Ecologia

Mesoscale bird distribution pattern in montane phytophysiognomies along an ecotone between two hotspots

Aloysio Souza de Moura
Universidade Federal de Lavras, Brasil
Felipe Santana Machado
Universidade Federal de Lavras, Brasil
Escola Estadual Profa. Celina de Rezende Vilela, Brasil
Prefeitura Municipal de São Gonçalo do Sapucaí, Brasil
Ravi Fernandes Mariano
Universidade Federal de Lavras, Brasil
Cléber Rodrigo de Souza
Universidade Federal de Lavras, Brasil
Urica Carolina Lemos Mengez
Pesquisadora independente, Observadora de Aves, Brasil

Mesoscale bird distribution pattern in montane phytophysiognomies along an ecotone between two hotspots

Acta Scientiarum. Biological Sciences, vol. 43, e56931, 2021

Universidade Estadual de Maringá

Recepción: 03 Diciembre 2020

Aprobación: 18 Mayo 2021

Abstract: Brazil has a high diversity of birds and presents the largest number of threatened bird species in the neotropical region. Even so, there are gaps in the bird knowledge, especially in ecotonal montane regions. Given this panorama, this study aimed to analyse the bird community distribution (richness, composition, and beta diversity between phytophysiognomies) of an ecotonal montane landscape of southeastern Brazil, with the purpose of detecting substitution patterns of bird species on a meso-scale. Using bird data performed during the years 1998 to 2015 in 46 sampling points, we found high bird richness in montane phytophysiognomies along an ecotone between Cerrado and Atlantic Forest hotspots. The composition present species of both domains, with high turnover component. We highlight the field environments and candeais are considered homogeneous and threathened, which would directly affect birds. The present study contributes to future conservation strategies, as it demonstrates ecotonal regions as transition zones and reinforces the need to consider as particular ecological units. These ecotonal regions are key locations for understanding ecological patterns in response to environmental changes or phytophysiognomies. Knowing how partitioning of the composition occurs within an environmental mosaic is essential to understand the limits and distributions of the species and conserve them.

Keywords: biodiversity, beta diversity, composition, conservation.

Introduction

Brazil has the greatest diversity of birds in the world (Marini & Garcia, 2005; Piacentini et al., 2015; Morelli, Benedetti, Hanson, & Fuller, 2021) with approximately 57% of the species recorded throughout South America (Marini & Garcia, 2005), and 10% of this total are endemic species. This suggests that the Brazilian territory y is a priority for conservation investments (Sick, 1997). In addition, Brazil is the country with the largest number of threatened bird species in the neotropical region (Collar et al., 1992; Piacentini et al., 2015).

The bird community distribution is heterogeneous among biomes (Morelli et al., 2021). Therefore, knowledge about its distribution among Brazilian vegetation physiognomies (Sick, 1997; Gonzaga, Carvalhaes, & Buzzetti, 2007; Vasconcelos, 2008b) and in ecotonal regions is incipient. Ecotonal regions usually have their own characteristics and high ecological complexity resulting from a mixture of adjacent formations. There is ecological tension in biotas which produce high biodiversity because they enable species substitution at different scales (i.e., small mammals in Machado, Gregorin, & Mouallen, 2013; and plants in Machado, Fontes, Santos, Garcia & Farrapo, 2016).

The mountain landscapes of southeastern Brazil are within this ecologically tense context and present highly endemic areas in tropical regions for both flora and fauna (Eiten, 1992; Giulietti, Pirani, & Harley, 1997; Sick, 1997; Stattersfield, Crosby, Long, Wege, & BirdLife International, 1998; Safford, 1999; Silva & Bates, 2002; Gonçalves, Myers, Vilela, & Oliveira, 2007; Thom et al., 2020; Moura, Machado, Mariano, Leite, & Fontes, 2021). To birds in mountains, there are exclusive species directly associated with the vegetation, presenting half of the local species pool. Similar results have been found in research on various mountain ranges such as the Peruvian Andes (Lloyd & Maridem, 2008).

The ecotonal region between the Atlantic Forest-Cerrado of Minas Gerais State stands out for the high occurrence of areas covered by montane fields which are considered the most threatened environments (Stotz, Fitzpatrick, Parker, & Moskovits, 1996; Vasconcelos & Rodrigues, 2010; Moura et al., 2021). And this bird diversity linked to high altitude areas are among the most endangered species (Machado, Fonseca, Machado, Aguiar, & Lins, 1998; Lopes et al., 2009; BirdLife International, 2011). The region’s landscape also has areas with other montane phytophysiognomies in addition to the phytophysiognomies of the Cerrado domain, such as Semi-deciduous forests, Cloud Forests and the Candeais. Limited knowledge about the floristic composition and biogeography of the Cloud Forest (Bertoncello, Yamamoto, Meireles, & Sheperd, 2011; Pompeu et al., 2018) and Candeais makes it difficult to implement an effective management plan which focuses on its conservation (Scolforo, Oliveira, Davide, & Camolesi, 2002), and consequently the fauna which use it which is considered threatened (Moura et al., 2021).

The bird distribution on mountain landscapes associated to ecotonal regions are not yet fully resolved and described. For instance, there is little understanding of separated situations [only mountain (Santillán et al., 2020; Thom et al., 2020) or only ecotonal (Gonçalves, Santos, Cerqueira, Juen, & Bispo, 2017; Sementili-Cardoso, Vianna, Gerotti, & Donatelli, 2019)]. Given this panorama, this study aimed to present and analyse the bird richness, composition (by beta diversity), and structure between phytophysiognomies of an ecotonal montane landscape of southeastern Brazil in South America on a meso-scale and in a wide sampling over a decade of ornithological observations and records. Here we hypothesize that the richness is high due to the high number of phytophysiognomies, heterogeneity and complexity of these environments. The structure will have high amplitude. And composition (beta diversity) will have a high component of species substitution due to the specificity of bird diversity with each phytophysiognomy.

Material and methods

Study area

The study area is situated in Carrancas city, South Minas Gerais State, Southeastern Brazil (21° 29' 29.45” S/44° 38’ 42.47” W – 1097 m). The landscape corresponds to an ecotonal region between two hotspots, namely the Cerrado and Atlantic Forest (Myers, Mittermeier, Mittermeier, Fonseca, & Kent, 2000), and is composed by montane fields, Cerrado Stricto sensu, riparian forests, montane semi-deciduous forests, cloud forests, anthropic areas (pastures, agricultural areas, Eucalyptus forests, hydroelectric dam lake), and Candeais (forests dominated by Eremanthus erythropappus (DC.) Macleish). In addition, montane field areas are predominant in the landscape. The climate is mostly CWA type according to the Köppen classification; however it evolves into the CWB type for mountain tops in the areas with the highest elevation (Alvares, Stape, Sentelhas, Gonçalves, & Sparovek, 2013).

We highlight that the high lands of the study area are considered a ‘Hotspot’ (Drummond, Martins, Greco, & Vieira, 2009), regionally called ‘Chapada das Perdizes’, where the landscape is composed of montane phytophysiognomies (Cloud forests, Candeais, upper-montane semi-deciduous forests, and montane fields), with elevations ranging from 1000 to 1600 m. This region also houses the largest remnant of continuous forest in the south of Minas Gerais State, known as ‘Mata Triste’ (Oliveira-Filho, Carvalho, Fontes, Van Den Berg, & Carvalho, 2004). In addition, it also contains some of the Capivari River headwaters, a tributary of the Grande River. In turn, the Grande River joins the Paranaíba River, forming the Paraná River, which is the main lotic system of the second largest basin in South America (Pereira, Oliveira-Filho, & Lemos Filho, 2006). The region is strategic for conservation purposes, as it connects two large mountain ranges from two different biodiversity hotspots: the Espinhaço Complex (Cerrado) and the Mantiqueira Montain Range (Atlantic Forest).

Observations and data collections were performed during the years 1998 to 2015 in 46 sampling points which represent all the phytophysiognomies of the study area (Figure 1, Table 1). Each year a sampling was carried out in the hot and humid season, and another in the cold and dry season to reach resident and migratory birds. The semi-deciduous forest has high altitudinal variation, but we decided to separate the ‘Mata Triste’ and ‘Semi-deciduous Forest’ samples for this article to achieve proximity to the bird sampling points. The nomenclature used to identify bird species followed Piacentini et al. (2015).

Figure 1. In yellow are the sampling collection points, Carrancas city, South of Minas Gerais State, Brazil.
Figure 1. In yellow are the sampling collection points, Carrancas city, South of Minas Gerais State, Brazil.

Table 1. Sampling collection points, Carrancas city, South of Minas Gerais State, Brazil.
PhytophysiognomyLocal nameCoordinatesAltitudeYears
01Artificial lakeFazenda da Toca21°28’38.47” S 44°39’50.27” W1033 m2006, 2009, 2015
02Artificial lakeLourenço Leme21°28’55.35” S 44°41’11.01” W968 m1998, 2000, 2007, 2014
03Artificial lakeFazenda Cachoeira21°29’55.19” S 44°37’41.46” W1057 m1998, 2001
04Artificial lakeCamargos21°27’26.15” S 44°28’16.90” W915 m1998, 2001, 2008, 2014
05Artificial lakePousada Roda Viva21°29’21.27” S 44°38’23.65” W1053 m2000, 2002, 2009, 2015
06Semidecidual forestSítio Maria Moura21°27’29.05” S 44°39’27.84” W1228 m2000, 2003, 2008, 2010, 2015
07Semidecidual forestFazenda da Toca21°28’48.97” S 44°39’29.07” W1056 m2006, 2009, 2010, 2013, 2015
08Semidecidual forestPousada Mahayana21°27’04.87” S 44°39’34.55” W1201 m2001, 2003, 2005, 2006, 2009, 2014
09Semidecidual forestCach. Carniceiro21°32’13.45” S 44°35’53.55” W1096 m1999, 2003, 2009
10Semidecidual forestJequitibá Gigante21°37’45.40” S 44°43’38.38” W1049 m1999, 2001, 2007, 2013
11Semidecidual forestMonte Teta21°27’18.77” S 44°39’51.70” W1203m1998, 1999, 2001, 2011
12Cerrado Stricto sensuEstrada Fumaça21°29’00.14” S 44°40’26.74” W1078 m1998, 1999, 2005, 2013
13Cerrado Stricto sensuFazenda da Toca21°28’24.37” S 44°39’48.64” W1063 m2001, 2008, 2013
14Cerrado Stricto sensuSerra da Covanca21°27’37.67” S 44°37’03.36” W1266 m2003, 2011, 2014
15Cerrado Stricto sensuCach. Esmeralda21°28’53.84” S 44°41’59.92” W968 m1999, 2001, 2010
16Cerrado Stricto sensuPoço do Turco21°29’58.53” S 44°36’10.92” W1161 m2001, 2007, 2011
17Montane fieldGruta da Cortina21°30’20.88” S 44°36’13.13” W1155 m2001, 2007, 2010, 2014
18Montane fieldChapada Perdizes21°35’40.08” S 44°34’06.46” W1546 m2000, 2006, 2009, 2011, 2015
19Montane fieldGrão Mogol21°35’03.10” S 44°39’58.83” W1238 m1998, 2001, 2003, 2013
20Montane fieldPoço da Canoa21°28’32.28” S 44°38’32.08” W1064 m1998, 1999, 2000, 2013
21Montane fieldSerra do Moleque21°35’23.56” S 44°39’17.55” W1380 m2000, 2003, 2013
22Mata TristeMata Triste21°35’38.98” S 44°33’48.24” W1500 m2003, 2006, 2008, 2014
23Mata TristeMata Triste21°35’46.80” S 44°33’44.06” W1399 m2003, 2006, 2008
24Mata TristeMata Triste21°35’51.12” S 44°33’17.31” W1228 m2003, 2006, 2008
25Mata TristeMata Triste21°37’16.38” S 44°34’24.61” W1047 m2003, 2006, 2008
26Riparian forestCach. Zilda21°30’38.34” S 44°38’50.45” W983 m1998, 2000, 2005, 2015
27Riparian forestEstrada Estação21°29’10.69” S 44°42’28.57” W943 m1998, 1999, 2001, 2007, 2014
28Riparian forestBar da Zilda21°33’13.61” S 44°38’12.17” W1043 m2000, 2005, 2008, 2014
29Riparian forestCoração/Rio Carrancas21°28’37.22” S 44°40’03.52” W1034m1998, 1999, 2000, 2014, 2015
30Riparian forestRio Carrancas21°28’40.88” S 44°39’07.96” W1037 m1998, 2000, 2012, 2014
31Montane fieldSerra de Carrancas21°26’52.00” S 44°40’05.47” W1265 m1999, 2001, 2007, 2013
32Montane fieldPico Monte Teta21°27’24.90” S 44°39’57.95” W1234 m1999, 2006, 2009, 2015
33Montane fieldSerra das Broas21°35’43.80” S 44°36’01.41” W1445 m2006, 2008, 2014, 2015
34Montane fieldAeroporto21°28’25.24” S 44°36’48.92” W1249 m2006, 2013, 2015
35Cloud forestChapada Perdizes21°35’35.91” S 44°35’02.28” W1503 m2000, 2006, 2008, 2014
36Cloud forestChapada Perdizes21°35’36.24” S 44°34’15.47” W1536 m2000, 2006, 2008, 2014
37Cloud forestBroas21°35’09.18” S 44°35’44.60” W1415 m2000, 2006, 2008, 2014
38CandealBroas21°35’23.75” S 44°35’06.69” W1473 m2000, 2006, 2008, 2014
39CandealCach. Grão Mogol21°34’52.63” S 44°40’.3026” W1072 m1998, 2000, 2008, 2013
40CandealEscorregador Zilda21°33’47.31” S 44°38’17.15” W1063 m1999, 2001, 2007, 2013
41CandealSítio Maria Moura21°27’34.25” S 44°39’42.45” W1161 m2000, 2003, 2008, 2013, 2015
42Antropic areaCarrancas (BNH)21°29’14.46” S 44°38’40.17” W1040 m1998, 1999, 2009, 2013
43Antropic areaFazenda Toca21°28’43.68” S 44°39’50.71” W1046 m2001, 2007, 2009
44Antropic areaFazenda Osvaldo21°28’35.91” S 44°38’46.07” W1052 m2000, 2004, 2013
45Antropic areaSítio Maria Moura21°27’35.01” S 44°39’32.66” W1205 m2000, 2003, 2008, 2013
46Antropic areaEstrada Zilda21°29’51.62” S 44°38’40.79” W1094 m1999, 2001, 2009, 2013

Data analysis

We initially quantified the richness and bird families of each phytophysiognomy for data analysis in order to assess the specificities of each one. We also evaluated the pattern in the phytophysiognomies, quantifying the species number occurring in one or more phytophysiognomies, and considering all possible combinations for each category. We then obtained a Jaccard dissimilarity matrix from the data for the presence and absence of species in phytophysiognomies in order to make comparisons between phytophysiognomies. We subsequently performed a Principal Coordinate Analysis (PCoA) based on this matrix (Ter Braak, 1995), with the objective of ordering phytophysiognomies and observing possible aggregations and gradients.

Finally, we partitioned the dissimilarity matrix into the Turnover and Nestedness components (Baselga, 2010) and obtained a dendrogram corresponding to each component using UPGMA as a connection method (Gotelli & Ellison, 2016). The partitioning was carried out with the objective of evaluating which component is more significant in differentiating the communities in the phytophysiognomic study set, and if the ecological patterns are different in different perspectives. All analyzes were performed in the R version 3.3.1 (2016) using its default and the ‘vegan’ (Oksanen et al., 2017) and ‘betapart’ (Baselga, Orme, Villeger, Bortoli, & Leprieur, 2013) packages.

Results

We found 310 bird species (Supplementary material) allocated in 60 families. The most represented families were Tyrannidae (N = 43), Throchilidae (N = 17), Tamnophilidae, Psittacidae and Picidae (N = 9).

The richness and families was higher for anthropic environments, followed by the semi-deciduous forest, while the lakes and Candeais showed the lowest richness and number of families, with the other phytophysiognomies varying between these extremes (Figure 2).

Figure 2. Number of species (A) and families (B) of birds by phytophysiognomy in Carrancas city, South of Minas Gerais State, Brazil.
Figure 2. Number of species (A) and families (B) of birds by phytophysiognomy in Carrancas city, South of Minas Gerais State, Brazil.

The ‘physiognomy number’ refers to physiognomy combinations. In this case, 11 species occur in all nine physiognomies, as along with 28 only occurring in one of the nine physiognomies, among other combinations. Thus, the distribution is relatively heterogeneous with approximately 100 species widely distributed and another approximately 200 species restricted to a few phytophysiognomies (Figure 3).

Figure 3. Percentage and richness (in parentheses) of birds occurring for physiognomy combinations in Carrancas city, South of Minas Gerais State, Brazil.
Figure 3. Percentage and richness (in parentheses) of birds occurring for physiognomy combinations in Carrancas city, South of Minas Gerais State, Brazil.

The first two axes of the PCoA together explained 69.4% of the data variation. The PCoA demonstrated a well-defined separation between forest environments: riparian forests, semi-deciduous forests (including ‘Mata Triste’), and cloud forests; non-forest: non-forest phytophysiognomies from Cerrado (as ‘Dirt Field’ and ‘Rupestrian Fields’), mountain fields, anthropic environments; and lake environments. This was a trend for axis 1, while only the lake environment differed from the other environments for axis 2. The dendrograms showed a pattern similar to the PCoA, with separation of forest and non-forest communities, presenting higher values for turnover in relation to nestedness (Figures 4 and 5).

Figure 4. Principal Coordinate Analysis (PCO) using Jaccard of birds by phytophysiognomy in Carrancas city, South of Minas Gerais State, Brazil.
Figure 4. Principal Coordinate Analysis (PCO) using Jaccard of birds by phytophysiognomy in Carrancas city, South of Minas Gerais State, Brazil.

Figure 5. Dendrogram using UPGMA as a binding method and the components of beta diversity by Jaccard (Turnover and Nestedness) for the physiognomic bird community in Carrancas city, Minas Gerais State, Brazil.
Figure 5. Dendrogram using UPGMA as a binding method and the components of beta diversity by Jaccard (Turnover and Nestedness) for the physiognomic bird community in Carrancas city, Minas Gerais State, Brazil.

Discussion

The richness found in Chapada das Perdizes represents 16.05% of the 1919 records for the Brazilian territory (Piacentini et al., 2015), constituting a very high number if we consider the phytophysiognomies which occurred in the two global Hotspot domains were sampled: the Cerrado and Atlantic Forest (Myers et al., 2000). The high representativeness of the Tyrannidae and Tamnophilidae families was already expected, as they are the most represented in Brazil (Sick, 1997; Piacentini et al., 2015; and similar composition to Sementili-Cardoso et al., 2019), and also in studies previously conducted in Southern Minas Gerais State, which found similar results (Lopes, 2006; Lombardi, Vasconcelos, & D’angelo-Neto, 2007; Moura, Correa, Braga, & Gregorin, 2010; Moura, Corrêa, & Machado, 2015; Moura, Machado, Mariano, Souza, & Fontes, 2020).

In relation to the medium and long term studies in the Atlantic and Cerrado domains, the present study presents a high diversity with 310 species when compared to other high altitude (montane) regions of Southeastern Brazil. Vasconcelos & Rodrigues (2010) found 231 species in a survey compiled for mountains (only non-forest phytophysiognomies) in the states of Bahia, Minas Gerais, São Paulo, Rio de Janeiro and Espírito Santo; Rodrigues et al. (2011) found 151 species for the Serra do Cipó National Park; and Vasconcelos and D’Angelo-Neto (2009) found 206 species for Serra da Mantiqueira. This biodiversity is a research result of many phytophysiognomies at high altitude (similar to Machado et al., 2013 with small mammals) and has a long sampling time.

About composition, a total of eight taxa among the records are threatened, including the species Urubitinga coronata, Spizaetus tyrannus, Amazona vinacea, Geositta poeciloptera, Culicivora caudacuta, Alectrurus tricolor, Phibalura flavirostris, Anthus nattereri and Coryphaspiza melanotis (Fundação Biodiversitas, 2008; International Union for Conservation of Nature [IUCN], 2020; and similar to Sementili-Cardoso et al., 2019). Furthermore, the species Malacoptila striata, Aratinga auricapillus, Sarcoramphus papa, Platalea ajaja and Mycteria americana are in the almost threatened category (Lopes et al., 2017), thus showing the importance of this region for the conservation of the Brazilian bird community (Moura et al., 2021), and also highlighting the urgency of creating protected areas for wildlife conservation in the studied region (as proposed by Zambaldi, Louzada, Carvalho, & Scolforo, 2011). Mainly by the fragments of wide territorial extension that can be considered reference environments of vital importance for the conservation of the species of birds (Torezan, Calsavara, Bochio, & Anjos, 2021)

In view of the ecotonal characteristics of the two Cerrado and Atlantic hotspot domains, three typical Cerrado species of birds were recorded, namely Synallaxis spixi, Saltatricula atricollis and Antilophia galeata, and 19 typical species from the Atlantic Forest, including Aramides saracura, Florisuga fusca, Thalurania glaucopis, Baryphthengus ruficapillus, Malacoptila striata, Campephilus robustus, Pyrrhura frontalis, Pyriglena leucoptera, Conopophaga lineata, Ilicura militaris, Chiroxiphia caudata, Mionectes rufiventris, Todirostrum poliocephalum, Myiornis auricularis, Hemitriccus nidipendulus, Knipolegus nigerrimus, Hemithraupis ruficapilla, Tachyphonus coronatus and Sporophila ardesiaca (Silva, 1995; D’Angelo-Neto, Venturin, Oliveira-Filho, & Costa, 1998; Silva & Santos, 2005; Lopes et al., 2017).

The forest vegetation types presented a similar number of species with some of the greatest richness for the study area due to greater heterogeneity and complexity environmental (Willrich, Lima, & Dos Anjos, 2019) which provides more niches (Johnson, 1975; Terborgh, 1985; Santillán et al., 2020). Two situations deserve to be highlighted, namely the case of montane fields and the anthropic environments. Montane fields showed richness in line with other studies in different natural altitude fields in wildlife conservation areas (Conservation Units – Brasil, 2000) in Southeastern Brazil (e.g., Vasconcelos, 2008b), with 108 species for Cadeia do Espinhaço, and Rodrigues et al. (2011), with 151 species for Serra do Cipó). The high richness of anthropic environments suggests that the heterogeneous conditions caused by human actions in natural environments supplies a large variety of resources to avifauna (Willrich et al., 2019).

The PCO analysis also separated the communities into forest and non-forest environments generated by the aforementioned environmental complexity and heterogeneity (sensu August 1983) of the studied region. The beta diversity analysis indicates high turnover of bird species along the sampled environments (similar turnover results to De Deus, Schuchmann, Arieira, Oliveira Tissiani, & Marques, 2020; Gomez, Ponciano, Londoño, & Robinson, 2020), demonstrating the specificity of each phytophysiognomy or environment (Castaño-Villa, Ramos-Valencia, & Fontúrbel, 2014; Gomez et al., 2020). This pattern of beta diversity of the birds in Chapada das Perdizes is mainly driven by the local dynamics of phytophysiognomy. These findings indicate that the maintenance of several phytophysiognomies at meso-scale will guarantee a high turnover of species and is the key to the maintenance of a diverse biota (Roos, Giehl, & Hernández, 2021, Adorno, Barros, Ribeiro, Silva, & Hasui, 2021). In addition, flight capacity was not a factor which favored similarity for the ability to migrate between areas, therefore once again we emphasize the need for preservation (as highlighted by Zambaldi et al., 2011 and Moura et al., 2021), and demonstrating that each area can have a unique diversity which is difficult to find in other locations in the south of Minas Gerais or in the southeastern of Brazil.

Another important factor to be mentioned is the proximity of the turnover values of forest environments. This similarity (also expressed in the PCoA and in the richness graph) is an expression of the forest similarity for different areas resulting from soil characteristics and consequently of vegetation (Oliveira-Filho et al., 2004). The altitudinal variation influences the appearance of highly humid areas called cloud forests, which have connections with riparian forests and with large forest fragments such as the ‘Mata Triste’ and other semi-deciduous forests. This interconnection by ecological corridors favors an analogous composition of the avifauna community (Correa, Louzada, & Moura, 2012).

The distance between lake environments and other phytophysiognomies in PCoA analysis is due to the presence of species with narrow phenotypic flexibility and highly specific to aquatic environments (e.g., ducks such as Amazonetta brasiliensis, Cairina moschata, and herons such as Nycticorax nycticorax, among others). This specificity is closely linked to fish-eating habits (Paszkowski & Tonn, 2001), which is only possible in this environment.

From a conservationist point of view, cloud forests are a refugee which has yet to be explored, as their occurrence is restricted to high altitude regions above sea level (Carvalho, Fontes, & Oliveira-Filho, 2000; Bertoncello et al., 2011; Pompeu et al., 2018). There are very few locations in Southeast Brazil which present this characteristic, being more commonly found in Serra da Mantiqueira, Ibitipoca and cities of Aiuruoca, Baependí and Itamonte. Biogeographic studies of birds of cloud forests in Brazil are non-existent, and this is the first report which reinforces the high diversity for these environments.

The montane fields are a threatened phytophysiognomy from the expansion of Brachiaria sp. exotic grass (as mentioned by Klink & Machado, 2005). The composition of birds found in the montane fields was highly specific with the occurrence of endangered species such as C. caudacuta, A. nattereri and C. melanotis. Taxa such as the abovementioned are closely associated with the fields, and are among the most threatened birds in the Cerrado domain (Machado et al., 1998; Lopes et al., 2009). This group has a high affinity with the environment which is the result of an evolutionarily-shaped interaction (as mentioned by Santillán et al., 2020 when mentions about specifity in evolutionary history). Other studies in the mountain fields from the sampling area demonstrate specificity of other taxonomic groups with open environmens, such as rodents (Oxymycterus delator), marsupials (Monodelphis domestica) (Machado et al., 2013), and bats (Desmodus rotundus and Histiotus velatus) (Moras, Bernard, & Gregorin, 2013), among others. Therefore, the loss of grassland environments will lead to a co-extinction, without considering the loss in functional diversity and its respective ecosystem services.

Even though there are forests monodominated by Eremanthus (‘Candeais’) in the studied regions, there is no mention of the bird community in these forests in studies previously conducted (D'Angelo-Neto et al., 1998; Ribon, 2000; Vasconcelos et al., 2002;Vasconcelos, D’angelo-Neto S. & Nemesio, 2005; Lopes, 2006; Lombardi et al., 2007; Vasconcelos, 2008a; Moura & Corrêa, 2012; Moura et al., 2015) probably because they do not perceive this phytophysiognomy as a differentiated unit (similar to Willrich et al., 2019), as in the case of ‘Paratudal’ (Tabebuia aurea) forests in the ‘Pantanal’, and of the ‘Caxeitais’ (Tabebuia cassinoides) on the Brazilian coast, among others, thus highlighting the importance of these data for the ecology and conservation of the bird community in these forests and even for the phytophysiognomy itself, mainly as natural occurrence are homogeneous and in only high altitudinal elevation, so threathened as other montane phytophysiognomies.

Conclusion

We conclude that the montane phytophysiognomies along an ecotone between Cerrado and Atlantic Forest hotspots present high species richness. The composition present species of both domains, with high turnover component. We highlight the field environments and candeais are considered homogeneous and threathened, which would directly affect birds. The present study contributes to future conservation strategies, as it demonstrates ecotonal regions as transition zones (mixed composition form both domains) and reinforces the need to consider as particular ecological units. These ecotonal regions are key locations for understanding ecological patterns in response to environmental changes or phytophysiognomies. Knowing how partitioning of the composition occurs within an environmental mosaic is essential to understand the limits and distributions of the species and conserve them.

Acknowledgements

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – Financing code 001, who supported this work by granting the doctoral scholarship to Aloysio Souza de Moura. For the funding from the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

Adorno, B. F., Barros, F. M., Cezar Ribeiro, M., Silva, V. X., & Hasui, É. (2021). Landscape heterogeneity shapes bird phylogenetic responses at forest–matrix interfaces in Atlantic Forest, Brazil. Biotropica, 53(2), 409-421. DOI: http://dx.doi.org/10.1111/btp.12881

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek G. (2013). Climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. DOI: http://dx.doi.org/10.1127/0941-2948/2013/0507

August, P. V. (1983). The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology, 64(6), 1495-1507. DOI: http://dx.doi.org/10.2307/1937504

Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global ecology and biogeography, 19(1), 134-143. DOI: http://dx.doi.org/10.1111/j.1466-8238.2009.00490.x

Baselga, A., Orme, D., Villeger, S. D. E., Bortoli, J., & Leprieur, F. (2013). Betapart-package: partitioning beta diversity into turnover and nestedness components. R package version 1.3. Retrieved from https://CRAN.R-project.org/package=betapart

Bertoncello, R., Yamamoto, K., Meireles, L. D., & Sheperd, G. J. (2011). A phytogeographic analysis of cloud forests and other forest subtypes amidst the Atlantic forests in south and southeast Brazil. Biodiversity and Conservation, 20(14), 3413 - 3433. DOI: http://dx.doi.org/10.1007/s10531-011-0129-6

BirdLife International. (2011). Search for species. Retrieved from http://www.birdlife.org

Brasil. Presidência da República. Casa Civil. Subchefia para Assuntos Jurídicos (2000). Lei nº 9.985, de 18 de julho de 2000. Regulamenta o art. 225, § 1o, incisos I, II, III e VII da Constituição Federal, institui o Sistema Nacional de Unidades de Conservação da Natureza e dá outras providências. Brasília, DF. Retrieved from http://www.planalto.gov.br/ccivil_03/leis/l9985.htm

Carvalho, L. M. T, Fontes, M. A. L., & Oliveira-Filho, A. T. (2000). Tree species distribution in canopy gaps and mature forest in anarea of cloud forest of the Ibitipoca Range, southeastern Brazil. Plant Ecology, 149(1), 9-22. DOI: http://dx.doi.org/10.1023/A:1009836810707

Castaño-Villa, G. J, Ramos-Valencia, S. A., & Fontúrbel, F. E. (2014). Fine-scale habitat structure complexity determines insectivorous bird diversity in a tropical forest. Acta Oecologica, 61(1), 19-23. DOI: http://dx.doi.org/10.1016/j.actao.2014.10.002

Collar, N. J., Gonzaga, L. P., Krabbe, N., Madroño Nieto, A., Naranjo, L. G., Parker, T. A., & Wege, D. (1992). Threatened birds of Americas: the ICBP/IUCN red data book. Cambridge, MA: International Council for Bird Preservation.

Correa, B. S., Louzada, J. N. C., & Moura, A. S. (2012). Structure of avian guilds in a fragment-corridor system in Lavras, Minas Gerais, Brazil. Brazilian Journal of Ecology, 1(1), 25-33.

D’angelo-Neto, S., Venturin, N., Oliveira-Filho, A. T., Costa, F. A. F. (1998). Avifauna de quatro fisionomias florestais de pequeno tamanho (5-8 ha) no campus da UFLA. Revista Brasileira de Biologia, 58(3), 463-472. DOI: http://dx.doi.org/10.1590/S0034-71081998000300011

De Deus, F. F., Schuchmann, K. L., Arieira, J. D. E., Oliveira Tissiani, A. S., & Marques, M. I. (2020). Avian beta diversity in a neotropical wetland: the effects of flooding and vegetation structure. Wetlands, 40(7), 1-15. DOI: http://dx.doi.org/10.1007/s13157-019-01240-0

Drummond, G. M., Martins, C. S., Greco, M. B., & Vieira F. (2009). Biota Minas: diagnostico do conhecimento sobre a biodiversidade no Estado de Minas Gerais, subsídio ao Programa Biota Minas Belo Horizonte, MG: Fundação Biodiversitas.

Eiten G. 1992. Natural brazilian vegetation types and their causes. Anais da Academia Brasileira de Ciências, 64(1), 35‑65.

Fundação Biodiversitas. (2008). Lista de espécies ameaçadas de extinção da fauna do estado de Minas Gerais. Belo Horizonte, MG: Fundação Biodiversitas.

Giulietti, A. M., Pirani, J. R., & Harley, R. M. (1997). Espinhaço Range region, eastern Brazil. In S. D. Davis, V. H. Heywood, O. Herrera-MacBryde, J. Villa-Lobos, & A. C. Hamilton (Eds.), Centres of plant diversity: a guide and strategyfor their conservation (p. 397-404). Cambridge, UK: World Wide Fund for Nature.

Gomez, J. P., Ponciano, J. M., Londoño, G. A., & Robinson, S. K. (2020). The biotic interactions hypothesis partially explains bird species turnover along a lowland Neotropical precipitation gradient. Global Ecology and Biogeography, 29(3), 491-502. DOI: http://dx.doi.org/10.1111/geb.13047

Gonçalves, G. R, Santos, M. P. D., Cerqueira, P. V., Juen, L., & Bispo, A. Â. (2017). The relationship between bird distribution patterns and environmental factors in an ecotone area of northeast Brazil. Journal of Arid Environments, 140(1), 6-13. DOI: http://dx.doi.org/10.1016/j.jaridenv.2017.01.004

Gonçalves, P. R., Myers, P., Vilela, J. F., & Oliveira, J. A. (2007). Systematics of species of the genus Akodon (Rodentia: Sigmodontinae) in southeastern Brazil and implications forthe biogeography of the campos de altitude. Miscellaneous Publications. Museum of Zoology, 1(197), 1‑24.

Gonzaga, L. P., Carvalhaes, A. M. P., & Buzzetti, D. R. C. (2007). A new species of Formicivora antwren from the Chapada Diamantina, eastern Brazil (Aves: Passeriformes: Thamnophilidae). Zootaxa, 1473(1), 25‑44. DOI: http://dx.doi.org/10.11646/zootaxa.1473.1.2

Gotelli, N. J., & Ellison, A. M. (2016). Princípios de estatística em ecologia. Porto Alegre, RS: Artmed Editora.

International Union for Conservation of Nature [IUCN]. (2020). Red list of threatened species. Technical Report. Retrieved from www.iucnredlist.org

Johnson, N. K. (1975). Control of number of bird species on montane islands in the Great Basin. Evolution, 29(3), 545-567. DOI: http://dx.doi.org/10.2307/2407266

Klink, C. A., & Machado, R. B. (2005). Conservation of the Brazilian cerrado. Conservation Biology, 19(3), 707-713. DOI: http://dx.doi.org/10.1111/j.1523-1739.2005.00702.x

Lloyd, H., & Marsden, S. J. (2008). Bird community variation across Polylepis woodland fragments and matrix habitats: implications for biodiversity conservation within a high Andean landscape. Biodidversity and Conservation, 17(11), 2645-2660. DOI: http://dx.doi.org/10.1007/s10531-008-9343-2

Lombardi, V. T., Vasconcelos, M. F., & D’angelo-Neto S. (2007). Novos registros ornitológicos para o centro-sul de Minas Gerais (Alto Rio Grande): municípios de Lavras, São João Del Rei e adjacências, com alistagem revisada da região. Atualidades Ornitológicas, 139(1), 333-342.

Lopes, L. E. (2006). As aves da região de Varginha e Elói Mendes, sul de Minas Gerais, Brasil. Acta Biologica Leopondensia, 28(1), 46-54.

Lopes, L. E., Pinho, J. B., Bernardon, B., Oliveira, F. F., Bernardon, G., Ferreira, L. P., ... Rubio, T. C. (2009). Aves da chapada dos Guimarães, Mato Grosso, Brasil: uma síntese histórica do conhecimento. Papeis Avulsos de Zoologia, 49(2), 9-47. DOI: http://dx.doi.org/10.1590/S0031-10492009000200001

Lopes, L. E., Reis, J. N., Moura, A. S., Corrêa, B. S., Carvalho, C. M. S., Peixoto, H. J. C., ... Rezende, M. A. (2017). Aves de três municípios do Alto Rio São Francisco, Minas Gerais, Brasil. Atualidades Ornitológicas, 196(1), 49-62.

Machado, A. B. M., Fonseca, G. A. B., Machado, R. B., Aguiar, L. M. S., & Lins, L. V. (1998). Livro vermelho das espécies ameaçadas de extinção da fauna de Minas Gerais. Belo Horizonte, MG: Fundação Biodiversitas.

Machado, F. S., Fontes, M. A. L., Santos, R. M., Garcia, P. O., & Farrapo, C. (2016). Tree diversity of small forest fragments in ecotonal regions: why must these fragments be preserved? Biodiversity and Conservation, 3(3), 1-13. DOI: http://dx.doi.org/1010.1007/s10531-016-1063-4

Machado, F. S., Gregorin, R., & Mouallem, P. S. B. (2013). Small mammals in high altitude phytophysiognomies in southeastern Brazil: are heterogeneous habitats more diverse? Biodiversity and Conservation, 22(8), 1769-1782. DOI: http://dx.doi.org/10.1007/s10531-013-0511-7

Marini, M. A., & Garcia, F. I. (2005). Conservação de aves no Brasil. Megadiversidade, 1(1), 95-102.

Moras, L. M., Bernard, E., & Gregorin, R. (2013). Bat assemblages at a high-altitude area in the Atlantic Forest of southeastern Brazil. Journal of Neotropical Mammalogy, 20(2), 269-278.

Morelli, F., Benedetti, Y., Hanson, J. O., & Fuller, R. A. (2021). Global distribution and conservation of avian diet specialization. Conservation Letters, 14(4), 1-12. DOI: http://dx.doi.org/10.1111/conl.12795

Moura, A. S., Correa, B. S., Braga, T. V., & Gregorin, R. (2010). Lista preliminar da avifauna da A.P.A. Coqueiral e primeiro registrode Tytira inquisitor no sul de Minas Gerais, Brasil. Revista Agrogeoambiental, 2(3), 73-86. DOI: http://dx.doi.org/1010.18406/2316-1817v2n32010285

Moura, A. S., & Corrêa, B. S. (2012). Aves ameaçadas e alguns registros notáveis para Carrancas, sul de Minas Gerais, Brasil. Atualidades Ornitologicas, 165(1), 18-22.

Moura, A. S., Corrêa, B. S., & Machado, F. S. (2015). Riqueza, composição e similaridade da avifauna em remanescente florestal e áreas antropizadas no sul de Minas Gerais. Revista Agrogeoambiental, 7(1): 41-52. DOI: http://dx.doi.org/10.18406/2316-1817v7n12015656

Moura, A. S., Machado, F. S., Mariano, R. F., Souza, C. R., & Fontes, M. A. L. (2020). Bird community of upper-montane rupestrian fields in South of Minas Gerais State, Southeastern Brazil. Acta Scientarium. Biological Sciences, 42(1), p. 1-11. DOI: http://dx.doi.org/10.4025/actascibiolsci.v42i1.48765

Moura, A. S., Machado, F. S., Mariano, R. F., Leite, L. H., & Fontes, M. A. L. (2021). Bird community in rupestrian fields from an Atlantic Forest-Cerrado Ecotone: notes on habitat losses and conservation of the threatened species. Biodiversidade Brasileira, 11(1), 1-13. DOI: http://dx.doi.org/10.37002/biobrasil.v11i1.1744

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. DOI: http://dx.doi.org/10.1038/35002501

Oksanen, J., Blanchet, F. J., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., … Wagner, H. (2017). Vegan: community ecology package. R package version 2.4-2. Retrieved from https://cran.r-project.org/package=vegan

Oliveira-Filho, A. T., Carvalho, D. A., Fontes, M. A. L., Van Den Berg, E., & Carvalho, W. A. C. (2004). Variações estruturais do compartimento arbóreo de uma floresta semidecídua alto-montanana Chapada das Perdizes, Carrancas, MG. Revista Brasielira de Botânica, 27(2), 291-309. DOI: http://dx.doi.org/10.1590/S0100-84042004000200009

Paszkowski, C. A., & Tonn, W. M. (2000). Community concordance between the fish and aquatic birds of lakes in northern Alberta, Canada: the relative importance of environmental and biotic factors. Freshwater Biology, 43(3), 421-437. DOI: http://dx.doi.org/10.1046/j.1365-2427.2000.00512.x

Pereira, J. A. A., Oliveira-Filho, A. T., & Lemos-Filho, J. P. (2006). Environmental heterogeneity and disturbance by humans control much of tree species diversity of Atlantic montane forest fragments in SE Brazil. Biodiversity and Conservation, 16(1), 1761-1784. DOI: http://dx.doi.org/10.1007/s10531-006-9063-4

Piacentini, V. Q., Aleixo, A., Agne, C. E., Maurício, G. N., Pacheco, J. F., Bravo, G. A., ... Cesari, E. (2015). Annotated check list of the birds of Brazil by the Brazilian Ornithological Records Committee. Revista Brasileira de Ornitologia, 23(2), 91-298.

Pompeu, P. V., Fontes, M. A. L., Mulligan, M., Bueno, I. T., Siqueira, M. F., Acerbi Júnior, F. W., ... Bruijnzeel, L. A. (2018). Assessing Atlantic cloud forest extent and protection status in southeastern Brazil. Journal of Nature Conservation, 43(1), 146-155. DOI: http://dx.doi.org/10.1016/j.jnc.2018.04.003

R Version 3.3.1. (2016). ‘Bug in your hair’ Copyright.. The R Foundation for Statistical Computing Platform: i386-w64-mingw32/i386. Retrieved from http://wallace.teorekol.lu.se/statistics_for_ biologists/01/ R%20output%20ex1%20ht16.pdf

Ribon, R. (2000). Lista preliminar da avifauna do município de Ijaci, Minas Gerais. Revista Ceres, 47(274), 665-682.

Rodrigues, M., Freitas, G. H., Costa, L. M., Dias, D. F., Varela, M. L., & Rodrigues, L. C. (2011). Avifauna, alto do Palácio, Serra do Cipó National Park, state of Minas Gerais, southeastern Brazil. Check List, 7(2), 151-161. DOI: http://dx.doi.org/10.15560/7.2.151

Roos, A. L., Giehl, E. L. H., & Hernández, M. I. M. (2021). Local species turnover increases regional bird diversity in mangroves. Austral Ecology, 46(2), 204-217. DOI: http://dx.doi.org/10.1111/aec.12969

Safford, H. D. (1999). Brazilian páramos I. An introduction to the physical environment and vegetation of the campos de altitude. Journal of Biogeography, 26(4), 693‑712. DOI: http://dx.doi.org/10.1046/j.1365-2699.1999.00313.x

Santillán, V., Quitián, M., Tinoco, B. A., Zárate, E., Schleuning, M., Böhning-Gaese, K., & Neuschulz, E. L. (2020). Direct and indirect effects of elevation, climate and vegetation structure on bird communities on a tropical mountain. Acta Oecologica, 102(1), e-103500. DOI: http://dx.doi.org/10.1016/j.actao.2019.103500

Scolforo, J. R., Oliveira, A. D., Davide, A. C., & Camolesi, J. F. (2002). Manejo sustentado das Candeias: Eremanthus erythopapus (DC.) McLeish e Eremanthus incanus (Less.) Less. Lavras, MG: Universidade Federal de Lavras.

Sementili-Cardoso, G., Vianna, R. M., Gerotti, R. W., & Donatelli, R. J. (2019). A bird survey in a transitional area between two major conservation hotspots in southeastern Brazil. Check List, 15(3), 527-548. DOI: http://dx.doi.org/10.15560/15.3.527

Sick, H. (1997). Ornitologia brasileira. Rio de Janeiro, RJ: Editora Nova Fronteira.

Silva, J. M. C. (1995). Birds of the Cerrado region, South America. Steenstrupia, 21(1), 69-92.

Silva, J. M. C., & Bates, J. M. (2002). Biogeographic patterns andconservation in the South American Cerrado: a tropicalsavanna hotspot. BioScience, 52(3), 225‑233. DOI: http://dx.doi.org/10.1641/0006-3568(2002)052[0225:BPACIT]2.0.CO;2

Silva, J. M. C., & Santos, M. P. D. (2005). A importância relativa dos processos biogeográficos na formação da avifauna do Cerrado e de outros biomas brasileiros, In A. Scariot, J. C. Sousa-Silva, & J. M. Felfili (Eds.), Cerrado: ecologia, biodiversidade e conservação (p. 219-233). Brasília, DF: Ministério do Meio Ambiente.

Stattersfield, A. J., Crosby, M. J., Long, A. J., Wege, D. C., & BirdLife International. (1998). Endemic bird areas of the world: priorities for biodiversity conservation (conservation series no. 7). Cambridge, UK: Birdlife International.

Stotz, D. F., Fitzpatrick, J. W., Parker, T. A., & Moskovits, D. K. (1996). Neotropical birds: ecology and conservation.Chicago, IL: University of Chicago Press.

Ter Braak, C. J. F. (1995). Ordination. In R. H. G. Jongman, Data analysis in community and landscape ecology (p. 91-211). Cambridge, UK: Cambridge University Press.

Terborgh, J. (1985). Habitat selection in Amazonian birds. In M. L. Cody, Habitat selection in birds (p. 311-338). Orlando, FL: Academic Press.

Thom, G., Smith, B. T., Gehara, M., Montesanti, J., Lima-Ribeiro, M. S., Piacentini, V. Q., … Amaral, F. R. (2020). Climatic dynamics and topography control genetic variation in Atlantic Forest montane birds. Molecular Phylogenetics and Evolution, 148(1), e-106812. DOI: http://dx.doi.org/10.1016/j.ympev.2020.106812

Torezan, L. F., Calsavara, L. C., Bochio, G. M., & Anjos, L. (2020). Vulnerability of bird species in highly fragmented forests of southern Brazil: implications for conservation. Ornithology Research, 28(4), 233-240. DOI: http://dx.doi.org/10.1016/j.ecolind.2016.02.006

Vasconcelos, M. F. (2008a). Aves registradas na Serra do Papagaio, município de Aiuruoca, Minas Gerais. Atualidades Ornitologicas, 142(1), 6-7.

Vasconcelos, M. F. (2008b). Mountaintop endemism in eastern Brazil: why some bird species from campos rupestres of the Espinhaço Range are not endemic to the Cerrado region? Revista Brasileira de Ornitologia, 16(35), 348‑362.

Vasconcelos, M. F. D., & D'Angelo-Neto, S. (2009). First assessment of the avifauna of Araucaria forests and other habitats from extreme southern Minas Gerais, Serra da Mantiqueira, Brazil, with notes on biogeography and conservation. Papéis Avulsos de Zoologia, 49(3), 49-71. DOI: http://dx.doi.org/10.1590/S0031-10492009000300001

Vasconcelos, M. F., & Rodrigues, M. (2010). Patterns of geographic distribution and conservation of the open-habitat avifauna of southeastern Brazilian mountaintops (campos rupestres and campos de altitude). Papéis Avulsos de Zoologia, 50(1), 1-29. DOI: http://dx.doi.org/10.1590/S0031-10492010000100001

Vasconcelos, M. F., D’Angelo-Neto, S., & Nemesio, A. (2005). Observações sobre o rei-dos-tangarás Chiroxiphia caudata X Antilophia galeata em Minas Gerais, Brasil. Cotinga, 23(1), 65-69.

Vasconcelos, M. F., D’Angelo-Neto, S., Brand, L. F. S., Venturin, N., Oliveira-Filho, A. T., & Costa, F. A. F. (2002). Avifauna de Lavras e municípios adjacentes, Sul de Minas Gerais, e comentários sobre sua conservação. Unimontes Científica, 4(2), 153-165.

Willrich, G., Lima, M. R., & Dos Anjos, L. (2019). The role of environmental heterogeneity for the maintenance of distinct bird communities in fragmented forests. Emu-Austral Ornithology, 119(4), 374-383. DOI: http://dx.doi.org/10.1080/01584197.2019.1624577

Zambaldi, L. P., Louzada J. N. C., Carvalho L. M. T., & Scolforo J. R. S. (2011). Análise da vulnerabilidade natural para implantação de unidades de conservação na microrregião da serra de Carrancas, MG. Cerne, 17(2), 151-159. DOI: http://dx.doi.org/10.1590/S0104-77602011000200002

Supplementary material

Bird species list in Carrancas city, South of Minas Gerais State, Brazil.

Bird species list in Carrancas city, South of Minas Gerais State, Brazil.
FamilyTaxonCommon name
TinamidaeCrypturellus obsoletus (Temminck, 1815)Brown tinamou
Crypturellus parvirostris (Wagler, 1827)Small-billed tinamou
Rhynchotus rufescens (Temminck, 1815)Red-winged tinamou
Nothura maculosa (Temminck, 1815)Spotted nothura
AnatidaeDendrocygna viduata (Linnaeus, 1766)White-faced whistling duck
Cairina moschata (Linnaeus, 1758)Muscovy duck
Amazonetta brasiliensis (Gmelin, 1789)Brazilian teal
Nomonyx dominica (Linnaeus, 1766)Masked duck
CracidaePenelope superciliaris Temminck, 1815Rusty-margined guan
Penelope obscura Temminck, 1815Dusky-legged guan
CiconiidaeMycteria americana Linnaeus, 1758Wood stork
PhalacrocoracidaeNannopterum brasilianus (Gmelin, 1789)Neotropic Cormorant
ArdeidaeTigrisoma lineatum (Boddaert, 1783)Rufescent tiger heron
Nycticorax nycticorax (Linnaeus, 1758)Black-crowned night heron
Butorides striata (Linnaeus, 1758)Striated heron
Bubulcus ibis (Linnaeus, 1758)Western cattle egret
Ardea cocoi Linnaeus, 1766Cocoi heron
Ardea alba Linnaeus, 1758Great egret
Syrigma sibilatrix (Temminck, 1824)Whistling heron
Egretta thula (Molina, 1782)Snowy egret
ThreskiornithidaeMesembrinibis cayennensis (Gmelin, 1789)Green ibis
Theristicus caudatus (Boddaert, 1783)Buff-necked ibis
Platalea ajaja Linnaeus, 1758Roseate spoonbill
CathartidaeCathartes aura (Linnaeus, 1758)Turkey vulture
Coragyps atratus (Bechstein, 1793)Black vulture
Sarcoramphus papa (Linnaeus, 1758)King vulture
AccipitridaeLeptodon cayanensis (Latham, 1790)Gray-headed kite
Elanus leucurus (Vieillot, 1818)White-tailed kite
Harpagus diodon (Temminck, 1823)Rufous-thighed kite
Accipiter bicolor (Vieillot, 1817)Bicolored hawk
Accipiter striatus Vieillot, 1808Sharp-shinned hawk
Ictinia plumbea (Gmelin, 1788)Plumbeous kite
Geranospiza caerulescens (Vieillot, 1817)Crane hawk
Heterospizias meridionalis (Latham, 1790)Savanna hawk
Urubitinga coronata (Vieillot, 1817)Crowned Eagle
Rupornis magnirostris (Gmelin, 1788)Roadside hawk
Geranoaetus albicaudatus (Vieillot, 1816)White-tailed hawk
Geranoaetus melanoleucus (Vieillot, 1819)Black-chested buzzard-eagle
Buteo brachyurus Vieillot, 1816Short-tailed hawk
Spizaetus tyrannus (Wied, 1820)Black hawk-eagle
RallidaeAramides cajaneus (Statius Muller, 1776)Grey-necked wood rail
Aramides saracura (Spix, 1825)Slaty-breasted wood rail
Laterallus melanophaius (Vieillot, 1819)Rufous-sided craque
CharadriidaeVanellus chilensis (Molina, 1782)Southern lapwing
ScolopacidaeTringa solitaria Wilson, 1813Solitary sandpiper
JacanidaeJacana jacana (Linnaeus, 1766)Wattled jacana
ColumbidaeColumbina talpacoti (Temminck, 1810)Ruddy ground dove
Columbina squammata (Lesson, 1831)Scaled dove
Columba livia Gmelin, 1789Rock dove
Patagioenas picazuro (Temminck, 1813)Picazuro pigeon
Patagioenas cayennensis (Bonnaterre, 1792)Pale-vented pigeon
Zenaida auriculata (Des Murs, 1847)Eared dove
Leptotila verreauxi Bonaparte, 1855White-tipped dove
Leptotila rufaxilla (Richard & Bernard, 1792)Grey-fronted dove
Geotrygon montana (Linnaeus, 1758)Ruddy quail-dove
CuculidaePiaya cayana (Linnaeus, 1766)Squirrel cuckoo
Coccyzus melacoryphus Vieillot, 1817Dark-billed cuckoo
Crotophaga ani Linnaeus, 1758Smooth-billed ani
Guira guira (Gmelin, 1788)Guira cuckoo
Tapera naevia (Linnaeus, 1766)Striped cuckoo
TytonidaeTyto furcata (Temminck, 1827)American barn owl
StrigidaeMegascops choliba (Vieillot, 1817)Tropical screech owl
Bubo virginianus (Gmelin, 1788)Great horned owl
Glaucidium brasilianum (Gmelin, 1788)Ferruginous pygmy owl
Athene cunicularia (Molina, 1782)Burrowing owl
Aegolius harrisii (Cassin, 1849)Buff-fronted owl
Asio flammeus (Pontoppidan, 1763)Short-eared owl
NyctibiidaeNyctibius griseus (Gmelin, 1789)Common potoo
CaprimulgidaeNyctiphrynus ocellatus (Tschudi, 1844)Ocellated poorwill
Nyctidromus albicollis (Gmelin, 1789)Pauraque
Hydropsalis longirostris (Bonaparte, 1825)Band-winged Nightjar
Hydropsalis torquata (Gmelin, 1789)Scissor-tailed nightjar
Hydropsalis parvula (Gould, 1837)Little Nightja
Nannochordeiles pusillus (Gould, 1861)Least Nighthawk
ApodidaeStreptoprocne zonaris (Shaw, 1796)White-collared swift
Chaetura meridionalis Hellmayr, 1907Sick's swift
TrochilidaePhaethornis ruber (Linnaeus, 1758)Reddish hermit
Phaethornis pretrei (Lesson & Delattre, 1839)Planalto hermit
Phaethornis eurynome (Lesson, 1832)Scale-throated hermit
Eupetomena macroura (Gmelin, 1788)Swallow-tailed hummingbird
Aphantochroa cirrochloris (Vieillot, 1818)Sombre hummingbird
Florisuga fusca (Vieillot, 1817)Black jacobin
Colibri serrirostris (Vieillot, 1816)White-vented violetear
Anthracothorax nigricollis (Vieillot, 1817)Black-throated mango
Chlorostilbon lucidus (Shaw, 1812)Glittering-bellied emerald
Thalurania glaucopis (Gmelin, 1788)Violet-capped woodnymph
Leucochloris albicollis (Vieillot, 1818)White-throated hummingbird
Amazilia versicolor (Vieillot, 1818)Versicolored emerald
Amazilia fimbriata (Gmelin, 1788)Glittering-throated emerald
Amazilia lactea (Lesson, 1832)Sapphire-spangled emerald
Heliothryx auritus (Gmelin, 1788)Black-eared fairy
Heliomaster squamosus (Temminck, 1823)Stripe-breasted starthroat
Calliphlox amethystina (Boddaert, 1783)Amethyst woodstar
TrogonidaeTrogon surrucura Vieillot, 1817Surucua trogon
AlcedinidaeMegaceryle torquata (Linnaeus, 1766)Ringed kingfisher
Chloroceryle amazona (Latham, 1790)Amazon Kingfisher
MomotidaeBaryphthengus ruficapillus (Vieillot, 1818)Rufous-capped motmot
GalbulidaeGalbula ruficauda Cuvier, 1816Rufous-tailed jacamar
BucconidaeNystalus chacuru (Vieillot, 1816)White-eared puffbird
Malacoptila striata (Spix, 1824)Crescent-chested puffbird
RamphastidaeRamphastos toco Statius Muller, 1776Toco toucan
Ramphastos dicolorus Linnaeus, 1766Green-billed toucan
PicidaePicumnus cirratus Temminck, 1825White-barred piculet
Melanerpes candidus (Otto, 1796)White woodpecker
Veniliornis passerinus (Linnaeus, 1766)Little woodpecker
Veniliornis spilogaster (Wagler, 1827)White-spotted woodpecker
Colaptes melanochloros (Gmelin, 1788)Green-barred woodpecker
Colaptes campestris (Vieillot, 1818)Campo flicker
Celeus flavescens (Gmelin, 1788)Blond-crested woodpecker
Dryocopus lineatus (Linnaeus, 1766)Lineated woodpecker
Campephilus robustus (Lichtenstein, 1818)Robust woodpecker
CariamidaeCariama cristata (Linnaeus, 1766)Red-legged seriema
FalconidaeCaracara plancus (Miller, 1777)Southern crested caracara
Herpetotheres cachinnans (Linnaeus, 1758)Laughing falcon
Micrastur semitorquatus (Vieillot, 1817)Collared forest falcon
Falco sparverius Linnaeus, 1758American kestrel
Falco femoralis Temminck, 1822Aplomado falcon
PsittacidaePrimolius maracana (Vieillot, 1816)Blue-winged macaw
Psittacara leucophthalmus (Statius Muller, 1776)White-eyed parakeet
Aratinga auricapillus (Kuhl, 1820)Golden-capped parakeet
Eupsittula aurea (Gmelin, 1788)Peach-fronted parakeet
Pyrrhura frontalis (Vieillot, 1817)Maroon-bellied parakeet
Forpus xanthopterygius (Spix, 1824)Blue-winged parrotlet
Brotogeris chiriri (Vieillot, 1818)Yellow-chevroned parakeet
Pionus maximiliani (Kuhl, 1820)Scaly-headed parrot
Amazona vinacea (Kuhl, 1820)Vinaceous-breasted amazon
ThamnophilidaeDysithamnus mentalis (Temminck, 1823)Plain antvireo
Herpsilochmus atricapillus Pelzeln, 1868Black-capped antwren
Thamnophilus ruficapillus Vieillot, 1816Rufous-capped antshrike
Thamnophilus caerulescens Vieillot, 1816Variable antshrike
Mackenziaena leachii (Such, 1825)Large-tailed antshrike
Pyriglena leucoptera (Vieillot, 1818)White-shouldered fire-eye
Drymophila ferruginea (Temminck, 1822)Ferruginous antbird
Drymophila ochropyga (Hellmayr, 1906)Ochre-rumped antbird
Drymophila malura (Temminck, 1825)Dusky-tailed antbird
MelanopareiidaeMelanopareia torquata (Wied, 1831)Collared crescentchest
ConopophagidaeConopophaga lineata (Wied, 1831)Rufous gnateater
RhinocryptidaeScytalopus speluncae (Ménétriès, 1835)Mouse-coloured tapaculo
Scytalopus petrophilus Whitney, Vasconcelos, Silveira & Pacheco, 2010Rock tapaculo
ScleruridaeGeositta poeciloptera (Wied, 1830)Campo miner
DendrocolaptidaeSittasomus griseicapillus (Vieillot, 1818)Olivaceous woodcreeper
Lepidocolaptes angustirostris (Vieillot, 1818)Narrow-billed woodcreeper
Lepidocolaptes squamatus (Lichtenstein, 1822)Scaled woodcreeper
Xiphocolaptes albicollis (Vieillot, 1818)White-throated woodcreeper
XenopidaeXenops rutilans Temminck, 1821Streaked xenops
FurnariidaeFurnarius figulus (Lichtenstein, 1823)Band-tailed hornero
Furnarius rufus (Gmelin, 1788)Rufous hornero
Lochmias nematura (Lichtenstein, 1823)Sharp-tailed streamcreeper
Automolus leucophthalmus (Wied, 1821)White-eyed foliage-gleaner
Philydor rufum (Vieillot, 1818)Buff-fronted foliage-gleaner
Syndactyla rufosuperciliata (Lafresnaye, 1832)Buff-browed foliage-gleaner
Phacellodomus rufifrons (Wied, 1821)Rufous-fronted thornbird
Anumbius annumbi (Vieillot, 1817)Firewood-gatherer
Certhiaxis cinnamomeus (Gmelin, 1788)Yellow-chinned spinetail
Synallaxis ruficapilla Vieillot, 1819Rufous-capped spinetail
Synallaxis cinerascens Temminck, 1823Grey-bellied spinetail
Synallaxis frontalis Pelzeln, 1859Grey-bellied spinetail
Synallaxis albescens Temminck, 1823Pale-breasted spinetail
Synallaxis spixi Sclater, 1856Spix's spinetail
Geositta poeciloptera (Wied, 1830)Campo Miner
Cranioleuca pallida (Wied, 1831)Pallid spinetail
PipridaeNeopelma chrysolophum Pinto, 1944Serra do Mar tyrant-manakin
Ilicura militaris (Shaw & Nodder, 1809)Pin-tailed manakin
Chiroxiphia caudata (Shaw & Nodder, 1793)Blue manakin
Antilophia galeata (Lichtenstein, 1823)Helmeted manakin
TityridaeSchiffornis virescens (Lafresnaye, 1838)Greenish schiffornis
Pachyramphus polychopterus (Vieillot, 1818)White-winged becard
Pachyramphus validus (Lichtenstein, 1823)Crested becard
CotingidaePhibalura flavirostris Vieillot, 1816Swallow-tailed cotinga
Pyroderus scutatus (Shaw, 1792)Red-ruffed fruitcrow
PlatyrinchidaePlatyrinchus mystaceus Vieillot, 1818White-throated spadebill
RhynchocyclidaeMionectes rufiventris Cabanis, 1846Grey-hooded flycatcher
Leptopogon amaurocephalus Tschudi, 1846Sepia-capped flycatcher
Corythopis delalandi (Lesson, 1830)Southern antpipit
Phylloscartes eximius (Temminck, 1822)Southern bristle tyrant
Phylloscartes ventralis (Temminck, 1824)Mottle-cheeked tyrannulet
Tolmomyias sulphurescens (Spix, 1825)Yellow-olive flatbill
Todirostrum poliocephalum (Wied, 1831)Yellow-lored tody-flycatcher
Todirostrum cinereum (Linnaeus, 1766)Common tody-flycatcher
Poecilotriccus plumbeiceps (Lafresnaye, 1846)Ochre-faced tody-flycatcher
Myiornis auricularis (Vieillot, 1818)Eared pygmy tyrant
Hemitriccus diops (Temminck, 1822)Drab-breasted bamboo tyrant
Hemitriccus nidipendulus (Wied, 1831)Hangnest tody-tyrant
TyrannidaeHirundinea ferruginea (Gmelin, 1788)Cliff flycatcher
Camptostoma obsoletum (Temminck, 1824)Southern beardless tyrannulet
Elaenia flavogaster (Thunberg, 1822)Yellow-bellied elaenia
Elaenia cristata Pelzeln, 1868Plain-crested elaenia
Elaenia chiriquensis Lawrence, 1865Lesser elaenia
Elaenia obscura (d’Orbigny & Lafresnaye, 1837)Highland elaenia
Suiriri suiriri (Vieillot, 1818)Suiriri Flycatcher
Capsiempis flaveola (Lichtenstein, 1823)Yellow tyrannulet
Phaeomyias murina (Spix, 1825)Mouse-colored tyrannulet
Phyllomyias fasciatus (Thunberg, 1822)Planalto tyrannulet
Culicivora caudacuta (Vieillot, 1818)Sharp-tailed grass tyrant
Serpophaga nigricans (Vieillot, 1817)Sooty tyrannulet
Serpophaga subcristata (Vieillot, 1817)White-crested tyrannulet
Legatus leucophaius (Vieillot, 1818)Piratic flycatcher
Myiarchus swainsoni Cabanis & Heine, 1859Swainson's flycatcher
Myiarchus ferox (Gmelin, 1789)Short-crested flycatcher
Myiarchus tyrannulus (Statius Muller, 1776)Brown-crested flycatcher
Casiornis rufus (Vieillot, 1816)Rufous casiornis
Pitangus sulphuratus (Linnaeus, 1766)Great kiskadee
Machetornis rixosa (Vieillot, 1819)Cattle tyrant
Myiodynastes maculatus (Statius Muller, 1776)Streaked flycatcher
Megarynchus pitangua (Linnaeus, 1766)Boat-billed flycatcher
Myiozetetes similis (Spix, 1825)Social flycatcher
Tyrannus albogularis Burmeister, 1856White-throated kingbird
Tyrannus melancholicus Vieillot, 1819Tropical kingbird
Tyrannus savana Daudin, 1802Fork-tailed flycatcher
Griseotyrannus aurantioatrocristatus (d’Orbigny & Lafresnaye, 1837)Crowned slaty flycatcher
Empidonomus varius (Vieillot, 1818)Variegated flycatcher
Colonia colonus (Vieillot, 1818)Long-tailed tyrant
Myiophobus fasciatus (Statius Muller, 1776)Bran-colored flycatcher
Pyrocephalus rubinus (Boddaert, 1783)Scarlet flycatcher
Fluvicola nengeta (Linnaeus, 1766)Masked water tyrant
Arundinicola leucocephala (Linnaeus, 1764)White-headed marsh tyrant
Gubernetes yetapa (Vieillot, 1818)Streamer-tailed tyrant
Alectrurus tricolor (Vieillot, 1816)Cock-tailed tyrant
Lathrotriccus euleri (Cabanis, 1868)Euler's flycatcher
Contopus cinereus (Spix, 1825)Tropical pewee
Knipolegus cyanirostris (Vieillot, 1818)Blue-billed black tyrant
Knipolegus lophotes Boie, 1828Crested black tyrant
Knipolegus nigerrimus (Vieillot, 1818)Velvety black tyrant
Satrapa icterophrys (Vieillot, 1818)Yellow-browed tyrant
Xolmis cinereus (Vieillot, 1816)Grey monjita
Xolmis velatus (Lichtenstein, 1823)White-rumped monjita
Muscipipra vetula (Lichtenstein, 1823)Shear-tailed grey tyrant
VireonidaeCyclarhis gujanensis (Gmelin, 1789)Rufous-browed peppershrike
Hylophilus amaurocephalus (Nordmann, 1835)Grey-eyed greenlet
Vireo chivi (Vieillot, 1817)Red-eyed vireo
CorvidaeCyanocorax cristatellus (Temminck, 1823)Curl-crested jay
Cyanocorax chrysops (Vieillot, 1818)Plush-crested jay
HirundinidaePygochelidon cyanoleuca (Vieillot, 1817)Blue-and-white swallow
Alopochelidon fucata (Temminck, 1822)Tawny-headed swallow
Stelgidopteryx ruficollis (Vieillot, 1817)Southern rough-winged swallow
Progne tapera (Vieillot, 1817)Brown-chested martin
Progne chalybea (Gmelin, 1789)Grey-breasted martin
Tachycineta albiventer (Boddaert, 1783)White-winged swallow
Tachycineta leucorrhoa (Vieillot, 1817)White-rumped swallow
Riparia riparia (Linnaeus, 1758)Sand martin
TroglodytidaeTroglodytes musculus Naumann, 1823Southern House Wren
Cistothorus platensis (Latham, 1790)Grass wren
DonacobiidaeDonacobius atricapilla (Linnaeus, 1766)Black-capped donacobius
TurdidaeTurdus leucomelas Vieillot, 1818Pale-breasted thrush
Turdus rufiventris Vieillot, 1818Rufous-bellied thrush
Turdus amaurochalinus Cabanis, 1850Creamy-bellied thrush
Turdus albicollis Vieillot, 1818White-necked thrush
MimidaeMimus saturninus (Lichtenstein, 1823)Chalk-browed mockingbird
MotacillidaeAnthus lutescens Pucheran, 1855Yellowish pipit
Anthus nattereri Sclater, 1878Ochre-breasted pipit
Anthus hellmayri Hartert, 1909Hellmayr's pipit
PasserellidaeZonotrichia capensis (Statius Muller, 1776)Rufous-collared sparrow
Ammodramus humeralis (Bosc, 1792)Grassland sparrow
Arremon flavirostris Swainson, 1838Saffron-billed sparrow
ParulidaeSetophaga pitiayumi (Vieillot, 1817)Tropical parula
Geothlypis aequinoctialis (Gmelin, 1789)Masked yellowthroat
Basileuterus culicivorus (Deppe, 1830)Golden-crowned warbler
Myiothlypis flaveolaBaird, 1865Flavescent Warbler
Myiothlypis leucoblephara (Vieillot, 1817)White-rimmed warbler
IcteridaePsarocolius decumanus (Pallas, 1769)Crested oropendola
Icterus pyrrhopterus (Vieillot, 1819)Variable oriole
Gnorimopsar chopi (Vieillot, 1819)Chopi blackbird
Chrysomus ruficapillus (Vieillot, 1819)Chestnut-capped blackbird
Pseudoleistes guirahuro (Vieillot, 1819)Yellow-rumped marshbird
Molothrus oryzivorus (Gmelin, 1788)Giant cowbird
Molothrus bonariensis (Gmelin, 1789)Shiny cowbird
ThraupidaePorphyrospiza caerulescens (Wied, 1830)Blue finch
Pipraeidea melanonota (Vieillot, 1819)Fawn-breasted tanager
Stephanophorus diadematus (Temminck, 1823)Diademed tanager
Schistochlamys ruficapillus (Vieillot, 1817)Cinnamon tanager
Tangara cyanoventris (Vieillot, 1819)Gilt-edged tanager
Tangara desmaresti (Vieillot, 1819)Brassy-breasted tanager
Tangara sayaca (Linnaeus, 1766)Sayaca Tanager
Tangara palmarum (Wied, 1821)Palm Tanager
Tangara cayana (Linnaeus, 1766)Burnished-buff tanager
Nemosia pileata (Boddaert, 1783)Hooded tanager
Conirostrum speciosum (Temminck, 1824)Chestnut-vented conebill
Sicalis citrina Pelzeln, 1870Stripe-tailed yellow finch
Sicalis flaveola (Linnaeus, 1766)Saffron finch
Sicalis luteola (Sparrman, 1789)Grassland yellow finch
Haplospiza unicolor Cabanis, 1851Uniform finch
Hemithraupis ruficapilla (Vieillot, 1818)Rufous-headed tanager
Volatinia jacarina (Linnaeus, 1766)Blue-black grassquit
Trichothraupis melanops (Vieillot, 1818)Black-goggled tanager
Coryphospingus pileatus (Wied, 1821)Grey pileated finch
Tachyphonus coronatus (Vieillot, 1822)Ruby-crowned tanager
Tersina viridis (Illiger, 1811)Swallow tanager
Dacnis cayana (Linnaeus, 1766)Blue dacnis
Coereba flaveola (Linnaeus, 1758)Bananaquit
Sporophila lineola (Linnaeus, 1758)Lined seedeater
Sporophila nigricollis (Vieillot, 1823)Yellow-bellied seedeater
Sporophila ardesiaca (Dubois, 1894)Dubois's seedeater
Sporophila caerulescens (Vieillot, 1823)Double-collared seedeater
Sporophila leucoptera (Vieillot, 1817)White-bellied seedeater
Coryphaspiza melanotis (Temminck, 1822)Black-masked finch
Embernagra platensis (Gmelin, 1789)Pampa finch
Emberizoides herbicola (Vieillot, 1817)Wedge-tailed grass finch
Saltatricula atricollis (Vieillot, 1817)Black-throated Saltator
Saltator similis d’Orbigny & Lafresnaye, 1837Green-winged saltator
Microspingus cinereus Bonaparte, 1850Cinereous Warbling-Finch
Thlypopsis sordida (d’Orbigny & Lafresnaye, 1837)Orange-headed tanager
Pyrrhocoma ruficeps (Strickland, 1844)Chestnut-headed tanager
Piranga flava (Vieillot, 1822)Hepatic tanager
Cyanoloxia brissonii (Lichtenstein, 1823)Ultramarine Grosbeak
FringillidaeSpinus magellanicus (Vieillot, 1805)Hooded siskin
Euphonia chlorotica (Linnaeus, 1766)Purple-throated euphonia
Euphonia cyanocephala (Vieillot, 1818)Golden-rumped euphonia
Euphonia pectoralis (Latham, 1801)Golden-rumped eufonia
EstrildidaeEstrilda astrild (Linnaeus, 1758)Common waxbill
PasseridaePasser domesticus (Linnaeus, 1758)House sparrow

Notas de autor

epilefsama@hotmail.com

HTML generado a partir de XML-JATS4R por