

urbe. Revista Brasileira de Gestão Urbana

ISSN: 2175-3369

Pontifícia Universidade Católica do Paraná

Medeiros, Mariana Daltro Leite; Donegan, Lucy Edifícios, ruas e vistas para o mar: Relacionando formas construídas, localizações e movimento. urbe. Revista Brasileira de Gestão Urbana, vol. 15, e20220026, 2023 Pontifícia Universidade Católica do Paraná

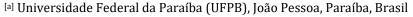
DOI: https://doi.org/10.1590/2175-3369.015.e20220026

Disponível em: https://www.redalyc.org/articulo.oa?id=193174205001

Mais informações do artigo

Site da revista em redalyc.org

acesso aberto


Sistema de Informação Científica Redalyc

Rede de Revistas Científicas da América Latina e do Caribe, Espanha e Portugal Sem fins lucrativos acadêmica projeto, desenvolvido no âmbito da iniciativa

Edifícios, ruas e vistas para o mar: Relacionando formas construídas, localizações e movimento.

Buildings, streets and sea-views: relating built forms, locations and movement.

Mariana Daltro Leite Medeiros ale, Lucy Donegan ble

[b] Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba, Brasil

Como citar: Medeiros, M. D. L., & Donegan, L. (2023). Edifícios, ruas e vistas para o mar: Relacionando formas construídas, localizações e movimento. urbe. *Revista Brasileira de Gestão Urbana*, v.15, e20220026. https://doi.org/10.1590/2175-3369.015.e20220026

Resumo

Em muitas cidades, os crescimentos urbanos acelerados acarretam transformações na malha urbana e em modos de morar, pautados na multiplicação do solo. Entendendo que a vida urbana é essencial ao espaço público, que formas urbanas impactam em usos e que determinadas localizações promovem movimento, este artigo identifica as relações entre localizações na malha urbana e formas construídas (tipo arquitetônico, constituição das fachadas, gabarito), usos do solo e movimento em ruas do Bairro Miramar em João Pessoa - PB. Devido à localização privilegiada – localizado entre três avenidas estruturantes da cidade e próximo ao mar-, o bairro tem atraído investimentos e sofrido renovações edilícias. Para analisar indícios de impactos dessas transformações em movimentos reais, foram escolhidas cinco ruas, variando e recorrendo em valores de centralidade, com diferentes formas construídas e usos do solo. Resultados mostraram relações entre movimento de carros e pedestres ligados a diferentes centralidades, usos e formas construídas. Ruas com diversidade de usos do solo apresentaram mais movimento de pedestres, ao passo que movimento veicular se ligou mais a centralidades da malha. Ruas monofuncionais, principalmente atreladas ao tipo arquitetônico mais recente isolado (com fachadas cegas) apresentaram menos pessoas nas ruas, apontando pouca interação entre a edificação e a rua, negativo para a vida urbana.

Palavras-chave: Malha urbana. Forma construída. Vida Urbana. Bairro Miramar.

MDLM é arquiteta, mestre em Arquitetura e Urbanismo, e-mail: mariana.daltro@academico.ufpb.br LD é professora adjunta do departamento de Arquitetura e Urbanismo, doutora em Arquitetura e Urbanismo, e-mail: lucy.donegan@academico.ufpb.br

Abstract

In many cities, rapid urban growth results transform the urban grid and ways of living, promoted by speculative real estate practices. Understanding that urban life is essential to public space, that urban form impacts on uses and that locations promote movement, this paper identifies relations between locations of urban configuration, built form (typology, interface, building height), land uses and movement at Miramar neighbourhood streets in João Pessoa - PB. Due to its privileged location – between three structural avenues and close to the sea, the neighbourhood has attracted investments and exhibited building renovations. To analyze clues of impacts of these transformations on real movement, five streets were chosen with varying and recurrent centrality values, exhibiting different building types and land uses. Results showed relationships between cars and pedestrian movement with different centralities, and with land uses and building types. Streets with higher diversity of land uses exhibited higher pedestrian flows, while vehicular flows was more linked to urban grid's centralities. Monofunctional streets, especially linked to the most recent isolated building type with blind fronts had fewer people on the streets, pointing to interaction's deficiencies between building and street, negative for urban life.

Keywords: Urban configuration. Building form. Urban life. Miramar neighbourhood.

Introdução

O espaço público da rua é um elemento-chave para a vida social e econômica de cidades (Jacobs, 1961; Speck, 2017), e a configuração do espaço pode ajudar a unir ou separar pessoas e ideias (Peponis, 1989). Entende-se que formas urbanas impactam em usos e que algumas localizações tendem a facilitar mais movimento (Hillier, 2007). Para além da configuração das ruas, usos do solo e outras características dos edifícios e suas relações com a rua também podem estimular ou desestimular a presença de pessoas nas ruas (Kretzer & Saboya, 2020; Netto et al., 2012). Apesar das relações encontradas entre localização, forma de edifícios e efeitos na vida da rua, existem poucos estudos do tipo em João Pessoa, e poucos que observam possíveis indícios de impactos da localização e forma edificada em movimentos de pedestres e carros, simultaneamente. Mais resultados desse tipo poderiam ajudar a, futuramente, subsidiar a criação de novos dispositivos do planejamento urbano para melhorar a vida pública da rua em cidades brasileiras (Saboya, 2007). Este artigo investiga relações entre formas urbanas, usos e movimento – de automóveis e de pessoas – em ruas no Bairro Miramar em João Pessoa, Paraíba, buscando indícios sobre como formas construídas facilitam ou dificultam movimento de pessoas e de automóveis em ruas classificadas como acessíveis e com a malha urbana bem conectada com o todo.

O Bairro Miramar se localiza em um local privilegiado da cidade de João Pessoa, seguindo o eixo de expansão da cidade (Centro-Praia). O assentamento inicial da cidade de João Pessoa se situava perto do que hoje são os bairros Varadouro e Centro (Figura 1). Em meados do século XX, a cidade expandiu de modo mais acelerado, com o prolongamento da Av. Presidente Epitácio Pessoa, abrindo uma reta em direção ao mar. Villaça (2001) identificou, em cidades brasileiras litorâneas, que uma das direções preferenciais de crescimento da malha urbana é para o setor oceânico. A região próxima ao mar atrai muitos investimentos guiados pelo aumento do preço do solo e facilidade de acesso ao formar novas centralidades.

Entre os bairros que surgiram na imediação da avenida e algumas quadras próximo ao mar está o Bairro Miramar (Figura 1), que se limita pelas avenidas Sen. Ruy Carneiro e Min. José Américo de Almeida, implantado em 1960 como um loteamento para abrigar edificações residenciais.

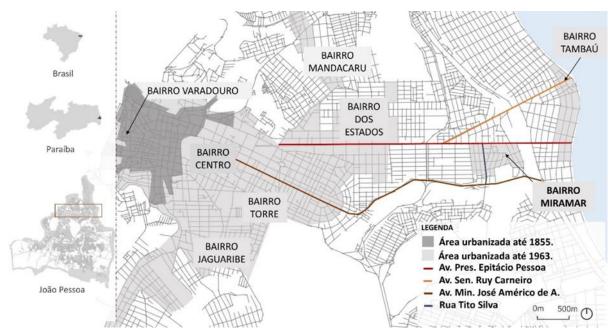


Figura 1 - Localização da área urbanizada de João Pessoa por fases e a implantação do Bairro Miramar. Fonte: Autores (2021).

Além da proximidade com o mar, a localização do Bairro Miramar situa-se entre três avenidas estruturantes da cidade (Av. Pres. Epitácio Pessoa, Av. Sen. Ruy Carneiro, Av. Min. José Américo de Almeida). A legislação em bairros mais distantes da orla, como o Miramar, é mais permissiva em termos de verticalização, de acordo com a lei de escalonamento (Governo do Estado da Paraíba, Constituição do Estado da Paraíba, 1989), possibilitando a vista para o mar por cima das edificações nos bairros vizinhos litorâneos Tambaú e Cabo Branco. Assim, muitas transformações recentes nas formas construídas são visíveis, impactando nas formas residenciais térreas do bairro recém-construído em 1960 (Figura 2).

Figura 2 – Comparação entre o Bairro Miramar recém-construído (1960) e imagem mais atual (2017). Fonte: Palmeira e Dias (1997, p. 3) e Google Maps.

Transformações edilícias impactaram na infraestrutura e na morfologia urbana com formas construídas recentes que priorizam o automóvel particular, constroem grandes muros, não estimulam a diversidade de usos do solo, em detrimento de formas que facilitem encontros entre pessoas, identificadas por Figueiredo (2012) como desurbanismos. Essas formas urbanas recentes criam uma "cidade de muros" com padrões construtivos criados usando um discurso do medo da violência e da criminalidade (Caldeira, 2000, p. 8).

A partir da percepção de edifícios de diferentes idades, formas e usos no Bairro Miramar, questiona-se

como podem se relacionar à vida urbana em trechos diversos do bairro. O próximo tópico discute o arcabouço teórico-metodológico sobre relações entre formas urbanas construídas e vida nas ruas, que embasam as questões de pesquisa apresentadas ao fim do próximo tópico.

Formas urbanas e movimento potencial

O fenômeno da vitalidade urbana, referindo-se aqui à presença de pessoas nas ruas, foram enfatizados em trabalhos como o de Jacobs (1961), Gehl (2013), Hillier & Hanson (1984), identificando fatores associados à urbe, como a edificação e a malha urbana, que estimulam o movimento e a possibilidade de encontros.

Na década de 1960, Jane Jacobs (1961), publicou alguns fatores que poderiam estimular mais o movimento de pessoas na cidade de Nova York, entre eles: quadras menores, diversidade de usos do solo

e características arquitetônicas que estimulam a interação com a rua. Para Jacobs (1961), a vitalidade urbana está ligada ao uso social do espaço e à possibilidade de gerar encontros na urbe. Os estudos de Hillier & Hanson (1984) identificaram, formando a área teórico-metodológico da Lógica Social do Espaço ou sintaxe espacial, como a malha urbana ou configuração espacial estaria atrelada ao movimento na cidade usando modelos computacionais e matemáticos. Considera-se que as pessoas tendem a caminhar por rotas menos labirínticas em termos de ter menos mudanças de direção ou desvios angulares (Hillier et al., 1993). De acordo com Hillier et al. (1993) é mais fácil percorrer um caminho com menor distância topológica, ou seja, com menos mudanças de direção do que mais curto metricamente. Rotas com menos desvios angulares também foram preferidas na escolha de rotas entre origens-destinos (Turner, 2009), enfatizando que caminhos menos complexos em termos de navegabilidade impactam em movimento.

Como as pessoas tendem a se movimentar linearmente, o modo de representação da sintaxe espacial usada para investigar localização e movimento em cidades é a representação linear. Um mapa axial é concebido pela menor quantidade das mais longas linhas retas que cobrem e conectam um sistema de espaços abertos. O mapa axial mede o quão fácil é acessar um eixo do que outro, atribuindo hierarquia de movimento potencial. Essas medidas que indicam uma acessibilidade, centralidade ou movimento potencial podem ser observadas pela medida de integração em escala global ou em escala local, com até três passos-R3 (Medeiros, 2013).

A análise angular de segmentos (ASA), por sua vez, pondera desvios angulares em vias e segmenta eixos nas conexões com outros eixos do mapa axial. A ASA incorpora duas medidas de centralidade considerando conexão e desvios angulares entre um sistema de integração que se relaciona à facilidade de chegar em um segmento a partir de outros, um movimento potencial para lugares. *Choice* (ou escolha) se relaciona à probabilidade de se passar por um segmento em pares de origem-destino, um movimento potencial entre lugares (Hillier et al., 2012). Medidas de integração e *choice* também podem ser normalizadas, respectivamente, como NACH e NAIN (Hillier et al., 2012), que facilitam comparar centralidades em sistemas com diferentes tamanhos.

Hillier et al. (1993), apontaram um ciclo do movimento natural. A configuração espacial, ao criar hierarquias de acesso, promove mais ou menos movimento. Algumas localizações mais fáceis de acessar atraem movimento, costumam ser lugares onde alguns equipamentos como comércios e serviços se situam; esses equipamentos por si só ajudam a atrair mais movimento, retroalimentando o ciclo do movimento natural, embora outros elementos como atratores também possam impactar em movimento (Medeiros, 2006). Esse ciclo expressa uma relação entre essas três variáveis, embora outros elementos da cidade possam impactar em movimento e usos com a localização de equipamentos maiores, como aeroportos (Medeiros, 2006), e outras amenidades da cidade, como qualidades de infraestrutura e

sistemas de transporte urbano. O raciocínio do movimento natural se expressa em algumas cidades brasileiras de modo que ruas mais integradas tendem a sofrer mais renovações edilícias (Silva, 2016; Medeiros & Trigueiro, 2011). Medeiros & Trigueiro (2011) identificaram que a expansão urbana na cidade de Natal alterou a hierarquia viária, e que vias que se tornaram mais integradas favoreceram mais renovações edilícias e a construção de edificações públicas administrativas mais importantes na cidade. Novas centralidades, atraiam mais comércios e serviços, corroborando o ciclo do movimento natural. Achados semelhantes foram encontrados no centro antigo de João Pessoa (Silva & Donegan, 2019): edificações em trechos mais integrados apresentaram mais comércio e serviços, que contribuiu para maior descaracterização de edifícios de valor patrimonial.

Compreendendo impactos da configuração espacial no potencial de movimento, outros estudos se debruçaram a buscar efeitos de formas construídas na vida urbana. Netto et al. (2012) selecionaram ruas com potencial de movimento similar com volume de pedestres diferentes no Rio de Janeiro, para investigar relações com tipologias arquitetônicas que poderiam justificar essa diferença. As tipologias arquitetônicas foram classificadas quanto à implantação no lote. O tipo contínuo representa edifícios sem recuos laterais, o tipo isolado edificações soltas no lote, distantes da rua e o tipo híbrido representa uma justaposição do tipo contínuo com o isolado, representando edificações com uma base larga e corpo estreito, este distante da rua. Resultados apontaram que ruas com grandes lotes e muros, tipo isolado, havia menos pedestres (Netto et al., 2012). Melo Junior et al. (2022) relacionaram o ambiente construído, principalmente a variável de intervisibilidade, com indícios da sensação de insegurança, o que tornam as vias mais ou menos movimentadas em termos de pedestres e veículos para além dos valores de acessibilidade.

Pesquisadores também destacaram a complexidade de funcionamento entre variáveis e a importância de avançar mais no estudo de como variáveis fixas e de fluxos podem se inter-relacionar. Gehl (2013) ligou a escala humana à perda de interações entre pessoas quanto mais verticalizadas as edificações. A transição entre o público e o privado pode atrair pessoas e/ou influenciar na sensação de vulnerabilidade das pessoas na rua (Mello, 2008; Donegan, 2019; Van Nes, 2009). Mello (2008) caracterizou a transição em espaços: constituídos, com acesso físico e visual; desconstituídos, sem acesso físico e visual (fachadas cegas); e semi-cegos, podendo haver um ou outro acesso privado¹, observou usos diferentes em duas áreas de frentes de rio. A área com a malha urbana pouco integrada e sem acesso visual para o rio é menos usados pelas pessoas. Donegan (2019) evidenciou usos diferentes em três praias de Natal, identificando que o público sentia maior insegurança em locais com edificações com mais fachadas cegas. Van Nes (2009) identificou, em uma cidade antiga (Pompeia), como a constituição das fachadas de edificações podem dar indicações prováveis da vitalidade de uma rua no passado. Lojas eram localizadas em ruas constituídas, entretanto, nem sempre mais entradas para uma rua implicam em alta intervisibilidade, que poderia indicar uma relação visual mais mútua do edifício com a rua. A diversidade de uso do solo das edificações também mostrou influenciar no movimento de pessoas (Jacobs, 1961; Gehl, 2013). De acordo com os estudos de Van Den Hoek (2008) em áreas metropolitanas, a proporção de 50/50% entre usos residenciais e não residências estimularia a vida urbana e resultaria em locais mais seguros e atrativos para o pedestre. Metodologias também têm sido desenvolvidas para observar, contabilizar e mapear usos, fluxos e comportamento (Vaughan, 2001) e, assim, facilitar o entendimento de relações entre formas e usos em cidades.

As pesquisas apresentadas que relacionam o movimento de pessoas e variáveis da forma construída são mais recentes e se intensificam à medida que surgem novos modos de morar. Assim, o foco deste

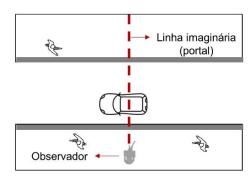
-

¹ Mello (2008) apresentou definições de Holanda (2002, p. 98). Segundo o autor há dois tipos de constituição dos espaços: espaços constituídos e espaços desconstituídos, analisando o grau de constitutividade através das transições entre o espaço aberto e fechado.

estudo é contribuir com o entendimento de abordagens recentes, relacionando não apenas uma variável da forma construída com o movimento, mas diversas variáveis que se complementam com fatores locacionais (uso do solo, constituição das fachadas, gabarito e tipologia das edificações). Outro diferencial da pesquisa é relacionar variáveis da forma urbana com o movimento de pedestres e de automóveis de modo simultâneo, pouco abordado em outras pesquisas que priorizam apenas um dos fluxos. Ademais, busca-se compreender porque algumas ruas com níveis altos de acessibilidade, com alta hierarquia, demonstram, na prática, diferenças de volume de passantes se deslocando a pé ou de carro.

Entendendo que o Bairro Miramar em João Pessoa apresenta uma situação particular com formas contrastantes em constante transformação e que a forma urbana e construída impacta na vida da rua, este artigo busca responder as seguintes questões: Como se relacionam em ruas do Miramar configuração espacial, usos do solo e movimento real? Quais as relações entre renovações edilícias, forma construída e movimento? Existem características construídas que parecem dificultar o movimento de pessoas nas ruas? Quais seriam?

Amparado na literatura e em vivências pessoais, esta pesquisa parte da hipótese que configuração espacial se relaciona a usos do solo e configura espaços de maior ou menor movimento, e que formas edilícias mais recentes podem impactar no movimento de pessoas nas ruas.


Assim busca-se construir indícios de relações entre formas e usos. Esses indícios podem avançar no entendimento de dinâmicas urbanas recentes em cidades brasileiras, e investigar situações que podem estar facilitando ou dificultando o encontro de pessoas e a caminhabilidade no espaço público na rua, auxiliando na tomada de decisões na cidade.

Metodologia

Análises da configuração espacial e da sintaxe espacial, processadas pelo *software* DepthMapX, auxiliaram o entendimento de localizações e hierarquias de movimento na cidade e no bairro. Para avaliar o impacto de formas construídas em algumas vias do bairro, foram feitas análises da configuração espacial do Bairro Miramar, em João Pessoa, através da representação linear da cidade de 2020, considerando vias acessíveis a carro dentro dos limites municipais. No mapa axial, foram analisadas as medidas de integração global e local. A partir do mapa axial, gerou-se o mapa angular de segmentos (ASA – *Angular Segment Analysis*), analisando as medidas de integração e *choice* normalizadas, identificadas como NAIN e NACH, respectivamente. Para a legenda dessa análise, usou-se uma gradação de cores em que as cores mais quentes representam eixos ou segmentos mais integrados e as cores mais frias os eixos ou segmentos mais segregados, atribuindo o método de classificação de quebras naturais ou JENKS, ou seja, pontos de quebra que gerem um melhor agrupamento de valores similares. Esta análise auxiliou o recorte das vias de estudo a serem observadas e analisadas, de modo a capturar vias com alguma variação em termos de tipos diferentes de movimento potencial. Essas mudanças foram visualizadas principalmente em termos de integração axial local e escolha normalizada (NACH).

Para a escolha das ruas, foi considerado o comprimento do eixo da via, ou seja, eixos axiais que representam a rua como um todo, e a integração local, de modo que fossem agrupadas ruas com acessibilidade alta e alta-média. Assim, cinco ruas internas do bairro e dois quarteirões diferentes em cada rua foram escolhidos para compor uma amostra, com algumas variações e recorrências em termos de centralidades, mudanças em usos do solo e de construções mais novas e antigas, conforme etapa anterior da pesquisa. Nessas ruas também foi analisada a tipologia edilícia e a interação do edifício com a rua através das fachadas. Nesses trechos se avançou no mapeamento da tipologia construída, constituição das fachadas e mapeamentos de fluxos de automóveis e pedestres.

Para verificar fluxos nas ruas escolhidas foi usado o método de portais (Vaughan, 2001). De acordo com o método, um portal é uma linha imaginária que corta a rua perpendicularmente. Assim, à medida que um passante cruza essa linha imaginária é feita uma contagem (Figura 3). Para a escolha das localizações dos portais na via, dois locais em cada via foram escolhidos para aferir possíveis diferenças de movimentação, selecionados por meio da diferença de acessibilidade entre segmentos (ASA). No total, somaram-se dez portais (dois portais por rua escolhida). A contagem foi feita em três minutos em cada portal, de modo que todas as áreas foram contabilizadas em horários próximos. As observações foram realizadas, no primeiro semestre de 2021, em turnos diferentes (manhã e tarde) durante dias diferentes da semana e em sábados. A verificação dos fluxos de passantes foi feita na pandemia e provavelmente impactou na quantidade de pedestres nas ruas, mas possibilitou ler diferenças de fluxos entre situações diferentes, suficientes para alguns indícios encontrados.

LISTA DE CONTAGEM							
Portão nº	Horário	Pessoas	Automóveis	Ciclistas			
1	12:05 12:10	II	I				
2	12:12 12:17						
3	12:20 12:25						

Figura 3 – Método dos portais. Fonte: Autores (2021).

Com relação à quantidade de portais, Vaughan (2001) indica como ideal um mínimo de dois portais por rua. Como as ruas escolhidas não são tão longas, o total de portais por rua pareceu suficiente.

A escolha de apenas cinco ruas se deu pela quantidade de ruas de alta e alta-média integração no bairro, totalizando cerca de 25% do conjunto de ruas mais integradas, e por limitação de equipe para mapeamento. Por meio da análise axial local e do NACH global representam-se as hierarquias das ruas na escala do bairro e da cidade.

O mapeamento das formas construídas em cada rua foi realizado em termos de tipologia da edificação, usos do solo, gabarito e constituição das fachadas a partir de visitas em campo com registros fotográficos entre fevereiro de 2020 e março de 2021. Com relação à tipologia, foram classificados tipos: isolado, contínuo e híbrido, conforme classificação de Netto et al. (2012). A partir do mapeamento de usos do solo foram extraídas a porcentagem de comércios e serviços de cada via. Por fim, foi feita a contagem dos tipos de fachada existentes e a porcentagem de cada uma nas ruas escolhidas. Usou-se a nomenclatura de fachadas ativas para os espaços constituídos e fachadas cegas para os espaços desconstituídos.

Para analisar formas urbanas e entendendo que, proporcionalmente, o impacto de um lote em uma rua de vinte lotes tende a ser maior do que em uma rua de cinquenta lotes, foi extraída a porcentagem de cada variável de acordo com a quantidade de lotes de cada rua. Para verificar indícios de relações entre variáveis das formas urbanas e fluxos foi feita uma análise de regressão múltipla para o total de pedestres, automóveis e variáveis da forma urbana. O Teste F de significação global (valor-p do modelo) analisa se o modelo é útil para prever um valor "Y", ou seja, o F de significação, neste estudo, demonstra que há pelo menos uma variável relacionada com a quantidade de pessoas observadas nos portais. O nível de significância (valor de corte) usado convencionalmente nas ciências sociais e humanas para rejeitar a hipótese nula é de 0,05 (Loureiro & Gameiro, 2011). Portanto, se o valor-p do teste F for

menor do que 0,05 há evidências de que pelo menos uma variável está relacionada com a quantidade de passantes, caso contrário, não há nenhuma relação e, portanto, só serão mostradas as variáveis satisfatórias. A variável relacionada com a quantidade de passantes pode ser vista individualmente pelo valor-p de cada variável e deve ser menor do que 0,05 para ter alguma relação significante. A estatística de teste (t-Statistic) é usada para calcular o valor-p e serve para comparar a média amostral com um valor hipotético ou com um valor alvo para a amostra. O coeficiente isola o papel de uma variável das outras, identificando o comportamento de uma variável com a variável dependente no modelo de regressão. O R (coeficiente de correlação) gera o R² (coeficiente de determinação) e demonstram, em porcentagem, o quão as variáveis independentes (regressores) explicam relações entre as variáveis dependentes, ou seja, quanto maior o R² mais explicativo é o modelo e mais ele se ajusta à amostra (Loureiro & Gameiro, 2011). No caso do estudo, explicam a relação, em porcentagem, entre as variáveis da forma urbana (regressores) e o fluxo de pedestres (variável dependente). As relações da quantidade de automóveis e variáveis das formas urbanas não obtiveram valores-p satisfatórios para análise, entretanto, há uma forte correlação linear com os valores NACH (choice normalizado) e, para tanto, será mostrado uma análise de correlação linear simples (Larson & Faber, 2015), indicando que a relação entre a quantidade de automóveis e medidas de NACH em um gráfico de dispersão (gráfico de relação entre duas variáveis) se dá de modo linear com os valores encontrados. A figura 4 ilustra um resumo das etapas metodológicas usadas neste estudo, tendo como objetivo relacionar os fluxos com a análise configuracional e com as formas construídas.

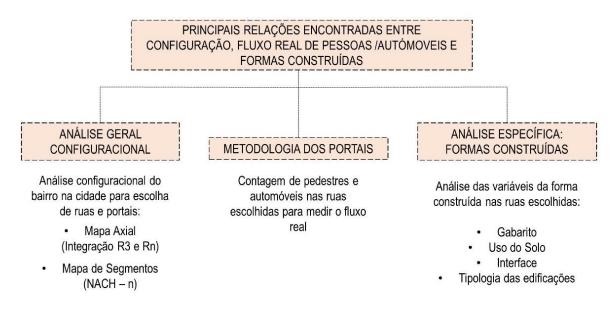
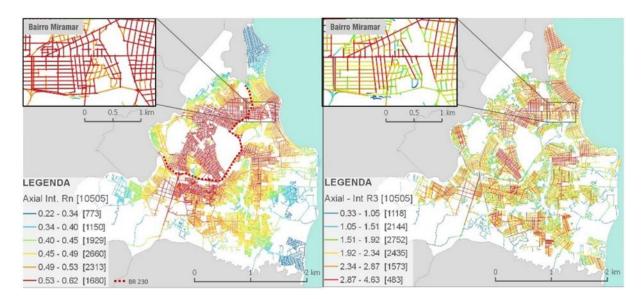



Figura 4 - Resumo de interligação entre metodologias usadas para alcance do objetivo. Fonte: Autores (2021).

Resultados: Relações entre forma construída, usos e movimento no Bairro Miramar

Esta seção identifica indícios de impactos de localização e fatores da forma construída no movimento veicular e, principalmente, pessoas nas ruas. A investigação da localização do Bairro Miramar na cidade de João Pessoa, em termos de integração axial global (Rn) e local (R3) confirma e reforça a situação central de Miramar na cidade (figura 5). Para além desse eixo principal de expansão linear do centro para o mar pela Av. Presidente Epitácio Pessoa, demais tramas urbanas da cidade se apresentam de modo mais fragmentado. As áreas mais integradas de João Pessoa se encontram no eixo Centro – Praia e em duas direções de expansão ao sul, uma diretamente mais perto do centro e outra a

partir do eixo rodoviário da BR-230 ao redor do vazio urbano da Mata do Buraquinho. O Bairro Miramar está localizado em uma área bem integrada com a cidade, entre três avenidas estruturantes da cidade, que distribuem o fluxo do centro à praia: Av. Pres. Epitácio Pessoa, Av. Sen. Ruy Carneiro e Av. Min. José Américo de Almeida e o potencial integrador do bairro nas proximidades dessas avenidas.

Figura 5 – Mapas axiais mostrando integração global e local (R3) de João Pessoa ampliando Miramar. Fonte: Autores (2021).

O Bairro Miramar sofreu muitas transformações nas formas construídas. Enquanto permanecem algumas ruas com lotes edificados mais parecidos com as formas iniciais do bairro, existiu um grande aumento da verticalização desde 1990, identificada por grandes lotes, em sua maioria. Transformações mais evidentes ocorreram em ruas de alta e alta-média acessibilidade com mais comércios, serviços. Uma tipologia arquitetônica mais recente ligado a um efeito multiplicador do solo apareceu em algumas vias com acessibilidade média-elevada, principalmente a leste do bairro, mais longe do centro antigo, mais perto do mar.

As cinco ruas do bairro escolhidas para relacionar localização, forma construída e fluxos reais de passantes são ruas mais internas ao bairro que variam em termos de potenciais movimentos: ao passo que apresentam alta e alta-média integração local, variam em termos de potencial movimento entre lugares (*choice*) (Figura 6). Além disso, ruas escolhidas se diferenciam em termos de usos do solo com ruas mais comerciais, como a Rua Tito e Silva, ou menos comerciais, como a Rua Padres Ayres, e em termos do conjunto construído, alguns segmentos com tipologias mais adensadas e semelhantes à gênese do bairro como a R. João de Pessoa, outros segmentos de vias com edifícios residenciais mais recentes, como na Rua das Acácias. A escolha de dois segmentos foi feita para aferir possíveis diferenças de volumes de fluxos, principalmente de pedestres, em um mesmo eixo de rua ligados a mudanças de tipologias construídas e usos do solo (Figura 7). Os portais foram identificados com a inicial de cada rua escolhida: Rua Hildebrando Tourinho (H1, H2); Rua Tito Silva (T1, T2); Rua Padre Ayres (P1, P2); Rua das Acácias (A1, A2); Rua João de Pessoa (J1, J2).

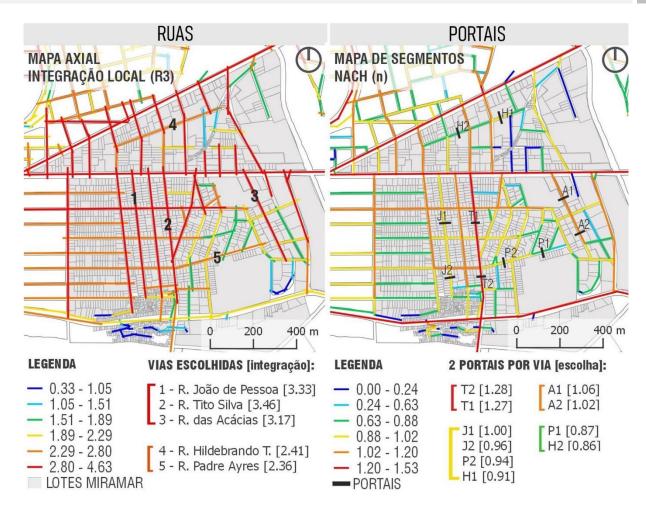


Figura 6 - Vias e portais para mapeamento pormenorizado e contagem de fluxos. Fonte: Autores (2021).

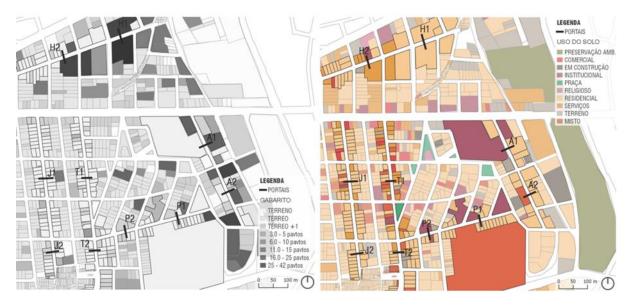


Figura 7 – Usos do solo e gabarito nas ruas escolhidas. Fonte: Autores (2021).

Considerando as quadras dos segmentos selecionados e quadras vizinhas a essas quadras (seleção de lotes estudados visível na figura 6), as ruas com trechos mais verticalizadas e que mais sofreram renovações edilícias nos últimos anos são: Rua Hildebrando Tourinho e, principalmente, Rua das Acácias (Figura 7). A Rua das Acácias tem uma maior proporção de usos residenciais (80%) que a Rua Hildebrando Tourinho

(64%), que apresenta também, nesses trechos, uma porção representativa de usos diversos como comércios, serviços e uso misto (36%). As ruas Padre Ayres, João de Pessoa e Tito Silva apresentam mais edificações térreas, embora com usos do solo bem diferentes entre si, apontando a Rua Tito Silva com maior diversidade de usos do solo de todas as ruas – mais de 60% de usos diversos (comércios, serviços, institucional e uso misto), enquanto as demais têm uso majoritariamente residencial.

Nas comparações de formas construídas com fluxos, expostas na Tabela 1, a rua com mais tipologias isoladas é a Rua das Acácias, com muitas fachadas cegas ou fachadas com apenas acesso físico e, embora seja uma das ruas com menor fluxo de pedestre, apresenta a terceira maior medida de Integração local (3.17) e um NACH elevado (1.04). A Rua Hildebrando Tourinho é uma das menos integradas localmente (2.41) e em termos de escolha (0,89), entretanto, apresenta um dos maiores fluxos de pedestres e automóveis. É a segunda mais verticalizada, com muitas edificações do tipo isolado e apresenta um percentual significativo de lotes com tipo híbrido e uso misto, favorecendo mais fachadas ativas. A Rua Padre Ayres é a menos integrada localmente (2.36) e é uma rua basicamente monofuncional, com muitas edificações térreas do tipo contínuo, entretanto, apresentou muitas fachadas cegas, semelhante às porcentagens encontradas na Rua das Acácias. As ruas Tito Silva e João de Pessoa são ruas paralelas entre si e são as mais integradas localmente, ambas com predominância de tipo contínuo, com tamanhos de lotes mais parecidos com as construções mais antigas do bairro. Embora morfologicamente parecidas, as ruas Tito e Silva e João de Pessoa apresentaram grande diferença com relação à constituição das fachadas, a Rua Tito Silva tem quase o dobro de fachadas ativas da Rua João de Pessoa que, todavia, ainda apresenta mais fachadas ativas que as demais ruas estudadas.

Tabela 1 – Relação entre fluxos, medidas configuracionais e variáveis da forma urbana em cada rua escolhida, destacando os maiores (verde) e menores valores (vermelho) por coluna.

Ruas	Flu	xos		didas racionais	Variáveis da forma urbana em porcentagem				n (%)			
	Р	Α	Int. (R3)	NACH média	Gabarito	Tipo		Uso do solo		Fachada		
					> 10 pav.	1	С	Н	R	D	Ativa	Cega
Acácias	460	1620	3.17	1.04	36	50	45	0	80	20	9	25
Hildebrando Tourinho	1380	2740	2.41	0,89	23	25	63	8	64	36	27	17
João de Pessoa	560	620	3.33	0,98	0	1	98	1	80	20	32	12
Padre Ayres	480	1540	2.36	0,90	6	8	98	0	75	25	10	28
Tito Silva	2260	10080	3.46	1.28	12	0	98	1	39	61	58	8

Nota. Letra **P**= pedestres; **A**= automóveis; *I*= tipo isolado; *C*= tipo contínuo; *H*= tipo híbrido; *R*= uso residencial; D= usos diversos que não são residenciais. **Int. (R3)** = integração local. Em **NACH média** foram extraídos os valores médios a cada dois portais de ruas. Fonte: Autores (2021).

Com relação à contagem do fluxo real de passantes feita com os portais (figura 8), foi observado que a Rua Tito Silva (T1 e T2) é a mais movimentada da seleção em volume de pedestres e automóveis. A Rua Hildebrando Tourinho (H1 e H2) é a segunda rua mais movimentada no geral. Já as ruas Padres Ayres, das Acácias e João de Pessoa apresentaram menor número de pedestres, sendo a Rua das Acácias (A1 e A2) a menos movimentada de todas com relação aos pedestres e a Rua João de Pessoa (J1 e J2) no somatório total dos fluxos.

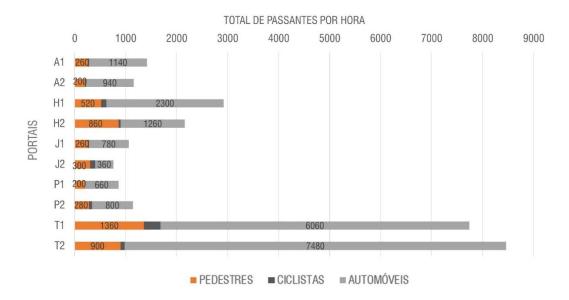
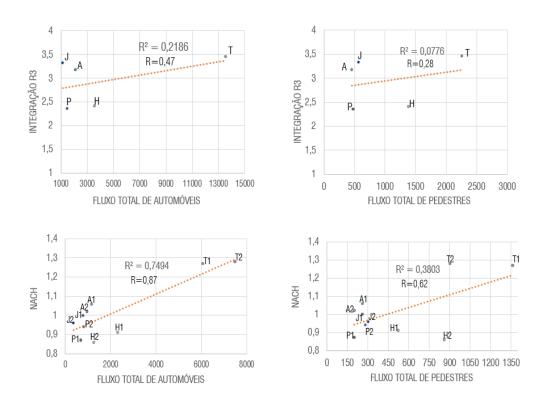


Figura 8 – Total de passantes por portais. Fonte: Autores (2021).

A regressão múltipla busca encontrar uma significância das relações entre fluxos de pedestres e diferentes variáveis da forma construída (Tabela 2). As relações que são mais significativas e aceitáveis (com valor-p < 0,05) indicando relações mais fortes com a quantidade de pedestres naqueles segmentos são as proporções de: edificações maiores que dez pavimentos (> 10 pav.), edificações do tipo isolado e usos diversos. O coeficiente serve para estudar o comportamento de variáveis distintas ante a variável dependente. Nota-se que o coeficiente do tipo isolado é negativo, logo, essa variável se relaciona de maneira oposta com a variável dependente (fluxo de pedestres) – quanto mais pedestres nas ruas, menos tipologias isoladas. A variável de fachada ativa se relacionou de outro modo, já que essa proporção maior geralmente significou mais pedestres, embora a relação tenha sido menos forte do que com as variáveis anteriores. A interseção apresenta o valor em que a curva intercepta o eixo Y, ou seja, o valor da variável dependente (pedestres) caso todas as outras variáveis sejam zeradas. O valor R² indica que essas variáveis – gabarito, tipo isolado, fachadas ativas e usos diversos – podem explicar mais de 95% da quantidade de pedestres nesses segmentos de ruas.

Tabela 2 – Regressão múltipla por segmento de rua ligando o total de pedestres às proporções das seguintes variáveis: (a) edificação maior que dez pavimentos, (b) edificações do tipo isolado, (c) fachadas ativas e (d) usos diversos que não são residenciais.

TESTE GERAL DO MODELO						
R R ²		F	Valor- p			
0,98	0,97	60,5	0,016			


Coeficientes do modelo - PEDESTRES

Variáveis	Coeficientes	Erro Padrão	t-Statistic	Valor- p
Interseção	579,00	108,01	5,36	0,033
> 10 pav.	144,00	14,06	10.22	0,009
Tipo Isolado	-105,00	9,54	-11,00	0,008
Fachadas Ativas	3,016	7,38	0,408	0,550
Usos diversos	38,03	7,71	4,93	0,038

Fonte: Autores (2021).

As análises de regressão múltipla para automóveis não foram significativas já que as variáveis ficaram com o valor-p maior do que 0,05 (valor-p dos regressores entre 0,2 e 0,9), portanto se ligam mais aos pedestres do que ao fluxo veicular. Por outro lado, o fluxo veicular nesses segmentos de rua se relaciona com a acessibilidade da malha viária, visualizados pelas correlações lineares simples do gráfico de dispersão (Figura 9), principalmente, com as medidas de *choice* normalizado (NACH), da análise angular de segmentos, obtendo uma correlação superior a 85%.

Já o fluxo de pedestres não se relacionou de maneira tão clara com as acessibilidades da malha viária aqui investigadas. Em alguns casos, valores muito aproximados de pedestres significaram medidas de NACH e Integração Local muito diferentes entre si, portanto alguns pontos se distanciaram mais da linha de regressão (Figura 9 à direita). Gráficos também clarificam que a Rua Tito Silva tem maior acessibilidade nas duas variáveis investigadas e foi a mais movimentada em termos de automóveis e pessoas passando, o segmento T1 com mais pedestres, o T2 com mais automóveis. A Rua João de Pessoa tem alta integração local, mas médio-baixo NACH e tem um dos menores volumes de passantes no geral (J1 e J2), principalmente poucos automóveis (Figura 9).

Figura 9 – Gráficos de correlação linear entre integração local/NACH e fluxo total de pedestres e automóveis. Fonte: Autores (2021).

A Rua das Acácias e a Rua João de Pessoa se aproximam em termos das acessibilidades investigadas, a das Acácias (A1 e A2) com valores de NACH mais elevados, a João de Pessoa (J1 e J2) com medida de integração local (R3) mais elevada. Ambas são majoritariamente residenciais (80%), entretanto diferem quanto à tipologia e gabarito: Rua João de Pessoa tem mais edificações térreas de tipo contínuo e a Rua das Acácias tem mais edificações com mais de dez pavimentos e tipologia isolada (Figura 10). Nessas ruas, apesar de o movimento total ser semelhante, há uma inversão, embora a Rua das Acácias apresente NACH um pouco mais elevado do que a Rua João de Pessoa, apresentou menor fluxo de pedestres e maior fluxo de automóveis.

Figura 10 - Diferença de gabarito entre a Rua João de Pessoa e a Rua das Acácias. Fonte: acervo pessoal (2021).

Embora a diversidade de uso do solo acompanhe em certa medida trechos mais acessíveis, houve uma correlação ainda mais forte entre movimento de pessoas com usos do solo (Figura 11). As ruas mais movimentadas de pessoas apresentaram muitos comércios e serviços, embora tenham tipologias diferentes – a Rua Tito Silva com mais tipo contínuo e a Rua Hildebrando Tourinho com mais tipo híbrido. As ruas majoritariamente residenciais apresentaram menos pedestres. A maior relação entre as variáveis foi a de uso do solo, obtendo um coeficiente de correlação positivo (90%) para o fluxo real de pedestres e 83% de correlação para o fluxo de automóveis. Quanto maior a quantidade de usos do solo diversos como comércios, serviços e uso misto, mais pedestres.

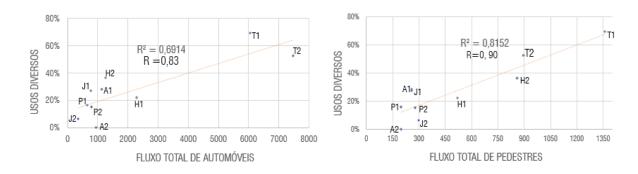


Figura 11 - Correlação linear entre porcentagem de usos diversos e fluxo total de automóveis e pedestres. Fonte: Autores (2021).

A visualização de dados e medidas em gráficos e tabelas facilitou a identificação de relações mais ou menos fortes entre variáveis. A figura 12 mostra a rua mais movimentada da amostra, mesmo em tempos de pandemia. A Rua Tito Silva, importante eixo de conexão do bairro com o setor leste e sul da cidade, marcada pela presença de muitos comércios e serviços, apesar das calçadas estreitas, apresenta

Figura 12 – Passantes na rua Tito Silva. Fonte: acervo pessoal (2021).

Discussão

Miramar é um bairro localizado centralmente na cidade, entre algumas vias estruturantes como a Av. Presidente Epitácio Pessoa, Av. Senador Ruy Carneiro e Av. Min José Américo de Almeida. Essas ruas são muito integradas no bairro, com uma acessibilidade alta, de acordo com análises realizadas usando a ferramenta da sintaxe espacial. De fato, a localização do Bairro Miramar na cidade é um dos motivos para transformações edilícias na área, com uma legislação mais permissiva quanto à verticalização e com o mercado imobiliário atuando de maneira predatória.

A busca de relações entre características da forma construída e da configuração espacial com fluxos no Bairro Miramar indicam algumas complexidades de funcionamento das cidades assim como inter-relações entre variáveis (tabela 1). Achados são consistentes com a hipótese desta pesquisa que formas urbanas recentes podem impactar no movimento de pessoas nas ruas, apontando para indícios de efeitos negativos de construções mais verticalizadas (maior que 10 pavimentos), principalmente quando essas construções são residenciais e se ligam ao tipo isolado no lote, como na Rua das Acácias, a mais verticalizada de todas as ruas investigadas e com menos pedestres. Todavia quando as construções são menos isoladas e aparecem serviços e comércios nelas, como na Rua Hildebrando Tourinho, essas novas construções ainda atraem passantes nas ruas. Assim, achados apontam para mais complexidades interagindo e se relacionando com o movimento na rua e que problemas de formas de edificações se relacionam, principalmente, ao surgimento de uma nova tipologia residencial – tipo isolado.

No geral, observou-se que a centralidade das ruas atrai um movimento para a área, seja de automóveis ou de pedestres. Quando essa centralidade é atrelada a usos do solo diversos, como é o caso da Rua Tito Silva, o movimento aumenta. Nas ruas com edificações mais recentes, surgiu um novo modo de

 edificações com mais de dez pavimentos e do tipo isolado – indicando, muitas vezes, características que dificultam o movimento do pedestre devido a ruas estreitas ou grandes muros (fachadas cegas). Na Rua Hildebrando Tourinho há o tipo híbrido, que são mais atrativos ao pedestre à medida que oferecem amplo acesso físico e visual, além de abarcar comércios e serviços.

Dentre as ruas internas do bairro investigadas, a Rua Tito Silva foi uma das ruas mais

movimentadas da amostra e desempenha um papel de conexão norte-sul com elevado valor de intermediação da malha (NACH). Esta situação se ligou ao fluxo real de automóveis e de pedestres, reforçando a teoria do movimento natural de Hillier (2007) e achados de Medeiros & Trigueiro (2011), indicando que áreas mais acessíveis atraem mais movimento, comércios e serviços para uma área.

Com relação à rua menos movimentada em termos de pedestres, a Rua das Acácias apresenta edifícios residenciais isolados no lote, se verticalizando para alcançar vistas do mar. Achados tecem paralelos com os estudos de Netto et al. (2012), que identificaram que o tipo isolado de edificação, ou seja, mais afastado, desconectado da rua e com presença de grandes muros, não são atrativas para o pedestre caminhar. Essas relações também enfatizam indícios negativos de novos modos de morar na convivência e potencial vida social na rua.

Os estudos de algumas ruas do Bairro do Miramar corroboraram Jacobs (1961) e Gehl (2013), indicando que ruas monofuncionais, perda da escala humana e do contato com a rua não estimulam pessoas nas ruas, como nas ruas Padre Ayres e das Acácias – valores quantificados na Tabela 1. Observou-se também a relação entre fachadas e diversidade de usos do solo. Quanto mais usos diversos, mais fachadas ativas um local poderá ter. Observou-se que características como usos do solo e fachadas ativas tornam as ruas mais dinâmicas, geram a sensação de "olhos da rua", comentada por Jacobs (1961), e aumentam a intervisibilidade (Van Nes, 2009), propiciando maior sensação de segurança pela possibilidade das pessoas olharem a rua direta ou indiretamente.

Resultados indicam indícios de que no Miramar o movimento de pedestres está ligado fortemente à forma construída nos parâmetros aqui investigados. Por outro lado, o movimento de carros não tem ligação significativa com essas formas construídas, ao passo que apresenta uma forte relação com centralidades da malha viária, principalmente por escolha normalizada (NACH). Esses resultados apontam para complexidades de uso na cidade conforme o tipo de mobilidade, um aspecto nem sempre contemplado em alguns dos estudos apresentados, como o de Costa et al. (2022) e de Netto et al. (2012), que focaram apenas em movimento de pedestres.

Considerações finais

Este artigo identificou fatores na forma dos edifícios relacionados à maior ou menor presença de pedestres na rua. Observou-se a importância da configuração espacial em guiar o movimento e, paralelamente, análises de variáveis da forma construída apontaram a forma da edificação e entorno em potencializar ou dificultar o movimento de pessoas nas ruas.

Todas as ruas têm acessibilidade alta e alta-média, entretanto, a mudança da forma construída e suas variáveis se ligaram a volumes de passantes distintos, obtendo uma relação maior com algumas variáveis como usos do solo e fachadas ativas do que com níveis específicos de centralidade de movimento entre e para lugares – embora ainda tenham um grau elevado de significância para a amostra. A rua com menor presença de pedestre nas ruas foi a Rua das Acácias, com a construção de edificações de múltiplos pavimentos com mais de 10 andares. Nessa rua, observa-se o tipo isolado de edificação, vendido pelo mercado imobiliário como sinal de segurança, *status* e de melhor vista para o mar. Entretanto, é o mesmo tipo construído que nega mais o uso do espaço público, cria rupturas bruscas entre o público e o privado com a implementação de grandes muros e platôs, aderindo às práticas de desurbanismos.

Na relação entre formas construídas, usos do solo e movimento, observaram-se os seguintes padrões:

1. Maior diversidade de uso do solo na rua gera maior movimento de pessoas e automóveis; 2. Ruas monofuncionais se demonstram pouco atrativas para os pedestres; 3. Ruas monofuncionais, atreladas ao tipo isolado de construção, apresentam ainda menos movimento de pedestres; 4. quanto mais usos

diversos, mais fachadas ativas e maior movimento de pedestres e automóveis.

Indícios de relações investigadas entre configuração espacial, forma construída e fluxos diferentes apontam para algumas complexidades em fluxos na cidade. A presença de pedestres parece se ligar mais à forma construída, mostrando indícios de efeitos negativos de formas do tipo isolado, com fachadas cegas, todavia tiveram pouca ligação com variáveis configuracionais aqui focadas. Por outro lado, a forma construída não se ligou à variação de fluxos de automóveis, estes mais relacionados à configuração espacial, principalmente a vias de elevado potencial de intermediação entre lugares. Indicam-se assim potenciais diferentes de movimento configurados pela trama urbana. Futuras pesquisas podem ampliar essa amostra e investigar a recorrência desses achados em outros bairros e cidades, avançando mais em entender as complexidades de movimento e a vida urbana.

Os achados foram relevantes apesar das visitas de campo terem ocorrido em 2021, no isolamento social da pandemia COVID-19. Estudos podem ser continuados para investigar possíveis mudanças em momentos mais estáveis. Além disso, a metodologia de análise da vida urbana pode incorporar outros aspectos além da contagem de fluxos, como aplicação de questionários, entrevistas ou conversas informais para aferir a sensação de vulnerabilidade de pessoas em ruas diferentes (como investigado por Donegan (2019) e Van Nes (2009)), que podem elucidar mais efeitos de formas construídas na vida urbana na rua.

Mesmo assim, indícios encontrados aqui apontam para alguns possíveis efeitos negativos de construções com poucos contatos e distantes da rua. Apontam-se que alguns instrumentos da legislação urbana para incentivar mais o tipo contínuo e híbrido de construção e a abertura de contatos do privado com o público, como reforçado em outros estudos alhures (Van Nes, 2009; Saboya, 2007).

Observando as construções recentes, cada vez mais essas edificações negam o uso do espaço público e negligenciam a rua com efeitos danosos a possíveis campos de vitalidade urbana. Este estudo e prosseguimentos em outros recortes urbanos, avaliando outras qualidades da vida urbana, podem avançar mais na busca de melhores cidades e quem sabe até de mais contatos entre público e privado.

Declaração de disponibilidade de dados

O conjunto de dados que dá suporte aos resultados deste artigo está disponível no SciELO DATA e pode ser acessado em https://doi.org/10.48331/scielodata.KYUULE.

Referências

Caldeira, T. (2000). *Cidade de muros: Crime, segregação e cidadania em São Paulo*. (1a ed.). São Paulo: Editora 34 Ltda.

Costa, M. L. G. da, Fontoura, L. C. da, Leão, A. L. F., & Kanashiro, M. (2022). A Caminhada por diferentes propósitos: um estudo na cidade de Cambé-PR. *Revista De Morfologia Urbana*, 10(1), e00193. https://doi.org/10.47235/rmu.v10i1.193

Donegan, L. (2019). Qual é a sua praia? Arquitetura e sociedade em Natal. (1a ed.). Brasília: FRBH.

Figueiredo, L. (2012) Desurbanismo: um manual de destruição das cidades. In Aguiar, D.; Netto, V. (Organizadores). *Urbanidades*. (pp. 209-234). Rio de Janeiro: Letra e Imagem.

Gehl, J. (2013) Cidade para pessoas. (2a ed.) São Paulo: Perspectiva.

Hillier, B. & Hanson, J. (1984). The social logic of space. (1a ed). Cambridge: Cambridge University Press.

Hillier, B., Penn, A., Hanson, J., Grajewski, T., & Xu, J. (1993). Natural movement: or configuration and attraction in urban pedestrian movement. *Environment and Planning B: Planning and Design*, 20(1), 29-66. Recuperado em 11 de dezembro de 2021 de https://discovery.ucl.ac.uk/id/eprint/1398/

Hillier, B. (2007). *Space is the machine: a configurational theory of architecture*. London: Space Syntax Limited.

Hillier, B., Yang, T., & Turner, A. (2012). Normalising least angle choice in Depthmap-and how it opens up new perspectives on the global and local analysis of city space. *Journal of Space Syntax*, 3(2), 155-193. Recuperado em 11 de dezembro de 2021 de https://discovery.ucl.ac.uk/id/eprint/1389938/1/Normalising%20least%20angle%20choice.pdf

Jacobs, J. (1961). The Death and Life of Great American Cities. (1a ed.). London, UK: Pimlico.

Kretzer, G., & Saboya, R. T. (2020). Tipos arquitetônicos e diversidade de usos do solo: uma análise em duas escalas. *Oculum Ensaios*, 17(0) 1-21. http://dx.doi.org/10.24220/23180919v17e2020a4408

Larson, R., & Farber, B. (2015). Estatística Aplicada. (6a ed.). São Paulo: Pearson Education do Brasil.

Loureiro, L., & Gameiro, M. (2011). Interpretação crítica dos resultados estatísticos: para lá da significância estatística. *Revista de Enfermagem Referência*, 3(3) 151-162. http://doi.org/10.12707/RIII1009

Medeiros, V. A. S. (2006). *Urbis brasiliae ou sobre cidades do Brasil: inserindo assentamentos urbanos do país em investigações configuracionais comparativas.* (Tese de doutorado). Faculdade de Arquitetura e Urbanismo, Universidade de Brasília, Brasília.

Medeiros, V., & Trigueiro, E. (2011). *Fluvius Grandis Urbis Cartographica*: buscando preencher ausências. *Arquivos do Museu de História Natural e Jardim Botânico*, 20(2), 101-124. Recuperado em 11 de dezembro de 2021 de https://periodicos.ufmg.br/index.php/mhnjb/article/view/19185

Mello, S. (2008). *Na beira do rio tem uma cidade: urbanidade e valorização dos corpos d'água*. (Tese de doutorado). UnB, Brasília.

Melo Junior, S., Trigueiro, E., & Canuto, R. (2022). O muro e o medo: forma urbana, visibilidade e insegurança em Boa Viagem, Recife. *Revista De Morfologia Urbana*, 10(1), e00201. https://doi.org/10.47235/rmu.v10i1.201

Netto, V.; Vargas, J. C., & Saboya, R. (2012). (Buscando) os efeitos sociais da morfologia arquitetônica. urbe. Revista Brasileira de Gestão Urbana, 4(2), 261-282. http://dx.doi.org/10.7213/urbe.7400

Palmeira, B., & Dias, M. (1997). Bairro do Miramar: sua história, seus moradores. (1a ed.). João Pessoa: Grafisi.

Governo do Estado da Paraíba. (1989). *Constituição do Estado da Paraíba, Lei de Escalonamento, Art. 229.* 1ª série, 333 (outubro). Recuperado de https://www2.senado.leg.br/bdsf/item/id/70448

Peponis, J. (1989). Space, culture and urban design in late modernism and after. *Ekistics*, 56(334), 93–108. Recuperado em 11 dezembro de 2021 em https://www.jstor.org/stable/43622107

Saboya, R. (2007). *Concepção de uma estrutura de sistema de suporte à elaboração de planos diretores participativos*. (Tese de doutorado). Universidade Federal de Santa Catarina, Florianópolis.

Silva, E. R. (2016). *Centro Antigo de João Pessoa: Forma, uso e patrimônio edificado.* (Dissertação de mestrado). Faculdade de Arquitetura e Urbanismo, Universidade Federal do Rio Grande do Norte, Natal.

Silva, E. R., & Donegan, L. (2019). Building transformations in old Joao Pessoa (Brazil): Spatial form impacts on uses and levels of built heritage conservation. In *Proceedings of the 12th International Space Syntax*

Symposium. (pp. 792-806) Beijing: Beijing Jiaotong University.

Speck, J. (2017). Cidade Caminhável. (1a ed). São Paulo: Perspectiva.

Turner, A. (2009). The Role of Angularity in Route Choice: an Analysis of Motorcycle Courier GPS Traces. In *Spatial Information Theory 9th International Conference* (pp. 489-504). London, UK: Springer.

Van Den Hoek, J. (2008) *The MXI (Mixed-use Index) as Tool for Urban Planning and Analysis Joost W.* Recuperado em 11 de dezembro de 2021 de http://joostvandenhoek.com/

Van Nes, A., & Yamu, C. (2021). Introduction to Space Syntax in Urban Studies. London, UK: Springer.

Van Nes, A. (2009). Measuring the Degree of Street Vitality in Excavated Towns - How can Macro and Micro Spatial Analyses Tools Contribute to Understandings on the Spatial Organization of Urban Life in Pompeii? (pp. 120:1 – 120:11). In 7th International Space Syntax Symposium, Stockholm.

Vaughan, L. (2001). *Space Syntax observation manual*. London: Space Sintax. Recuperado em 11 de dezembro de 2021 em https://www.spacesyntax.online/applying-space-syntax/urban-methods-2/spatial-function-analysis/

Villaça, F. (2001). Direções de expansão urbana. In Villaça, F. *Espaço Intra-urbano no Brasil*. (pp. 69 – 112). São Paulo: Nobel.

Editor responsável: Rodrigo Firmino

Recebido: 28 jan. 2022 Aprovado: 22 set 2022