasite record for the latter. Nematodes in general have low parasitic specificity (Takemoto & Lizama, 2010) and are common in freshwater fish. They can be found both in the larval stage, usually encysted, and as adults (Portz et al., 2013), and on practically any fish organ. According to Eiras, Takemoto, and Pavanelli (2010), this species of nematode has been identified in more than 51 different species of fish in Brazil.

The nematode Cucullanus sp. was found in the pimelodid Sorubim lima, which is a new record for that host. Nematodes of the genus Cucullanus also seem to have low parasitic specificity, and have been reported from other hosts from other localities (Azevedo, Abdallah, & Luque, 2011; Kohn et al., 2011; Yamada & Takemoto, 2013). According to Giese, Furtado, Lanfredi, & Santos (2010), 16 species of Cucullanus have been described from Brazil.

Nematodes of the genus Rabdochona were found parasitizing Prochilodus lineatus and are principally parasites of freshwater fish (Moravec, 2010). The present study represents a new parasite record for this host. The species Rabdochona acuminate was the only component of the parasite fauna of Auchenipterus osteomistax, representing 100% of the specimens collected. This nematode was reported from A. osteomistax by Tavernari et al. (2009) and in other hosts in other studies, such as Astyanax fasciatus, A. bimaculatus and Geophagus brasiliensis (Paraguassú & Luque, 2007), Cichla kelberi (Santos-Clapp & Brasil-Sato, 2014) and Brycon amazonicus and B. melanopterus (Ribeiro, Ueda, Pavanelli, & Takemoto, 2016).

Rondonia rondoni was found in Pterodoras granulosus and Pterigoplichthys ambrosetti, with it being a new parasite record for the latter. Studying P. granulosus on the Paraná River, Paraná State, and Ivinhema River, Mato Grosso do Sul State, Dias, Furuya, Pavanelli, Machado, and Takemoto (2004) reported high intensities of parasitic infection by this species, with approximately 13,168.82 parasites per fish analyzed. Campos, Takemoto, Fonseca, and Moraes (2009) encountered similar results with Piaractus mesopotamicus. Brasil-Sato & Santos (2003) reported finding this nematode in specimens of Myleus micans, in which they were obstructing the intestinal lumen of all the fish and filling all of the intestinal compartments with great intensity. According to Dias et al. (2004), no sign of apparent injury or damage to the host was found in any of these studies, indicating that the existing host-parasite relationship is not new, and the hosts have acquired resistance to the parasite, and the parasite has adapted to the host. Thatcher (2006) suggested that the relationship of these nematodes with the hosts is commensal in nature, since they are not fixed in the intestinal wall and are actively swimming in the intestine of the fish. This great abundance of nematodes is due to endogenous multiplication of the parasite, and infection of other hosts, such as P. ambrosetti. Infection occurs via ingestion of larvae or even adults present in the water column after having been excreted in the feces of infected fish, of which they comprise about 50% due to the huge number of parasites occupying the intestine. According to Azevedo et al. (2011), the high species richness of parasites of P. granulosus (five species) can be explained by the variety of foods consumed by this known omnivore, and the ease of ingestion of intermediate hosts and contamination via the food chain.

Digeneans are endoparasites that live in the intestine, but can be found in the visceral cavity and subcutaneously (Thatcher, 2006). Dadaytrema oxycephala has been reported in mesopotamicus in São Paulo State; the Miranda, Paraguai and Aquidauana rivers in Mato Grosso do Sul State (Campos et al., 2009; Kohn et al., 2011); in Myleus micansi in the São Francisco River, Minas Gerais State (Brasil-Sato & Santos, 2003); and in granulosus and Pseudoplatystoma corruscans in the Paraná River, Paraná State (Kohn et al., 2011). In the present study, the digenean family Cladorchidae was found in P. ambrosetti. Only one digenean larval form, the metacercaria, was found in Serrasalmus marginatus, with no occurrences in other hosts. The pathogenic significance of digeneans in fish is much more pronounced with infections by metacercaria than with adults because the metacercaria can encyst in any tissue or organ except cartilage or bone, and thus weaken the host (Thatcher, 2006).

The cestode Monticellia belavistensis was first described from Pterodoras granulosus by Pavanelli, Machado, Takemoto, and Santos (1994). According to these authors, the low number of parasites they found could be explained by the fact that P. granulosus is not piscivorous. This observation becomes even more evident when comparing its parasitic index with those obtained from piscivorous fish, especially pimelodids, which are the most intensely parasitized cestode hosts (Rego & Pavanelli, 1992). According to Kennedy (1994), insect larvae ingested by a host could function as a substitute for fish transmission, in particular the second intermediate or paratenic host, thereby allowing the completion of the life cycle of the species. The cestode Choanoscolex abscisus was observed to be dominant in P. corruscans. According to Rego (2002), proteocephalid cestodes are the major helminth found in this species and have been reported in the genus Pseudoplatystoma by Rego (2002), Campos, Fonseca, Takemoto, and Moraes (2008) and Ribeiro, Lizama, and Takemoto (2014), among others. The presence of adult cestodes in P. corruscans indicates that these hosts are part of the top level of the food chain, where they feed on fish, which are used as intermediate hosts in the life cycle of proteocephalids, and, in general, support parasitism by adult cestodes because they only remove the food necessary for their survival (Pavanelli et al., 2008).

In the present study, acanthocephalans were found only in Prochilodus lineatus. The parasite Neoechinorhynchus curemai had been previously found in Prochilodus scrofa (Noronha, 1984), however, it demonstrates a certain degree of specificity since most studies found it in the species Prochilodus lineatus (Ranzani-Paiva, Silva-Souza, Pavanelli, & Takemoto, 2000; Martins, Moraes, Fujimoto, Onaka, & Quintana, 2001; Santos et al., 2005; Lizama, Takemoto, & Pavanelli, 2005; 2006; Belo et al., 2013). Acanthocephalans are exclusive to the digestive tract of vertebrates (Eiras et al., 2010), and are considered pathogenic because they are endowed with a proboscis bearing hooks that pierce the intestinal wall causing lesions (Thatcher, 2006). Despite being comprised of a small number of species, this group is highly diversified compared to other metazoan parasite groups (Santos et al., 2013). This phylum has experienced great adaptive success and can parasitize all vertebrate classes and has a wide geographic distribution, occurring in marine, freshwater and terrestrial ecosystems on every continent (Kennedy, 1994). Acanthocephalans generally have biological cycles that include a wide variety of possible hosts, including invertebrates, fish, amphibians, birds and mammals, but the cycles always maintain the same pattern of transmission (Eiras et al., 2010).

Fish of natural populations have a more diversified diet than those in manmade lakes and reservoirs, which can positively affect the composition of endoparasites because the diet can include numerous animals that act as intermediate and/or paratenic hosts. Thus, the population of parasites with direct (monoxenous) life cycles, such as monogeneans, can increase or become prevalent in a community because of the ease of completing its life cycle in a single host, the ease of transmission and the reduction of host immune response (Mackenzie, 1999).

The diversity of species in parasite communities is the result of, among other factors, interactions between evolutionary history and ecology of hosts, and is associated with the diversity of intermediate and definitive hosts. According to Kennedy (1994), the species richness of parasites within a community at a site is considered a reflection of the number of host species present and the capacity for transmission and infection of the intermediate and definitive hosts in these environments. Furthermore, fish that have longer lives, and consequently longer exposure to parasites, facilitate the accumulation of parasites in the host (Takemoto et al., 2009).

Conclusion

The results presented here suggest that the density of populations of different host species may be the main determinant of species richness of parasites in the Amambai River. If we assume that each species of host can house an average of 10 species of parasites, and the number of host species in the Amambai River is vastly greater (data to be published), we can expect that the parasite biodiversity of this river is far from being even minimally known.

Acknowledgements

We thank to Fundect (Process 30493.432.611.08052014), Gebio, Municipality of Naviraí and Green Farm for the support, and to Capes for the scholarship to the first author.

Supplementary material
References
Abdallah, V. D., Azevedo, R. K., & Luque, J. L. (2004). Metazoários parasitos dos lambaris Astyanax bimaculatus (Linnaeus, 1758), A. parahybae Eigenmann, 1908 e Oligosarcus hepsetus (Cuvier, 1829) (Osteichthyes: Characidae), do Rio Guandu, Estado do Rio de Janeiro, Brasil. Revista Brasileira de Parasitologia Veterinária, 13(2), 57-63.
Agostinho, A. A., Thomaz, S. M., & Gomes, L. C. (2005). Conservação da biodiversidade em águas continentais do Brasil. Megadiversidade, 1(1), 70-78.
Azevedo, R. K., Abdallah, V. D., & Luque, J. L. (2011). Biodiversity of fish parasites from Guandu river, Southeastern Brazil: an ecological approach. Neotropical Helminthology, 5(2), 185-199.
Belo, M. A. A., Souza, D. G. F., Faria, V. P., Prado, E. J. R., Moraes; F. R., & Onaka, E. M. (2013). Haematological response of curimbas Prochilodus lineatus, naturally infected with Neoechinorhynchus curemai. Journal of Fish Biology, 82, 1403-1410. doi: 10.1111/jfb.12060
Boxshall, G. A., & Halsey, S. A. (2004). An introduction to copepod diversity. London, UK: The Ray Society.
Brasil-Sato, M. C., & Santos, M. D. (2003). Helminths of Myleus micans (Lütken, 1875) (Characiformes: Serrasalminae) from the São Francisco river, Brazil. Revista Brasileira de Parasitologia Veterinária, 12(3), 131-134.
Campos, C. M., Fonseca, V. E., Takemoto, R. M., & Moraes, F. R. (2008). Fauna parasitária de cachara Pseudoplatystoma fasciatum (Siluriforme: Pimelodidae) no rio Aquidauana, Pantanal, Sul-Mato-Grossense, Brasil. Acta Scientiarum. Biological Science, 30(1), 91-96. doi: 10.4025/actascibiolsci.v30i1.1469
Campos, C. M., Takemoto, R. M., Fonseca, V. E., & Moraes, F. R. (2009). Ecology of the parasitic endohelminth community of Piaractus mesopotamicus (Holmberg, 1887) (Characiformes) from Aquidauana and Miranda Rivers, Pantanal, state of Mato Grosso do Sul, Brazil. Brazilian Journal of Biology, 69(1), 87-92. doi: 10.1590/S1519-69842009000100010
Cohen, S. C., & Kohn, A. (2005). A new species of Mymarothecium and new host and geographical records for M. viatorum (Monogenea: Dactylogyridae), parasites of freshwater fishes in Brazil. Folia Parasitológica, 52(4), 307-310. doi: 10.14411/fp.2005.042
Cohen, S. C., & Kohn, A. (2008). New data on species of Demidospermus (Dactylogyridae: Monogenea) parasitizing fishes from the reservoir of the Itaipu hydroelectric power station, Parana State, Brazil, with new synonymies. Revista Brasileira de Parasitologia Veterinária, 17(3), 167-170. doi: 10.1590/S1984-29612008000300011
Cone, D. K., & Kurt, M. D. B. (1982). The host especifity of Urocleidus adspectus (Muler, 1938) (Monogenea: Ancyrocephalinae). Journal of Parasitology, 68(6), 1168-1170. doi: 10.2307/3281117
Dias, P. G., Furuya, W. M., Pavanelli, G. C., Machado, M. H., & Takemoto, R. M. (2004). Carga parasitária de Rondonia rondoni, Travassos, 1920 (Nematoda, Atrictidae) e fator de condição do armado, Pterodoras granulosus, Valenciennes, 1833 (Pisces, Doradidae). Acta Scientiarum. Biological Science, 26(2), 151-156. doi: 10.4025/actascibiolsci.v26i2.1613
Eiras, J. C., Takemoto, R. M., & Pavanelli, G. C. (2006). Métodos de estudo e técnicas laboratoriais em parasitologia de peixes. Maringá, PR: Eduem.
Eiras, J. C., Takemoto, R. M., & Pavanelli, G. C. (2010). Diversidade dos parasitas de peixes de água doce do Brasil. Maringá, PR: Clichetec.
Euzet, L., & Combes, C. (1998). The selection of habitats among the Monogenea. International Journal for Parasitology, 28(10), 1645-1652. doi: 10.1016/S0020-7519(98)00062-9
Giese, E. G., Furtado, A. P., Lanfredi, R. M., & Santos, J. N. (2010). A new cucullanid species (Nematoda) from Ageneiosus ucayalensis (Pisces: Auchenipteridae) from Pará, Brazil. Journal of Parasitology, 96(2), 389-394. doi: 10.1645/GE-2081.1
Kennedy, C. R. (1994). The ecology of introductions. In A. W. Pike, & J. W. Lewis (Eds.), Parasitic diseases of fish (p. 189-208). Cardigan, UK: Samara Publishing Limited.
Kohn, A., Fernandes, B. M. M., & Cohen, S. C. (2007). South american trematodes parasites of fishes. Rio de Janeiro, RJ: Fiocruz.
Kohn, A., Moravec, F., Cohen, S. C., Canzi, C., Takemoto, R. M., & Fernandes, B. M. M. (2011). Helminths of freshwater fishes in the reservoir of the Hydroelectric Power Station of Itaipu, Paraná, Brazil. Check List, 7(5), 681-690.
Lagrue, C., Kelly, D. W., Hicks, A., & Poulin, R. (2011). Factors influencing infection patterns of trophically transmitted parasites among a fish community: host diet, host-parasite compatibility or both? Journal of Fish Biology, 79(2), 466-485. doi: 10.1111/j.1095-8649.2011.03041
Leão, M. S. L., São-Clemente, S. C., & Cohen, S. C. (2015). Anacanthorus toledoensis n. sp. and Mymarothecium ianwhittingtoni n. sp. (Dactylogyridae: Monogenoidea) Parasitizing Cage-Reared Piaractus mesopotamicus (Characiformes, Characidae) in the State of Paraná, Brazil. The Helminthological Society of Washington. Comparative Parasitology, 82(2), 269-274. doi: 10.1654/4759.1
Lizama, M. A. P., Takemoto, R. M., & Pavanelli, G. C. (2005). Influence of host sex and age on infracommunities of metazoan parasites of Prochilodus lineatus (Valenciennes, 1836) (Prochilodontidae) of the upper Paraná river floodplain, Brazil. Parasite, 12(4), 299-304. doi: 10.1051/parasite/2005124299
Lizama, M. A. P., Takemoto, R. M., & Pavanelli, G. C. (2006). Influence of the seasonal and environmental patterns and host reproduction on the metazoan parasites of Prochilodus lineatus. Brazilian Archives of Biology and Technology, 49(4), 611-622. doi: 10.1590/S1516-89132006000500011
Luque, J. L., & Poulin, R. (2007). Metazoan parasite species richness in Neotropical fishes: and the geography of biodiversity. Parasitology, 134(Pt 6), 865-878. doi: 10.1017/S0031182007002272
Mackenzie, K. (1999). Parasites as pollution indicators in marine ecosystems: a proposed early warning system. Marine Pollution Bulletin, 38(11), 955-959. doi: 10.1016/S0025-326X(99)00100-9
Martins, M. L., Moraes, F. R., Fujimoto, R. Y., Onaka, E. M., & Quintana, C. I. F. (2001). Prevalence and histopathology of Neoechinorhynchus curemai Noronha, 1973 (Acanthocephala: Neoechinorhynchidae) in Prochilodus lineatus Valenciennes, 1836 from Volta Grande reservoir, MG, Brazil. Brazilian Journal of Biology, 61(3), 517-522. doi: 10.1590/S1519-69842001000300022
Moravec, F. (1998). Nematodes of freshwater fishes of the Neotropical Region. Praga, CZ: Academia.
Moravec, F. (2010). Some aspects of the taxonomy, biology, possible evolution and biogeography of nematodes of the spirurine genus Rhabdochona Railliet, 1916 (Rhabdochonidae, Thelazioidea). Acta Parasitológica, 55(2), 144-160. doi: 10.2478/s11686-010-0017-3
Paraguassú, A. R., & Luque, J. L. (2007). Metazoários parasitos de seis espécies de peixes do reservatório de lajes, estado do Rio de Janeiro, Brasil. Revista Brasileira de Parasitologia Veterinária, 16(3), 121-128. doi: 10.1590/S1984-29612007000300002
Pavanelli, G. C., Eiras, J. C., & Takemoto, R. M. (2008). Doenças de peixes: profilaxia, diagnóstico e tratamento. Maringá, PR: Eduem.
Pavanelli, G. C., Machado, M. H., Takemoto, R. M., & Santos, L. C. (1994). Uma nova espécie de cestoide proteocefalídeo Monticellia belavistensis, sp. n., parasita de Pterodoras granulosus (Valenciennes) (Pisces, Doradidae), do reservatório de Itaipu e rio Paraná, Paraná, Brasil. Revista Brasileira de Zoologia, 11(4), 587-595. doi: 10.1590/S0101-81751994000400001
Portz, L., Antonucci, A. M., Ueda, B. H., Dotta, G., Guidelli, G., Roumbedakis, K., ... Tavechio, W. L. G. (2013). Parasitos de peixes de cultivo e ornamentais. In G. C. Pavanelli, R. M. Takemoto, & J. C. Eiras (Org.), Parasitologia de peixes de água doce do Brasil (p. 85-114). Maringá, PR: Eduem.
Ranzani-Paiva, M. J. T., Silva-Souza, A. T., Pavanelli, G. C., & Takemoto, R. M. (2000). Hematological characteristics and relative condition factor (Kn) associated with parasitism in Schizodon borellii (Osteichthyes, Anostomidae) and Prochilodus lineatus (Osteichthyes, Prochilodontidae) from Paraná River, Porto Rico region, Paraná, Brazil. Acta Scientiarum. Biological Sciences, 22(2), 515-521.
Ranzani-Paiva, M. J. T., Takemoto, R. M., & Lizama, M. A. P. (2004). Sanidade de organismos aquáticos. São Paulo, SP: Varela.
Rego, A. A. (2002). Cestóides proteocefalídeos parasitas de Pseudoplatystoma (Pisces, Pimelodidae) da América do Sul. Revista Brasileira de Zoociências, 4(2), 269-282.
Rego, A. A., & Pavanelli, G. C. (1992). Proteocephalus gibsoni nom. nov. for Proteocephalus ocellatus Rego e Pavanelli, 1990 preoccupied by Proteocephalus ocellatus (Rudolphi, 1802). Revista Brasileira de Biologia, 51(4), 701.
Ribeiro, T. S., Ueda, B. H., Pavanelli, G. C., & Takemoto, R. M. (2016). Endoparasite fauna of Brycon amazonicus and B. melanopterus (Characidae, Bryconinae) from Negro and Solimões rivers, Amazon, Brazil. Acta Amazônica, 46(1), 107-110. doi: 10.1590/1809-4392201502153
Ribeiro, T., Lizama, M. A. P., & Takemoto, R. M. (2014). Metazoan endoparasites diversity of Pseudoplatystoma corruscans (Siluriformes: Pimelodidae) as an indicator of environmental alterations on a tropical aquatic system. Acta Parasitológica, 59(3), 398-404. doi: 10.2478/S11686-014-0260-0
Santos, E. F., Tavares-Dias, M., Pinheiro, D. A., Neves, L. R., Marinho, R. G. B., & Dias, M. K. R. (2013). Fauna parasitária de tambaqui Colossoma macropomum (Characidae) cultivado em tanque-rede no estado do Amapá, Amazonia oriental. Acta Amazônica, 43(1), 105-112. doi: 10.1590/S0044-59672013000100013
Santos, R. S., Martins, M. L., Marengoni, N. G., Francisco, C. J., Piazza, R. S., Takahashi, H. K., & Onaka, E. M. (2005). Neoechinorhynchus curemai (Acanthocephala: Neoechinorhynchidae) in Prochilodus lineatus (Osteichthyes: Prochilodontidae) from the Paraná River. Revista Brasileira de Parasitologia Veterinária, 134(1-2), 111-115. doi: 10.1016/j.vetpar.2005.06.025
Santos-Clapp, M. D., & Brasil-Sato, M. C. (2014). Comunidade parasitária de Cichla kelberi (Perciformes, Cichlidae) do Reservatório de Três Marias, Minas Gerais, Brasil. Brazilian Journal of Veterinary Parasitology, 23(3), 367-374. doi: 10.1590/S1984-29612014059
Takemoto, R. M., & Lizama, M. A. P. (2010). Helminth fauna of fishes from the upper Paraná river floodplain, Brazil. Neotropical Helminthology, 4(1), 5-8. doi: 10.1590/S1519-69842009000300023
Takemoto, R. M., Luque, J. L., Bellay, S., Longhini, C. E., & Graça, R. J. (2013). Monogenea. In G. C. Pavanelli, R. M. Takemoto, & J. C. Eiras (Org.), Parasitologia de peixes de água doce do Brasil (p. 273-299). Maringá, PR: Eduem.
Takemoto, R. M., Pavanelli, G. C., Lizama, M. A. P., Lacerda, A. C. F., Yamada, F. H., Moreira, L. H. A., Ceschini, T. L. & Bellay, S. (2009). Diversity of parasites of fish from the Upper Paraná River floodplain, Brazil. Brazilian Journal of Biology, 69(2), 691-705. doi: 10.1590/S1519-69842009000300023.
Tavernari, F. C., Takemoto, R. M., Guidelli, G. M., Lizama, M. L. A. P., Lacerda, A. C. F., & Pavanelli, G. C. (2009). Parasites of Auchenipterus osteomystax (Osteichthyes, Auchenipteridae) from two different environments, Rosana’s reservoir and upper Paraná river floodplain, Brazil. Acta Scientiarum. Biological Sciences, 31(1), 49-54. doi: 10.4025/actascibiolsci.v3lil.833
Thatcher, V. E. (2006). Amazon fish parasites. Sofia, BG: Pensoft.
Yamada, F. H., & Takemoto, R. M. (2013). Metazoan parasite fauna of two peacock-bass cichlid fish in Brazil. CheckList, 9(6), 1371-1377. doi: 10.15560/9.6.1371
Notes
Author notes

emilysoares.p@hotmail.com


Figure 1.
Species richness of fish parasites according to taxonomic group from the Amambai River, Upper Paraná River, Brazil.
Table 1.
Species and total number of parasites recorded, their prevalence (%) and their hosts.

Buscar:
Contexto
Descargar
Todas
Imágenes
Scientific article viewer generated from XML JATS4R by Redalyc