

Revista Virtual Universidad Católica del Norte

ISSN: 0124-5821

editorialucn@ucn.edu.co

Fundación Universitaria Católica del Norte

Colombia

Bossio Vélez, José Luis; Santa Ramírez, Zaida Margot; Jaramillo López, Carlos Mario
Un análisis sobre las barreras de la modelación matemática
en la práctica educativa del profesor de básica primaria
Revista Virtual Universidad Católica del Norte, núm. 68, 2023, Enero-, pp. 255-285
Fundación Universitaria Católica del Norte
Medellín, Colombia

DOI: https://doi.org/10.35575/rvucn.n68a11

Disponible en: https://www.redalyc.org/articulo.oa?id=194274184012



Número completo

Más información del artículo

Página de la revista en redalyc.org



Sistema de Información Científica Redalyc

Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto

#### Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

Bossio Vélez, J. L., Santa Ramírez, Z. M., & Jaramillo López, C. M. (2023, enero-abril). Un análisis sobre las barreras de la modelación matemática en la práctica educativa del profesor de básica primaria. *Revista Virtual Universidad Católica del Norte*, (68), 255-285.

https://www.doi.org/10.35575/rvucn.n68a11

# Un análisis sobre las barreras de la modelación matemática en la práctica educativa del profesor de básica primaria

An analysis of the barriers of mathematical modelling in the educational practice of the elementary school teacher

#### José Luis Bossio Vélez

Jose.bossio@udea.edu.co

Magister en Educación Facultad de Educación, Universidad de Antioquia Medellín, Colombia

Orcid: https://orcid.org/0000-0002-1285-9416

CvLAC:

https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod\_rh=0000046671

#### Zaida Margot Santa Ramírez

Doctora en Educación Facultad de Educación, Universidad de Antioquia Medellín, Colombia zaida.santa@udea.edu.co

**Orcid**: https://orcid.org/0000-0003-0272-2405

CvLAC:

https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod\_rh=0000397105

#### Carlos Mario Jaramillo López

Doctor en Ciencias Matemáticas Facultad de Ciencias Exactas, Universidad de Antioquia Medellín, Colombia carlos.jaramillo1@udea.edu.co

**Orcid**: http://orcid.org/0000-0002-3937-5032

**CvLAC**:

https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod\_rh=0000041572

**Recibido**: 11 de junio de 2022 **Evaluado**: 16 de noviembre de 2022 **Aprobado**: 25 de enero de 2023



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

Tipo de artículo: Revisión.

Resumen

El presente artículo pretende divulgar un análisis de literatura sobre la implementación de la modelación matemática en la práctica educativa del profesor de básica primaria<sup>1</sup>. Luego de revisar

y analizar artículos e investigaciones<sup>2</sup>, mediante algunos procedimientos de codificación y

categorización, se logró establecer elementos que pueden fundamentar el estudio en cuestión, tales

como: modelación matemática, una reflexión sobre el currículo en Colombia; desarrollo y

conocimiento profesional del profesor de matemáticas; modelación matemática en la básica

primaria: obstáculos y retos. Se reconocieron barreras que presenta el profesor al tratar de enseñar

matemáticas mediante un proceso de modelación. Incluso, uno de los aspectos relevantes sería

fortalecer su conocimiento profesional con el que podría asumir retos y superar estas barreras

cuando intenta enseñar a través de dicho proceso. Se concluye que es relevante generar espacios

de desarrollo profesional a partir de la modelación, con la intención de fortalecer el conocimiento

del profesor para una posible transformación de su práctica educativa.

Palabras clave: Conocimiento profesional; Desarrollo profesional; Modelación matemática;

Práctica educativa; Profesor de básica primaria.

**Abstract** 

This article aims to disclose an analysis of the literature on the implementation of mathematical modelling in the educational practice of elementary school teachers<sup>3</sup>. After reviewing and analyzing articles and research through some coding and categorization methods, it was possible to establish elements that can support the study in question, such as mathematical modelling, a

reflection About the curriculum in Colombia; development and professional knowledge of the

<sup>1</sup> Producto de la tesis doctoral en curso: "Transformación de la práctica educativa del profesor de básica primaria a partir de la modelación matemática", del programa de Doctorado en Educación de la Facultad de Educación, Universidad de Antioquia, Medellín, Colombia.

<sup>2</sup> Artículos e investigaciones restringidos a la búsqueda relacionada con el título, resumen, palabras clave.

<sup>3</sup> Product of a doctoral thesis: "Transformation of the educational practice of the elementary school teacher based on mathematical modelling", of the Doctorate in Education program, Faculty of Education, University of Antioquia, Medellín, Colombia.



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

teacher of mathematics; Mathematical modelling in elementary school: obstacles and challenges. Barriers presented by the teacher when trying to teach mathematics through a modeling process were recognized; even one of the relevant aspects would be to strengthen his professional knowledge with which he could take on challenges and overcome obstacles when he tries to teach through the said process. It concludes that it is relevant to generate spaces for professional development based on modelling, intending to strengthen the teacher's knowledge for a possible transformation of their educational practice.

**Keywords:** Professional knowledge; Professional development; Mathematical modelling; Educational practice; Elementary school teacher.

De acuerdo con un análisis y revisión de literatura se observa que el profesor de básica primaria cumple un papel determinante en la implementación de la modelación matemática en su práctica educativa, lo cual implica una necesidad de reflexionar sobre su conocimiento profesional. En este sentido, las discusiones que se presentan en este artículo se enfocan en responder la siguiente pregunta objeto de interés: ¿qué estudios reporta la literatura acerca del conocimiento profesional del profesor de básica primaria con respecto a la implementación de la modelación en su práctica educativa? El análisis logrado, hasta el momento, constituye un referente para efectos del desarrollo del estudio doctoral en curso, el cual considera experiencias previas y referentes teóricos indagados asociados con la respectiva temática.

Algunas experiencias como investigadores y formadores de profesores de básica primaria fueron llevadas a cabo en la región de Urabá, departamento de Antioquia, Colombia, mediante diplomados, programas de formación o acompañamiento situado a dichos profesores, con miras a contribuir en su desarrollo profesional (Gobernación de Antioquia, 2016). A partir de tales experiencias y de las reflexiones producidas en las diferentes interacciones con los profesores, en dichos contextos, se han observado, reconocido y analizado cuestionamientos relacionados con la modelación matemática en la básica primaria y con su implementación en la práctica educativa, así como también aquellos asociados con ciertos aspectos débiles en el conocimiento propio del profesor y en su formación (Antonio et al., 2019).



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, **68**, 255-285

ISSN: 0124-5821 (En línea)

La selección de artículos y de tesis de investigación se realizó a partir de la mirada de Velásquez (2015) y Garcés y Duque (2007), al considerar, primero, la generación de ecuaciones de búsqueda en las bases de datos y, segundo, la construcción de preguntas base, las cuales posibilitaron reconocer la convergencia de los documentos que fueron seleccionados. En el análisis de los datos se tomó la posición de Strauss y Corbin (2016) al entender las posturas de los autores, en cada documento, como fenómenos, para codificarlas y categorizarlas mediante métodos de codificación abierta, axial y selectiva. Producto de esto, y con el apoyo del software Atlas.ti, emergió un esquema conceptual que posibilitó la construcción de los argumentos para responder, de manera aproximada, la pregunta objeto de interés.

Los referentes legales emitidos por el Ministerio de Educación Nacional en Colombia (MEN), como Lineamientos Curriculares, Estándares Básicos de Competencias o Derechos Básicos de Aprendizaje (MEN, 1998, 2006, 2016, 2018), constituyen un asunto teórico relevante a estudiar, con el fin de reconocer las disposiciones y lineamientos sobre la modelación matemática en el currículo escolar colombiano; adicionalmente, se revisaron autores de carácter nacional o internacional, a partir de Biembengut y Hein (2004), English (2006), Blum y Borromeo-Ferri (2009), Villa Ochoa y Ruiz Vahos (2009), Kaiser et al. (2011), Villa-Ochoa (2013) y Huincahue (2017), quienes reportan aspectos favorables y obstáculos en relación con la implementación de la modelación en la práctica educativa del profesor, incluyendo el de básica primaria.

La mirada teórica se considera a partir de Lacarriere (2008), Ponte (2012), Ibermon y Canto (2013), Losano y Villarreal (2015), Ramos-Rodríguez et al. (2015), Riscanevo y Jiménez (2017), Zapata et al. (2018), Aparicio et al. (2018), Villa-Ochoa y Alencar (2019) y Antonio et al. (2019); esta pretende evidenciar las diferentes relaciones entre desarrollo profesional y conocimiento del profesor; particularmente, se reconoce la necesidad de indagar a partir de obstáculos o barreras como las que se mencionan en Greefrath y Vorhölter (2016): falta de tiempo, complejidad de la evaluación y escaso material, que pueden influir en el intento por implementar la modelación en la práctica; esta entendida, en la mirada de Ponte (2012), como práctica educativa.

Por otra parte, se estudian miradas sobre procesos de modelación en formación de profesores, a partir de Cabassut y Wagner (2011), Lesh y Sriraman (2005), Blum y Borromeo-Ferri (2009), Greefrath y Vorhölter (2016), Schmidt (2011), Doerr (2007), Aparisi y Pochulu (2013), Villarreal et al. (2011), Borromeo-Ferri y Blum (2014) y Olarte (2019), con el propósito



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, **68**, 255-285

ISSN: 0124-5821 (En línea)

de reconocer barreras y retos del profesor de básica primaria al intentar implementar la modelación matemática en su práctica educativa, lo que insta a continuar indagando, en términos del conocimiento profesional del profesor, en estrecha relación con la modelación matemática.

De acuerdo con el proceso de indagación y análisis llevado a cabo, se alcanzan a reconocer algunas barreras y obstáculos; en particular, se resalta que la modelación se ha reservado para la enseñanza de las matemáticas en los niveles de secundaria, a pesar de que esta ya se ha incluido en el currículo escolar colombiano a partir de los Lineamiento Curriculares de Matemáticas (MEN, 1998). A nivel metodológico, se ha observado que el profesor de básica primaria ha implementado la modelación en su práctica educativa, pero se evidencia que todavía se presentan barreras y se generan nuevos retos durante dicha implementación. Estos hechos señalan la importancia de considerar las necesidades del profesor de básica primaria en su formación respecto a su conocimiento profesional.

Se deduce que un gran número de profesores de básica primaria están especializados en áreas diferentes a las matemáticas; pese a que han tenido ciertas orientaciones en la didáctica de esta área por parte del Ministerio de Educación Nacional de Colombia (MEN), todavía persisten obstáculos a la hora de enseñar dicha asignatura, algunos de los cuales pueden estar relacionados con ciertos aspectos débiles en el conocimiento del profesor (Antonio et al., 2019); sin embargo, se reconoce que cuentan con amplia experiencia como profesores de primaria.

Adicional a esta situación, el estudio doctoral en curso observa con especial interés las reflexiones logradas en los grupos de profesores donde se han compartido experiencias de modelación, las cuales dan cuenta de una preocupación manifestada por ellos mismos, toda vez que reconocen barreras frente a su conocimiento profesional, respecto a la modelación e implementación de esta en su práctica educativa con estudiantes de básica primaria; estos aspectos se relacionan directamente con la formación del profesor, en lo que se refiere a su desarrollo profesional, y se constituyen en un referente de análisis.

Por tanto, tener en consideración los obstáculos o barreras<sup>4</sup>, como un punto de partida de reflexión, podría permitir analizar cómo se transforma la práctica educativa del profesor de básica primaria, en particular, mediante la modelación matemática; en este caso, se hace relevante

<sup>&</sup>lt;sup>4</sup> Palabra considerada por la Real Academia Española – RAE – como sinónimo de obstáculos.



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

concebir o describir condiciones para interpretar los problemas reportados en los correspondientes estudios indagados, en lo que respecta a los aspectos teórico, metodológico y en la experiencia misma como profesores e investigadores en el campo de la educación matemática.

#### Metodología

La metodología para llevar a cabo un proceso de revisión de literatura y su respectivo análisis consistió en seguir las consideraciones de Velásquez (2015); este autor menciona que, mediante preguntas base, tales como: qué se conoce del tema, qué se ha investigado y qué aspectos permanecen desconocidos, se posibilitó, durante dicho proceso, identificar y relacionar la información al integrar múltiples trabajos de investigación y, a la par, realizar un análisis crítico de cada uno de ellos.

Asumiendo las distintas posturas que se han analizado en el proceso preliminar de revisión de literatura y considerando las preguntas base, antes mencionadas, se buscó construir un documento inicial que diera cuenta de la literatura disponible con la idea de plantear un problema de investigación en torno a la práctica educativa del profesor de básica primaria y la modelación matemática. De hecho, las preguntas base permitieron adquirir experiencia investigativa para reconocer el tipo de literatura que se debería buscar y cuáles ideas relacionar, e ir construyendo los argumentos necesarios para responder a tales interrogantes.

Se ha venido desarrollando un proceso de búsqueda a través de las siguientes bases de datos: Dialnet, ERIC, Google Scholar, Redalyc, Scielo, Springer y Scopus; con las palabras clave se han construido las siguientes ecuaciones de búsqueda (Moncada-Hernández, 2014): "escuela primaria" and "modelación matemática", "desarrollo profesional" and "conocimiento del profesor de matemáticas", "desarrollo profesional" and "modelación matemática", "primary school" and "modelling mathematics", "professional development" and "knowledge of the mathematics teacher", "professional development" and "modelling mathematics", y "currículo colombiano" and "modelación matemática". De esta forma, se buscó garantizar que las relaciones de las palabras clave, antes mencionadas, se encontraran incluidas en los artículos científicos y tesis halladas en las respectivas indagaciones realizadas.



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

En cuanto a los criterios de inclusión y exclusión, como manera de determinar cuáles serían los documentos que, finalmente, se seleccionaron para el respectivo análisis, se consideró la postura de Velásquez (2015), quien orienta, como alternativa, aplicar un filtro manual de selección de documentos. Esta postura se desarrolló al revisar y analizar artículos o tesis publicadas, las cuales fueron comparadas a partir de los siguientes aspectos: identificación de sus particularidades con respecto a las palabras clave, literatura en estrecha relación con la pregunta objeto de interés planteada, metodología, análisis de resultados, discusiones e implicaciones, conclusiones y recomendaciones; esto posibilitó identificar una relación teórica entre los estudios publicados y las respectivas palabras clave en cuestión. De esta manera, se lograron almacenar y preseleccionar 53 documentos, de los cuales 36 mostraron afinidad en tratar de responder las preguntas base planteadas.

A partir de los documentos seleccionados, se realizó un análisis en la mirada de Zapata et al. (2018), con la intención de reconocer en ellos los problemas de investigación, objetivos, los métodos, instrumentos y conclusiones; permitiendo identificar aspectos que se relacionan en cada uno de estos estudios. Esto con la necesidad de esclarecer una transformación de la práctica educativa del profesor de básica primaria.

Para el análisis de las distintas posturas de los autores, halladas en los documentos seleccionados, fue tomada la perspectiva de análisis de datos cualitativo de Strauss y Corbin (2016), en la lógica y el propósito de los tres tipos de procedimientos de codificación: abierta, axial y selectiva, en correspondencia con la pregunta objeto de interés. Dicha lógica, fue dando cuenta de los fenómenos con los que se podían relacionar con los contextos, sujetos, actividades desarrolladas, marcos teóricos y metodologías al interior de cada artículo científico o tesis.

El término *fenómeno*, haciendo una correspondencia directa con las posturas de los autores de cada documento seleccionado, una frase o expresión, puede estar en respuesta a un problema o situación; en este sentido, un fenómeno se pude identificarse mediante una pregunta ¿por qué dicen esto? De este modo, al ir en busca de un fenómeno, se pueden observar acciones/interacciones que se repiten y son representadas por las personas a partir de lo que hacen o comentan (Strauss & Corbin, 2016). En relación con esto, en la codificación abierta, las *categorías* representan los *fenómenos* (o posturas de un autor). Por ejemplo, un *fenómeno* sería temor a las matemáticas; una categoría sería barreras en el aprendizaje de las matemáticas; sus respectivas propiedades y



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

dimensiones responderían a las preguntas: ¿por qué se describe esto?, ¿cuándo?, ¿cómo?, entre otras, que los diferentes autores consideran en sus artículos de investigación. A continuación, se describen los correspondientes procedimientos de codificación.

Codificación abierta. Este es un proceso que busca reconocer, en los datos, conceptos en relación con sus propiedades y dimensiones (Strauss & Corbin, 2016). En este sentido, en el caso particular de este análisis, se consideró como fenómeno: aspectos débiles en el conocimiento del profesor, evidenciado por Antonio et al. (2019) al observar la práctica en el aula de profesores de básica primaria. De este modo, fue emergiendo una categoría llamada conocimiento del profesor, la cual se relacionó con el apartado desarrollo y conocimiento profesional del profesor de matemáticas.

Codificación axial. Esta es definida por Strauss y Corbin (2016) como: "el acto de relacionar categorías o subcategorías siguiendo las líneas de sus propiedades y dimensiones, y de mirar cómo se entrecruzan y vinculan éstas" (p. 135). En esta mirada, con la codificación axial se buscó hacer conexiones entre categorías, con la idea de resaltar elementos que se relacionaran con la pregunta objeto de interés, y así, poder elaborar las respectivas explicaciones teóricas. Para el caso particular del presente análisis, la codificación axial se generó, por ejemplo, al relacionar el fenómeno puntos débiles en el conocimiento del profesor con la categoría, antes mencionada, conocimiento profesional. De esta manera, se fue generando un esquema conceptual que ofreció una comprensión del conocimiento del profesor de básica primaria con respecto a la implementación de la modelación en su práctica educativa.

Codificación selectiva. Con este proceso de análisis se buscó "integrar los conceptos en torno a una categoría central y completar las categorías que necesitan más desarrollo y refinamiento" (Strauss & Corbin, 2016, p. 256). Para esta fase del análisis, la profundidad y complejidad del esquema conceptual, que se fue generando, en cierta medida, reflejó un hilo conductor que permitió construir los argumentos que responderían a la pregunta objeto de interés planteada.

En la codificación selectiva se considera la determinación de una categoría central o modular, la cual representa el tema principal del análisis. En este caso, la categoría en mención estuvo relacionada con el apartado *modelación matemática en la educación básica primaria:* obstáculos y retos. En dicho proceso de codificación, se buscó refinar las categorías que integraban



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

el esquema de relaciones conceptuales, al mostrar cohesión y consistencia en correspondencia con los datos (Strauss & Corbin, 2016). En este sentido, la categoría principal estuvo relacionada con la práctica educativa del profesor de primaria y la modelación matemática.

Se usó el software Atlas.ti, versión nueve (9), para apoyar el proceso de análisis; este ofreció la oportunidad de clasificar y caracterizar los datos, y estos, a su vez, pudieron presentarse a través de diagramas, mapas conceptuales, cuadros, matrices, entre otros, que permitieron estructurar un esquema conceptual, que luego fue validado, dando así respuesta a la pregunta objeto de interés.

Un aspecto fundamental para resaltar del uso del Atlas.ti, es que este permite fortalecer la respectiva revisión y análisis de literatura, bajo el proceso de almacenamiento de artículos o tesis publicadas, codificación y categorización de información. Como resultado de lo anterior, fue posible clasificar la información en tres líneas de reflexión, emergentes del análisis realizado mediante categorías conceptuales asociadas con: (i) modelación matemática, una reflexión sobre el currículo en Colombia; (ii) el desarrollo profesional y conocimiento del profesor de matemáticas; y (iii) modelación matemática en la básica primaria: algunos obstáculos y retos.

#### Resultados

La primera línea, (i) modelación matemática, una reflexión sobre el currículo en Colombia, se enfoca en el estudio de la modelación matemática en el currículo como objeto de reflexión en la educación básica en Colombia, en relación con aspectos referenciados a nivel internacional; en este escenario, se evidencia que la modelación ya se encuentra contenida en el currículo y que el profesor cumple un papel importante para vincularla a la enseñanza y aprendizaje de las matemáticas en el nivel escolar de la básica primaria.

La segunda línea, (ii) el desarrollo profesional y conocimiento del profesor de matemáticas, resalta la importancia de indagar sobre qué aspectos del contexto del profesor de básica primaria, que enseña matemáticas, contribuyen a su conocimiento profesional en relación con la modelación. En esta mirada, emerge la tercera línea, (iii) modelación matemática en la básica primaria: algunos obstáculos y retos, que exhibe una reflexión centrada en las barreras y necesidades del profesor de básica primaria con respecto a la modelación, las cuales se evidencian a través de actividades de



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

desarrollo y conocimiento profesional; de esta manera, se pretenden considerar las situaciones sociales como un escenario en las que las acciones reflexivas, críticas y propositivas del profesor se constituyen en objeto de análisis, asociadas con su práctica educativa.

#### Modelación matemática: una reflexión sobre el currículo en Colombia

En Colombia, a partir de los Lineamientos Curriculares de Matemáticas (MEN, 1998) y los Estándares Básicos de Competencias (MEN, 2006), se observa la modelación como uno de los procesos básicos para orientar la enseñanza de las matemáticas en la escuela (Villa Ochoa y Ruiz Vahos 2009). A su vez, se precisan otros cuatro procesos; a saber: "formular y resolver problemas; comunicar; razonar, y formular, comparar y ejercitar procedimientos y algoritmos" (MEN, 2006, p. 51).

Sin embargo, de acuerdo con el MEN (2018), la modelación continúa siendo un proceso que podría implementarse en la enseñanza y aprendizaje de las matemáticas en la escuela; pero, en la actualidad, es orientada por el MEN (2016) como una contribución al proceso de resolución de problemas; este último es considerado como un macroproceso en las Mallas de Aprendizaje (MEN, 2018), las cuales se constituyen en un documento que orienta el proceso de aprendizaje de los estudiantes. Allí se incluyen los niveles del grado primero hasta grado quinto; es decir, este ciclo recibe el nombre de educación básica primaria en Colombia.

Las Mallas de Aprendizaje (MEN, 2018) fueron publicadas con el propósito de implementar los Derechos Básicos de Aprendizaje (DBA) (MEN, 2016). Estos surgieron bajo la necesidad de guardar una coherencia entre los Lineamientos Curriculares (MEN, 1998) y los Estándares Básicos de Competencias (MEN, 2006), con el fin de generar rutas de aprendizaje que posibiliten que los estudiantes, año tras año, alcancen un conjunto de conocimientos propuestos en los DBA, para cada nivel educativo.

La modelación es descrita por el MEN (2006) como la forma de "modelar procesos y fenómenos de la realidad" (p. 51). Adicional a esto, es considerada como el descubrimiento de representaciones que se repiten en las situaciones del diario vivir, científicas y matemáticas, para reestructurarlas de manera mental (MEN, 2006). En este sentido, la modelación se podría orientar hacia una mirada que permita relacionar el diario vivir de los estudiantes con las matemáticas.



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

El MEN (2006) resalta la necesidad de entretejer elementos de aprendizaje para construir contextos de la vida cotidiana que permitan ir hacia las matemáticas formales, reconociendo que el aprendizaje de las matemáticas informales, en ciertas circunstancias, se origina a partir de situaciones cotidianas de los estudiantes. En relación con lo anterior, Villa-Ochoa (2013) confirma que el profesor cumple un rol primordial en la identificación de esos contextos, que pueden ser significativos para vincularlos, posiblemente, mediante tareas de modelación (Villa-Ochoa et al., 2017) en el proceso de enseñanza y aprendizaje de los estudiantes.

Se ha encontrado que la modelación, en el campo de la educación matemática, puede ser considerada como herramienta didáctica (Huincahue, 2017); proceso de aprendizaje en la educación escolar (Blum & Borromeo-Ferri, 2009); método de enseñanza y, a la vez, de investigación (Biembengut & Hein, 2004); estrategia de enseñanza (Mora Zuluaga, 2015) o como una alternativa que vincula los contextos socioculturales con las matemáticas en la escuela (Londoño Orrego et al., 2018; Rivera Quiroz et al., 2016). Estas formas de ver la modelación pueden contribuir y favorecer la enseñanza y el aprendizaje de las matemáticas en distintos niveles educativos. No obstante, English y Mousoulides (2011) describen que ha sido costumbre reservar la modelación para los grados de la básica secundaria.

Algunas investigaciones muestran que la educación básica primaria debería considerar la modelación tanto como un objetivo relevante como una manera de incluir a los estudiantes en el proceso de resolución de problemas realistas (de Almeida et al., 2015), o como una forma de introducirlos en el tipo de pensamiento que es esencial para este proceso (Carreira, 2011). De hecho, estos estudios demuestran que los niños de este ciclo son capaces de participar en procesos de modelación matemática (English, 2013).

Cuando los estudiantes de básica primaria hacen uso de la modelación, Galbraith (2007) describe que es una forma de permitirles conectarse con su mundo y con sus experiencias de vida. Además, el uso de modelos propicia estar en contacto con las matemáticas y permite comprender la importancia de estas y su presencia en diversas situaciones del mundo real (English, 2013). Este último se entendería a partir de aquellas situaciones que se relacionan con las asignaturas escolares y universitarias o las disciplinas científicas y académicas distintas de las matemáticas, así como con la naturaleza y los asuntos socioculturales, incluido el diario vivir (Blum et al., 2007).



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

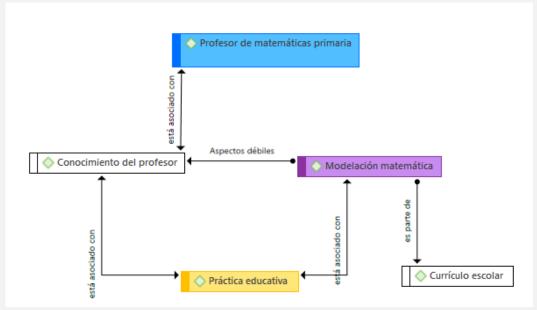
Durante los años iniciales de enseñanza en básica primaria, la modelación se puede observar cuando a los niños se les permite formar y desarrollar sus ideas y procesos matemáticos particulares para construir un conjunto de relaciones que son generalizables y reutilizables (English, 2006). Esto implicaría, según la consideración de los autores de este artículo, en el caso del profesor interesado (Alsina & Salgado, 2021), evaluar o caracterizar contextos, ajustados a los estudiantes de dicho nivel, con el propósito de formular distintas orientaciones que propicien el aprendizaje de las matemáticas.

Se puede deducir que algunas situaciones del diario vivir de los estudiantes favorecen un proceso de modelación (Kaiser et al., 2011). Pero es crítico hallarlas y representarlas matemáticamente para avanzar en la enseñanza y aprendizaje de las matemáticas (Blum & Borromeo-Ferri, 2009). Por tanto, en este escenario, se infiere una barrera para el profesor de básica primaria respecto a la implementación de la modelación en su práctica educativa, la cual, al parecer, estaría relacionada con su conocimiento.

Se pueden resaltar varias reflexiones a partir de lo analizado hasta el momento, al considerar los aspectos que orienta el MEN (2018) y los mencionados en el plano internacional, para que los profesores de básica primaria logren implementar la modelación en su práctica educativa. En este caso, sería pertinente generar estudios que apoyen a los profesores de básica primaria a superar distintas barreras que se presentan al vincular la modelación matemática en su práctica educativa. Respecto a esto, Villa Ochoa y Ruiz Vahos (2009) resaltan la importancia de aminorar, en la educación matemática en Colombia, la creciente brecha entre las disposiciones educativas y las prácticas de aula en matemáticas.

No obstante, a los profesores se les dificulta establecer relaciones entre el conocimiento que usa para la enseñanza con las representaciones para orientar a los estudiantes en el aula y su proceso de aprendizaje (Pinto & González, 2008). Esto puede estar en relación con ciertos aspectos débiles frente a su conocimiento sobre la didáctica específica (Antonio et al., 2019). Aun así, Santa Ramírez (2016), Zapata et al. (2018) y Zapata (2019) han demostrado que estas dificultades pueden ser superadas mediante actividades de desarrollo profesional.

Los elementos desarrollados por el profesor como la planeación, a mediano o a largo plazo, pueden dar cuenta de la práctica educativa de matemáticas (Ponte, 2012). En este sentido, la modelación matemática se puede reconocer como una práctica educativa, al involucrar situaciones




ISSN: 0124-5821 (En línea)

del mundo real y las matemáticas en la enseñanza y el aprendizaje (Blomhøj, 2009). Sin embargo, se deduce que la puesta en marcha de la modelación, en la práctica educativa del profesor, puede estar asociada a ciertos aspectos de su conocimiento que involucra durante esta; relación que se puede observar a partir de en la figura 1.

Figura 1

Esquema conceptual: modelación matemática y currículo escolar



Nota. Elaborado mediante Atlas.ti, versión nueve (9).

Por tanto y, de acuerdo con la literatura analizada, se reconoce que la implementación de la modelación en la enseñanza y aprendizaje de los estudiantes de básica primaria no es una tarea que se puede resolver de manera inmediata. Dada la relación que se deduce entre conocimiento del profesor y modelación (ver Figura 1), se reconoce que todavía persisten ciertos aspectos débiles en el conocimiento del profesor (Antonio et al., 2019) durante su práctica educativa, lo cual demanda compromiso y acompañamiento para que, de algún modo, logre superar las barreras que le impiden la implementación de la modelación en su práctica.



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

#### Desarrollo y conocimiento profesional del profesor de matemáticas

El profesor, como profesional, desempeña una función que pone en juego condiciones humanas con una intención ética, que no se limita a la orientación de valores socioeconómicos, sino, también, a atender una serie de necesidades de las personas (Cardeñoso et al., 2001). De este modo, la función del profesor de matemáticas podría verse como un todo integrado para que su labor impacte de manera significativa el contexto social en el cual se encuentra involucrado.

Son complejos los aspectos que pone en juego el profesor, en función de enseñar matemáticas (Losano & Villarreal, 2015), en relación con las condiciones que le plantea su práctica educativa. De esta manera, se puede entender al profesor como una persona con necesidades e intereses, no solo de tipo personal o familiar, sino en un continuo cambio frente a su labor, conforme a los retos que le impone el aprendizaje de sus estudiantes.

Ponte (2012) presenta el desarrollo profesional como un movimiento que busca que el profesor exteriorice sus intereses y necesidades, los proyectos a emprender y el modo de llevar a cabo esas acciones. Con esto, se piensa en una forma de avanzar del profesor frente a su labor profesional, reconociendo y comprendiendo su acción a partir de sus reflexiones, en correspondencia con su práctica educativa y experiencia.

Por otra parte, Lacarriere (2008) deduce que la función del desarrollo profesional es facilitar al profesor el reconocimiento de nuevas teorías y prácticas pedagógicas; además, fortalecer sus competencias a partir de su quehacer como profesor. Por teorías y prácticas pedagógicas se entienden aquellas relacionadas con la búsqueda de facilitar el aprendizaje de los estudiantes a partir de nuevas alternativas de enseñanza.

A diferencia del autor anterior, Ibermon y Canto (2013) consideran la noción de desarrollo profesional como un conjunto de factores que hacen posible o, incluso, pueden obstaculizar el avance de los profesores en su vida profesional: salario, demandas del mercado laboral y el clima organizacional, la promoción en la profesión, las estructuras jerárquicas, la misma profesión. Esta noción, al parecer, permite diferenciar el concepto de desarrollo profesional con el de formación, entendiendo este último como un factor que está incluido y, a la vez, contribuye y promueve el desarrollo profesional.



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

La formación, como un factor que puede promover el desarrollo profesional del profesor, se diferencia de un tipo de formación que solo ofrece la teoría a los profesores, desconectada de su práctica educativa; es decir, la formación se quedaría en los aspectos teóricos, sin la posibilidad de trascender al aula (Ponte, 2012). Por tanto, se asume la concepción de desarrollo profesional del profesor a partir de Zapata et al. (2018), cuando describen que esto:

Es un proceso de aprendizaje evolutivo, que conduce al cambio de las prácticas de enseñanza y de la reflexión acerca del cómo y del porqué de su práctica. Además, se puede apreciar que esta concepción permite considerar que el desarrollo profesional toma un carácter dinámico y creciente, que trasciende la realidad del aula hasta una práctica reflexiva, analítica, propositiva, contextualizada y flexible, con miras al refinamiento de la misma. (p. 203)

La postura asumida hace posible el abordaje de los diferentes conceptos y concepciones relacionados con la formación; estos tienen en cuenta necesidades y objetivos que pueden beneficiar y promover el avance del desarrollo profesional del profesor, no solo a nivel teórico, sino también a nivel práctico, buscando siempre facilitar el aprendizaje de los estudiantes en la escuela.

Sin embargo, la formación de profesores conviene estructurarla en espacios que propicien la ampliación y consenso de conocimientos tanto a nivel personal como profesional (Aparicio et al., 2018). Esto, debido a que la formación puede considerarse relevante en el desarrollo de los procesos educativos (Villa-Ochoa & Alencar, 2019). Entonces, una de las principales funciones de la formación del profesor de matemáticas, en la mirada del desarrollo profesional, sería la transformación del conocimiento o conocimientos necesarios que contribuyan con su práctica, en correspondencia a la enseñanza de las matemáticas en la escuela.

No se puede desconocer que uno de los objetivos de la educación matemática es formar a los estudiantes en la toma de decisiones (Stillman, 2008). No obstante, en este punto, Olarte (2019) resalta que las mayores preocupaciones se centran en lograr que los estudiantes encuentren el sentido a los contenidos y que puedan articular las realidades que emergen de otras ciencias con los procesos matemáticos. En esta dirección, la formación del profesor, asumida a partir del desarrollo profesional, podría potencializar la enseñanza de las matemáticas, al articular esta con la realidad de los estudiantes en la escuela.



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

Por ahora, las investigaciones muestran que una gran parte de los profesores necesitan ser orientados para que puedan enseñar de acuerdo con principios innovadores (Osorio, 2016). La innovación, en este caso, es entendida cuando el profesor de matemáticas decide cambiar su manera de enseñar para favorecer el aprendizaje de las matemáticas en los estudiantes. Se cree que, así, los estudiantes pueden hacer uso de las matemáticas que aprenden y tomar mejores decisiones en cada situación que se les presenta (Stillman, 2008).

Se observan, con marcado interés, las diferentes dificultades y necesidades que puede estar presentando la enseñanza de las matemáticas en la educación básica primaria, las cuales podrían estar en correspondencia con las necesidades de formación del profesor que enseña matemáticas. Arboleda (2016) afirma que no existen cifras oficiales de cuántos profesores enseñan matemáticas en el sistema educativo colombiano; sin embargo, por experiencia, algunos de estos profesores pueden poseer una escasa formación al tener especialidades diferentes en lo que se refiere a la enseñanza de las matemáticas. Esto, de alguna manera, puede estar generando dificultades en el aprendizaje de los estudiantes, no solo a nivel conceptual o procedimental, sino también en las formas de usar y representar las matemáticas en diferentes situaciones o contextos.

El conocimiento matemático que pueden usar todas las personas para resolver problemas en el diario vivir se reconoce como conocimiento común de las matemáticas (Riscanevo & Jiménez, 2017). Con esto, se deduce que el conocimiento del profesor estaría fundamentado en acciones e interacciones de la enseñanza y el aprendizaje de las matemáticas, lo que implicaría considerar no solo las matemáticas a enseñar, sino también los aspectos favorables o que impiden el aprendizaje en los estudiantes, los cuales, incluso, podrían estar relacionados con asuntos de índole social y cultural, personal o familiar.

Una manera de asumir el conocimiento del profesor puede ser a partir de las ideas de Ponte (2012), quien se refiere al conocimiento profesional para hacer alusión al conocimiento que ha producido el profesor a lo largo de su experiencia, el cual considera conveniente caracterizarlo a partir de las dimensiones del conocimiento didáctico: conocimiento de las matemáticas, del currículo, del alumnado y de sus procesos de aprendizaje, y de la práctica educativa. En este orden de ideas, el autor hace énfasis en evitar reflexionar sobre estas dimensiones como objetos separados, sino como componentes que se relacionan o se entretejen entre sí, como producto del



#### Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

análisis de la actividad práctica del profesor que enseña matemáticas en la escuela; así que, a continuación, se describen cada una de estas dimensiones (Ponte, 2012).

Conocimiento de las matemáticas. Se relaciona con las diversas formas de conceptualizar el contenido del nivel al que pertenece, representarlo de diferentes maneras y comprender las relaciones con otros temas del mismo nivel. Es considerado, en general, como el conocimiento experto que el profesor tiene de las matemáticas.

Conocimiento curricular. Se busca identificar en el profesor la manera de organizar el contenido, relacionando a los estudiantes entre sí y el contenido mismo. A esto se le suman las formas de evaluación que utiliza durante sus prácticas en el aula.

Conocimiento del alumnado y de sus procesos de aprendizaje. Se asocia con el conocimiento que tiene el profesor de los estudiantes como personas, sus intereses, gustos, formas habituales de comportarse y reaccionar, valores, referencias culturales, modos de aprender, entre otros.

Conocimiento de la práctica educativa. Se focaliza en las formas de organizar el trabajo con sus estudiantes: el plan pensado para cada sesión de cada clase, la elaboración de tareas propuestas, los modos de comunicación, la evaluación del aprendizaje, entre otros.

De acuerdo con la visión anterior, puede entenderse que no es únicamente la correspondencia entre el razonamiento del profesor y el del estudiante, sino que es la naturaleza de su práctica educativa la que está en juego. Esto se puede entender a partir del análisis de Ramos-Rodríguez et al. (2015), cuando un grupo de profesores en formación desarrollan tareas para el aula, con el fin de mitigar las dificultades de aprendizaje en sus estudiantes respecto al álgebra escolar. En este estudio se puede reconocer cómo los profesores utilizan, de manera natural, nociones de modelación y descubren nuevas formas de orientar la enseñanza de las expresiones algebraicas.

Se podría asumir que el conocimiento profesional del profesor, bajo la mirada del desarrollo profesional (Ponte, 2012), está orientado a reconocer la actividad práctica que tiene como base fundamental su experiencia y la reflexión sobre esta. Dicha visión posibilita contemplar elementos del contexto social que rodean al profesor, los cuales pueden influenciar en su conocimiento, favoreciendo o no su práctica educativa y, de algún modo, el aprendizaje de las matemáticas de los estudiantes.



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

El contexto social del profesor es interpretado por la interacción de un grupo social específico (los profesores de matemáticas), el cual tiene fuerte influencia por la actividad práctica y las condiciones que esta ejerce (Ponte, 2012). En esta mirada, la actividad práctica se asume en función de la enseñanza de las matemáticas, en correspondencia con el conocimiento de naturaleza teórico de estas, de la educación en general o de la misma enseñanza; por otra parte, las condiciones que ejerce pueden estar centradas en una naturaleza social y en la experiencia del profesor. Lo anterior, se comprende a partir del conocimiento que puede tener el profesor de los estudiantes, de las dinámicas de aula, valores y cultura de la comunidad correspondiente, comunidades escolares o comunidades profesionales.

Por tanto, se resalta la importancia de indagar, en la mirada del desarrollo profesional (Ponte, 2012), una potencial implicación entre el conocimiento profesional del profesor y elementos de su contexto social, que posibiliten una transformación de su práctica educativa. No obstante, es necesario considerar la cantidad de elementos que el profesor de básica primaria debe asumir al tratar de implementar la modelación en su práctica educativa. Así las cosas, a continuación, se describen algunos obstáculos y retos del profesor en relación con la modelación.

#### Modelación matemática en la educación básica primaria: obstáculos y retos

Se ha demostrado que la modelación puede tener éxito en la educación básica primaria (Cabassut & Wagner, 2011). En este sentido, Lesh y Sriraman (2005) argumentan que, durante la modelación, el estudiante construye mecanismos para abordar fenómenos de su diario vivir y ajusta formas flexibles para su desarrollo. De acuerdo con lo anterior, se puede apreciar que las formas flexibles de pensar y actuar estarían mostrando aspectos matemáticos mediante la elaboración de modelos en el aula, cuando el estudiante se enfrenta a situaciones del mundo real. De hecho, estas actuaciones pueden constituirse en bondades de la modelación con respecto a la enseñanza y el aprendizaje de las matemáticas en la escuela. Sin embargo, al parecer, existen obstáculos que no han permitido que la modelación sea implementada por el profesor de matemáticas en su práctica educativa.

Al respecto, Greefrath y Vorhölter (2016) mencionan cuatro categorías que Blum (1996) describe teóricamente, las cuales se relacionan con obstáculos que imposibilitan que la modelación



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

sea implementada en el aula. La primera categoría está asociada con el tiempo, el cual es escaso para desarrollarla en la escuela; la segunda categoría está relacionada con los estudiantes, suponiendo que la modelación podría ser un asunto complejo para ellos; la tercera categoría se focaliza en el profesor, dado que, al parecer, debe invertir más tiempo para preparar las tareas y adaptarlas; y, la última, se centra en la falta de material para adecuar problemas de modelación a sus prácticas educativas.

Schmidt (2011) desarrolló un estudio con 101 profesores de básica primaria y secundaria para analizar si los obstáculos mencionados en Blum (1996) podían identificarse empíricamente o habrían cambiado a lo largo del tiempo. Referente a los profesores, nombraron tres obstáculos principales: falta de tiempo, complejidad de la evaluación y falta de material.

La falta de tiempo estaría asociada con la dificultad para adaptar la práctica de la modelación al horario de clase; y la preparación de las lecciones, quizá, les estaría exigiendo mayor tiempo para planearlas. Con respecto a la falta de material, se mencionaron, especialmente, los problemas de modelación para los estudiantes; puede ser posible que los profesores tengan dificultades para construir problemas que orienten el aprendizaje. Referente a la complejidad de la evaluación, Schmidt (2011) mencionó que la formación que se llevó a cabo en el marco del estudio no cambió las actitudes de los profesores hacia este obstáculo; incluso, después de dicha formación, estos todavía manifestaban dificultades para evaluar los problemas de modelación.

Borromeo-Ferri y Blum (2014) también reportan tres obstáculos relevantes con respecto a la implementación de la modelación con profesores de básica primaria: 1) la falta de material; 2) la presión del tiempo; y 3) lo concerniente a la evaluación. El primer obstáculo hace hincapié en la falta de material que incluya problemas de modelación, ajustados a los estudiantes; en el segundo, se entiende que el tiempo es limitado para orientar procesos de modelación, pues no habría manera de ajustarlos a los tiempos que establece la escuela para la enseñanza de las matemáticas; y, el tercer obstáculo, se podría estar generando cuando la especialidad del profesor no es la enseñanza de las matemáticas.

Aparisi y Pochulu (2013) contrastan la enseñanza de las matemáticas en un enfoque tradicional con la enseñanza de la modelación a la luz de una nueva propuesta. En el primero, describen que ese tipo de enseñanza genera seguridad en los profesores, debido a que su estrategia inicia con la explicación de la teoría y culmina con la realización de ejercicios de práctica, a



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

diferencia de la segunda forma, donde se ubica al profesor en una zona de incertidumbre, en la cual no se hace necesario saber todas las respuestas ni las posibles aproximaciones que hacen los estudiantes con respecto a las matemáticas.

Sobresale, hasta el momento, la necesidad de posibilitar al profesor que enseña matemáticas en básica primaria de un tipo particular de conocimiento para asumir el reto de orientar la modelación en el aula, en términos de su práctica educativa. Esto puede estar asociado con elementos mencionados por Doerr (2007), como escuchar a los estudiantes, responder de manera coherente a una situación, revisar rutas o enfoques inesperados y hacer conexiones con otras ideas matemáticas.

Es preciso resaltar que se han realizado esfuerzos por indagar y caracterizar el desarrollo profesional de profesores de matemáticas en escenarios de modelación (Villarreal et al., 2011). Estos son entendidos como ese conjunto de situaciones, acciones e interacciones relacionadas con el proceso de estudio, creencias, implementación y evaluación de propuestas de modelación desarrolladas en contextos educativos. Con lo anterior, emergen dos obstáculos importantes: primero, inversión considerable de tiempo para el diseño e implementación de la modelación matemática en el aula; y, segundo, existencia de una necesidad constante de los profesores por controlar y prever dificultades en cada decisión de los estudiantes.

Por tanto, todos los obstáculos antes mencionados por Schmidt (2011), Greefrath y Vorhölter (2016), Borromeo-Ferri y Blum (2014) y Villarreal et al. (2011) demuestran las necesidades del profesor de matemáticas, incluyendo al de básica primaria, respecto a la modelación; se resalta que estas podrían ser reducidas a través de actividades de desarrollo profesional (Borromeo-Ferri & Blum, 2014). No obstante, sería precipitado definir qué aspectos del desarrollo profesional se deberían considerar para propiciar en los profesores un conocimiento necesario que les posibilite implementar la modelación en su práctica educativa, debido a la cantidad de situaciones que se deben sopesar cuando se busca mediar un aprendizaje a través de este proceso y lograr transformar su práctica.

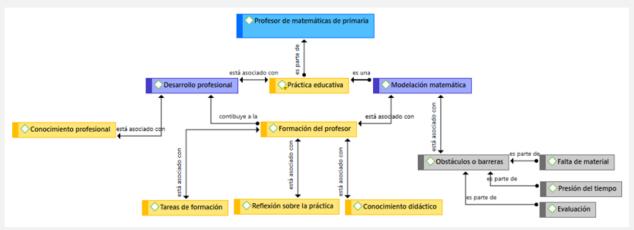




#### Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

#### **Discusiones**


Se pueden deducir, a partir de las distintas posturas teóricas, algunos aspectos que el profesor de básica primaria debería conocer para implementar la modelación en su práctica educativa, tales como: conocer situaciones del contexto sociocultural del estudiante y de la escuela misma, conocer las matemáticas que son enseñadas y comprender nociones teóricas sobre procesos asociados a la modelación. Sin embargo, a partir de Schmidt (2011), Greefrath y Vorhölter (2016), Borromeo-Ferri y Blum (2014) y Villarreal et al. (2011) no se logra identificar cómo pueden estar estructurados y relacionados tales aspectos en función del conocimiento del profesor. Por tanto, estas ideas podrían estar demostrando lo relevante de reconocer y fortalecer tal conocimiento a partir de las dimensiones del conocimiento didáctico (Ponte, 2012), que permita continuar indagando en una posible transformación de la práctica educativa, dados los múltiples obstáculos que el profesor enfrenta al implementar la modelación en el aula.

Se observa, además, una relación relevante entre desarrollo profesional y modelación matemática, al analizar la práctica educativa del profesor de matemáticas de básica primaria. Se logra dilucidar que la implementación de la modelación en la práctica del profesor presenta ciertas barreras; sin embargo, la superación de estas se asocia directamente con la formación del profesor, en lo que concierne al fortalecimiento del conocimiento profesional que se requiere para implementarla en el aula de clase, a partir del uso de ciertas tareas de formación (Ponte et al., 2009) y de la reflexión continua sobre la práctica educativa; estos elementos, a su vez, están en correspondencia con el desarrollo profesional (Ponte, 2012), en cuanto al conocimiento profesional y a la misma formación del profesor a lo largo de su vida. Tal relación se puede observar en la Figura 2.



ISSN: 0124-5821 (En línea)

**Figura 2** *Esquema conceptual: desarrollo profesional y modelación matemática* 



Nota. Elaborado mediante Atlas.ti, versión nueve (9).

En esta discusión, se resaltan los diferentes momentos para la búsqueda de artículos y tesis de investigación bajo las orientaciones de Velásquez (2015): construcción de la pregunta objeto de interés, que enmarcaría el análisis de literatura, uso de preguntas clave y comparación de documentos para su respectiva selección. A esto, se le suma el componente de análisis de datos, al considerar elementos de Strauss y Corbin (2016) como codificación abierta, axial y selectiva, lo cual posibilitó que emergieran categorías como desarrollo profesional, práctica educativa, modelación matemática, formación del profesor, conocimiento profesional, obstáculos o barreras, entre otras (ver Figura 2), que se discutieron en las tres categorías conceptuales generales: (i) modelación matemática, una reflexión sobre el currículo en Colombia; (ii) el desarrollo profesional y conocimiento del profesor de matemáticas; y (iii) modelación matemática en la básica primaria: algunos obstáculos y retos.

Además de lo anterior, se destaca el uso del software Atlas.ti que agilizó el proceso de almacenamiento de los artículos y tesis de investigación, y el proceso de codificación y categorización de la información de cada documento seleccionado. Agregado a esto, el software posibilitó generar esquemas conceptuales (ver Figura 2) con los que se pudieron visualizar las distintas relaciones durante el proceso de análisis, de tal manera que, dicho esquema, se irá refinando en el transcurso de la presente investigación doctoral.



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

Por tanto, como valor agregado a este proceso de análisis de literatura, se puede considerar la relación entre los aspectos metodológicos asumidos como la búsqueda de los artículos de investigación y su proceso de selección (Velásquez, 2015), como una fase inicial; la segunda, sería el análisis de los datos bajo el proceso de codificación abierta, axial y selectiva (Strauss & Corbin, 2016), para que las categorías fueran emergiendo y, al mismo, tiempo refinando; y la tercera fase correspondería a la ruta de redacción de los resultados y discusiones a partir del esquema conceptual generado mediante el software Atlas.ti.

#### **Conclusiones**

La metodología llevada a cabo en esta revisión y análisis de literatura ha posibilitado adquirir experiencia para identificar, relacionar información e integrar múltiples trabajos de investigación y artículos científicos; lo anterior, se logró al resolver la pregunta objeto de interés: ¿qué estudios reporta la literatura acerca del conocimiento profesional del profesor de básica primaria con respecto a la implementación de la modelación en su práctica educativa?, y mediante otras preguntas base planteadas.

El respectivo análisis crítico de cada uno de los trabajos de investigación y artículos científicos seleccionados, con el apoyo del software Atlas.ti versión nueve (9), ofrece la oportunidad de generar categorías emergentes, con sus respectivas relaciones, las cuales orientaron a estudiar elementos asociados con el desarrollo profesional y la modelación matemática respecto a la práctica educativa del profesor de básica primaria. Además, es importante anotar que, para efectos de llevar a cabo la escritura formal del presente artículo, fue necesario realizar una rigurosa revisión y análisis de literatura, con el fin de construir los argumentos necesarios para responder la pregunta objeto de interés.

En cuanto a la modelación, considerando las posturas teóricas, se aprecia en los estudios analizados que se comparte la idea de poner en juego la relación del diario vivir de los estudiantes con las matemáticas del currículo escolar, como otra manera de enseñarlas. Sin embargo, la práctica de la modelación, referenciada como un proceso, implica tener en cuenta que el profesor debe enfrentar una serie de obstáculos; en particular, no poseer el conocimiento suficiente y necesario para implementar tal proceso en el aula.



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

ISSN: 0124-5821 (En línea)

Es relevante estudiar los elementos involucrados en el desarrollo profesional del profesor que enseña matemáticas en básica primaria, que puedan, considerando su experiencia, fortalecer los conocimientos requeridos para implementar la modelación en el aula, mediante la interacción de la teoría y la práctica; de esta manera, se busca fortalecer, a su vez, su conocimiento profesional para que, de algún modo, pueda contribuir a una posible transformación de su práctica educativa. De hecho, la revisión y análisis de literatura ha permitido establecer, de manera aproximada, que los profesores de básica primaria, al pretender vincular la modelación matemática al proceso de enseñanza y aprendizaje de las matemáticas, deben transformar su práctica educativa, enfrentando obstáculos o barreras inherentes a su formación profesional.

La formación del profesor no debe limitarse únicamente a aspectos teóricos que él debe conocer; se lograron dilucidar, durante el análisis, posturas que apuntan a la inclusión de elementos que enriquecen la práctica educativa del profesor, tales como su reflexión, elaboración de tareas de formación y su conocimiento profesional. Estos componentes estarían relacionados con el conocimiento que puede tener el profesor del estudiante, de las matemáticas para su enseñanza, del currículo y de la misma práctica educativa.

Finalmente, es relevante mencionar que se han hecho esfuerzos por apoyar la implementación de la modelación en las clases de matemáticas en básica primaria, como una forma de enseñanza y aprendizaje; sin embargo, aún se puede apreciar que es indispensable continuar generando estudios para que este proceso pueda ser considerado por los profesores, de tal manera que posibilite reflexión y análisis de su desarrollo y conocimiento profesional. Por tal motivo y, atendiendo a una primera revisión y análisis de literatura, es posible, en principio, considerar la siguiente pregunta de investigación: ¿cómo transforma un profesor de básica primaria su práctica educativa mediante la modelación matemática?

#### Referencias

Alsina, A., & Salgado, M. (2021). Introduciendo la Modelización Matemática Temprana en Educación Infantil: un marco para resolver problemas reales. *Modelling in Science Education and Learning*, *14*(1), 33-56. https://doi.org/10.4995/MSEL.2021.14024



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

- Antonio, L., Bernal, E., Naranjo, G., Vite, A., Gómez, M., Rebolledo, V., Rangel, N., S., García, M., Ramírez, D., Ramos & L., Reséndiz (2019). *La enseñanza en educación básica. Análisis de la práctica docente en contextos escolares*. Instituto Nacional para la Evaluación de la Educación. <a href="https://www.inee.edu.mx/publicaciones/la-ensenanza-en-educacion-basica-analisis-de-la-practica-docente-en-contextos-escolares/">https://www.inee.edu.mx/publicaciones/la-ensenanza-en-educacion-basica-analisis-de-la-practica-docente-en-contextos-escolares/</a>
- Aparicio, E., Sosa, L., Torres, L., & Gómez, K. (2018). Reconceptualización del saber matemático en educación básica. Universidad Autónoma de Yucatán. <a href="https://cerlalc.org/rilvi/reconceptualizacion-del-saber-matematico-en-educacion-basica-15112/">https://cerlalc.org/rilvi/reconceptualizacion-del-saber-matematico-en-educacion-basica-15112/</a>
- Aparisi, L., & Pochulu, M. D. (2013). Dificultades que enfrentan los profesores en escenarios de modelización. En R. Flores (Ed.), *Acta latinoamericana de matemática educativa* (26ª ed., pp. 1387-1397). Comité Latinoamericano de Matemática Educativa. <a href="http://funes.uniandes.edu.co/4368/">http://funes.uniandes.edu.co/4368/</a>
- Arboleda, L. (2016). La preparación de docentes de Matemáticas en Colombia. *Cuadernos de Investigación y Formación En Educación Matemática*, 0(15), 409-418. <a href="http://funes.uniandes.edu.co/9436/1/Preparacion2016.pdf">http://funes.uniandes.edu.co/9436/1/Preparacion2016.pdf</a>
- Biembengut, M. S., & Hein, N. (2004). Modelación matemática y los desafíos para enseñar matemática. *Educación Matemática*, 16(2), 105-125. https://doi.org/1665-5826
- Blomhøj, M. (2009). Different perspectives on mathematical modelling in educational research [Diferentes perspectivas sobre el modelado matemático en la investigación educativa]. En M. Blomhøj & S. Carreira (Eds.), *Mathematical applications and modelling in the teaching and learning of mathematics* (pp. 1-18). https://doi.org/10.1007/978-3-319-12688-3\_42
- Blum, W. (1996). Anwendungsbezüge im Mathematikunterricht. Trends und Perspektiven [Referencias de aplicación en la enseñanza de las matemáticas. Tendencias y perspectivas]. 

  \*Trends Und Perspektiven. Schriftenreihe Didaktik Der Mathematik, Hölder-Pichler-Tempsky, 23, 15-38. 

  https://forschung.uni-kassel.de/converis/portal/detail/Publication/4194457?auxfun=&lang=de\_DE
- Blum, W., Galbraith, P., Henn, H., & Niss, M. (Eds.) (2007). *Modelling and Applications in Mathematics Education* [Modelado y Aplicaciones en Educación Matemática]. Springer. <a href="http://dx.doi.org/10.1007/978-0-387-29822-1">http://dx.doi.org/10.1007/978-0-387-29822-1</a>



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, **68**, 255-285

- Blum, W., & Borromeo-Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? [Modelado matemático: ¿Se puede enseñar y aprender?] *Journal of Mathematical Modelling and Application*, *I*(1), 45-58. <a href="http://proxy.furb.br/ojs/index.php/modelling/article/view/1620">http://proxy.furb.br/ojs/index.php/modelling/article/view/1620</a>
- Borromeo-Ferri, R., & Blum, W. (2014). Barriers and motivations of primary Teachers for implementing Modelling in mathematics lessons [Barreras y motivaciones de los docentes de primaria para implementar el modelado en las clases de matemáticas]. En *CERME 8 Proceedings*, 1000-1009. <a href="http://cerme8.metu.edu.tr/wgpapers/wg6\_papers.html">http://cerme8.metu.edu.tr/wgpapers/wg6\_papers.html</a>
- Cabassut, R., & Wagner, A. (2011). Modelling at Primary School Through a French–German Comparison of Curricula and Textbooks [Modelado en la escuela primaria a través de una comparación franco-alemana de currículos y libros de texto]. En G. Kaiser, W. Blum, R. Borromeo-Ferri, & G. Stillman (Eds.), *Trends in Teaching and Learning of Mathematical Modelling. International Perspectives on the Teaching and Learning of Mathematical Modelling* (Vol. 1, pp. 559-568). Springer. <a href="https://doi.org/10.1007/978-94-007-0910-2">https://doi.org/10.1007/978-94-007-0910-2</a> 54
- Cardeñoso, J. M., Flores, P., & Azcárate, P. (2001). El desarrollo profesional de los profesores de matemáticas como campo de investigación en educación matemática. En P. Gómez & L. Rico (Eds.), *Iniciación a la investigación en didáctica de la matemática. Homenaje al profesor Mauricio Castro* (pp. 233-244). Editorial Universidad de Granada. <a href="https://www.uv.es/Angel.Gutierrez/aprengeom/archivos2/homenaje/16CardenosoJM.PDF">https://www.uv.es/Angel.Gutierrez/aprengeom/archivos2/homenaje/16CardenosoJM.PDF</a>
- Carreira, S. (2011). Looking Deeper into Modelling Processes: Studies with a Cognitive Perspective Overview [Profundizando en los Procesos de Modelado: Estudios con una Perspectiva Cognitiva Resumen]. En G. Kaiser, W. Blum, R. Borromeo-Ferri, & G. Stillman (Eds.), *Trends in Teaching and Learning of Mathematical Modelling. International Perspectives on the Teaching and Learning of Mathematical Modelling* (Vol. 1, pp. 159–163). Springer. <a href="https://doi.org/10.1007/978-94-007-0910-2">https://doi.org/10.1007/978-94-007-0910-2</a> 17
- De Almeida Luna, A. V., Souza, E. G., & de Souza Lima, L. B. (2015). Mathematical Texts in a Mathematical Modelling Learning Environment in Primary School [Textos matemáticos en un entorno de aprendizaje de modelado matemático en la escuela primaria]. En G. Stillman, W. Blum, & M. Biembengut (Eds.), *Mathematical Modelling in Education Research and Practice. International Perspectives on the Teaching and Learning of Mathematical Modelling* (pp. 535-543). Springer. <a href="https://doi.org/10.1007/978-3-319-18272-8\_45">https://doi.org/10.1007/978-3-319-18272-8\_45</a>



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, **68**, 255-285

- Doerr, H. M. (2007). What Knowledge Do Teachers Need for Teaching Mathematics Through Applications and Modelling? [¿Qué conocimientos necesitan los docentes para enseñar matemáticas a través de aplicaciones y modelos?] En P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), *Modelling and Applications in Mathematics Education. New ICMI Study Series* (Vol. 10, pp. 69-78). Springer. https://doi.org/10.1007/978-0-387-29822-1\_5
- English, L. D. (2006). Mathematical Modeling in the Primary School: Children's Construction of a Consumer Guide [Modelación Matemática en la Escuela Primaria: Construcción Infantil de una Guía del Consumidor]. *Educational Studies in Mathematics*, 63(3), 303-323. <a href="http://www.jstor.org/stable/25472132">http://www.jstor.org/stable/25472132</a>
- English, L. D. (2013). Complex Modelling in the Primary and Middle School Years: An Interdisciplinary Approach [Modelado complejo en la escuela primaria y secundaria: un enfoque interdisciplinario]. En G. Stillman, G. Kaiser, W. Blum, & J. Brown (Eds.), *Teaching mathematical modelling: Connecting to research and practice. International Perspectives on the Teaching and Learning of Mathematical Modelling* (pp. 491-505). Springer. https://doi.org/10.1007/978-94-007-6540-5\_42
- English, L. D., & Mousoulides, N. G. (2011). Engineering-based modelling experiences in the elementary and middle classroom [Experiencias de modelado basadas en ingeniería en el aula de primaria y secundaria]. En M. Swe Khine & I. M. Saleh (Ed.), *Models and modeling* (pp. 173-194). Springer. https://link.springer.com/chapter/10.1007/978-94-007-0449-7\_8
- Galbraith, P. (2007). Beyond the Low Hanging Fruit [Más allá de la fruta colgante baja]. En W. Blum, P. Galbraith, H. Henn, & M. Niss (Eds.), *Modelling and Applications in Mathematics Education. New ICMI Study Series* (Vol. 10, pp. 79-88). Springer. <a href="https://doi.org/10.1007/978-0-387-29822-1\_6">https://doi.org/10.1007/978-0-387-29822-1\_6</a>
- Garcés, J. E., & Duque, E. J. (2007). Metodología para el análisis y la revisión crítica de artículos de investigación. *Innovar*, *17*(29), 184-194. <a href="http://www.scielo.org.co/scielo.php?script=sci\_arttext&pid=S0121-50512007000100011">http://www.scielo.org.co/scielo.php?script=sci\_arttext&pid=S0121-50512007000100011</a>
- Gobernación de Antioquia. (2016). *Matemáticas en Contexto*. Gobernación de Antioquia. <a href="http://www.seduca.gov.co/sala-de-prensa/archivo-de-prensa/item/2238-diploma-matematicas-en-contexto">http://www.seduca.gov.co/sala-de-prensa/archivo-de-prensa/item/2238-diploma-matematicas-en-contexto</a>



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, **68**, 255-285

- Greefrath, G., & Vorhölter, K. (2016). Teaching and Learning Mathematical Modelling: Approaches and Developments from German Speaking Countries [Enseñanza y aprendizaje de modelos matemáticos: enfoques y desarrollos de países de habla Alemana]. En *Teaching and Learning Mathematical Modelling* (ICME-13 To, pp. 1-42). Springer. https://doi.org/10.1007/978-3-319-45004-9\_1
- Huincahue, J. (2017). Propuesta de modelación matemática en la formación de profesores y bases para una variedad de modelación desde la teoría Socioepistemológica [Tesis de doctorado, Pontificia Universidad Católica de Valparaíso]. Researchgate. <a href="https://www.researchgate.net/publication/328171391">https://www.researchgate.net/publication/328171391</a> Propuesta de modelacion matematic a en la formacion de profesores y bases para una variedad de modelacion desde la teoria\_Socioepistemologica
- Ibermon, F., & Canto, P. (2013, julio-diciembre). La formación y el desarrollo profesional del profesorado en España y Latinoámerica. *Revista Electrónica Sinéctica*, (41), 1-12. <a href="https://www.redalyc.org/pdf/998/99828325009.pdf">https://www.redalyc.org/pdf/998/99828325009.pdf</a>
- Kaiser, G., Blum, W., Ferri, R. B., & Stillman, G. (2011). Trends in Teaching and Learning of Mathematical Modelling Preface [Tendencias en la Enseñanza y el Aprendizaje de Modelado Matemático Prefacio]. En *Trends in Teaching and Learning of Mathematical Modelling*. *International Perspectives on the Teaching and Learning of Mathematical Modelling* (Vol. 1, pp. 1–5). Springer. <a href="https://doi.org/10.1007/978-94-007-0910-2">https://doi.org/10.1007/978-94-007-0910-2</a> 1
- Lacarriere, J. L. (2008). *La formación docente como factor de mejora escolar* [Tesis de doctorado, Universidad Autónoma de Madrid]. Repositorio digital Universidad Autónoma de Madrid. <a href="https://repositorio.uam.es/bitstream/handle/10486/1760/11829\_lacarriere\_espinoza.pdf?s">https://repositorio.uam.es/bitstream/handle/10486/1760/11829\_lacarriere\_espinoza.pdf?s</a>
- Lesh, R., & Sriraman, B. (2005). Mathematics education as a design science [La educación matemática como ciencia del diseño]. *ZDM International Journal on Mathematics Education*, *37*(6), 490-505. <a href="https://doi.org/10.1007/BF02655858">https://doi.org/10.1007/BF02655858</a>
- Londoño Orrego, S. M., Jaramillo López, C. M., & Bossio Vélez, J. L. (2018, mayo-agosto). Proceso de modelación en el contexto del cultivo del plátano: una producción escolar relacionada con modelos lineales Revista. *Revista Virtual Universidad Católica del Norte*, (54), 18-40. <a href="https://revistavirtual.ucn.edu.co/index.php/RevistaUCN/article/view/978">https://revistavirtual.ucn.edu.co/index.php/RevistaUCN/article/view/978</a>



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, **68**, 255-285

- Losano, A. L., & Villarreal, M. (2015). Desarrollo profesional de dos futuras profesoras de matemática: tensiones que atraviesan la práctica docente planificada, implementada y reflexionada. *Conferencia Interamericana de Educación Matemática*. http://edumat.famaf.unc.edu.ar/category/articulos-en-actas-de-congreso/
- Ministerio de Educación Nacional. (1998). *Lineamientos Curriculares de Matemáticas*. https://www.mineducacion.gov.co/1621/articles-89869\_archivo\_pdf9.pdf
- Ministerio de Educación Nacional. (2006). *Estándares Básicos de Competencias en Matemáticas*. <a href="https://goo.gl/wGu6vC">https://goo.gl/wGu6vC</a>
- Ministerio de Educación Nacional. (2016). *Matriz de referencia- Matemáticas 11*. <a href="http://colportugal.edu.co/files/Matriz\_MatematicasOnce\_agosto\_22REV29agosto.pdf">http://colportugal.edu.co/files/Matriz\_MatematicasOnce\_agosto\_22REV29agosto.pdf</a>
- Ministerio de Educación Nacional. (2018). *Mallas de aprendizaje*. <a href="https://conaced.edu.co/mallas-de-aprendizaje-ministerio-de-educacion">https://conaced.edu.co/mallas-de-aprendizaje-ministerio-de-educacion</a>
- Moncada-Hernández, S. (2014, abril-junio). Cómo realizar una búsqueda de información eficiente. Foco en estudiantes, profesores e investigadores en el área educativa. *Investigación en Educación Médica*, 3(10), 106-115. https://www.redalyc.org/articulo.oa?id=349733229007
- Mora Zuluaga, Á. (2015). Modelación matemática en la formación de profesores. En J. Ortiz & M. Iglesias (Eds.), *Investigaciones en educación matemática*. *Aportes desde una unidad de investigación* (pp. 2-13). Universidad de Carabobo <a href="http://funes.uniandes.edu.co/8352/1/Capítulo 1">http://funes.uniandes.edu.co/8352/1/Capítulo 1</a> Modelación Matemática AMZ.pdf
- Olarte, A. J. (2019). Homogeneizar la práctica de la modelación: un reto del sistema educativo colombiano. *Revista Educación*, 44, 346-360. https://doi.org/10.15517/revedu.v44i1.36285
- Osorio, A. M. (2016). El desarrollo profesional docente en educación básica primaria. *Revista Latinoamericana de Estudio Educativos*, 12(1), 39-52. <a href="https://www.redalyc.org/pdf/1341/134149742003.pdf">https://www.redalyc.org/pdf/1341/134149742003.pdf</a>
- Pinto, J., & González, M. (2008). El conocimiento didáctico del contenido en el profesor de matemáticas: ¿una cuestión ignorada? *Educación Matemática*, 20(3), 83-100. <a href="https://www.redalyc.org/pdf/405/40512064005.pdf">https://www.redalyc.org/pdf/405/40512064005.pdf</a>
- Ponte, J. P. (2012). Estudiando el conocimiento y el desarrollo profesional del profesorado de matemáticas. En N. Planas (Ed.), *Teoría, Crítica y Práctica de La Educación Matemática* (pp. 83-98). Graó. https://repositorio.ul.pt/handle/10451/29194



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, 68, 255-285

- Ponte, J., Zaslavsky, O., Silver, E., Borba, M., van den Heuvel-Panhuizen, M., Gal, H., Fiorentini, D., Miskulin, R., Passos, C., de La Rocque, G., & Chapman, O. (2009). Tools and Settings Supporting Mathematics Teachers' Learning in and from Practice [Herramientas y configuraciones que apoyan el aprendizaje de los profesores de matemáticas en y desde la práctica]. En R. Even & D. Loewenberg Ball (Eds.), *The Professional Education and Development of Teachers of Mathematics* (pp. 185-209). Springer. <a href="https://doi.org/10.1007/978-0-387-09601-8">https://doi.org/10.1007/978-0-387-09601-8</a> 20
- Ramos-Rodríguez, E., Martínez, P. F., da Ponte, J. P., & Verdejo, A. M. (2015). Desarrollo profesional del docente de matemáticas a través de sus tareas para el aula propuestas en un curso de formación. *Bolema Mathematics Education Bulletin*, 29(51), 389-402. <a href="https://doi.org/10.1590/1980-4415v29n51a20">https://doi.org/10.1590/1980-4415v29n51a20</a>
- Riscanevo, L. E., & Jiménez, A. (2017). El aprendizaje del profesor de matemáticas como campo investigativo. *Revista Historia de La Educación Latinoamericana*, 19(28), 173-196. <a href="https://doi.org/10.19053/01227238.6247">https://doi.org/10.19053/01227238.6247</a>
- Rivera Quiroz, S., Londoño Orrego, S. M., & Jaramillo López, C. M. (2016, mayo-agosto). Medida de áreas en contextos auténticos: un enfoque desde la modelación matemática. *Revista Virtual Universidad Católica del Norte*, (48), 79-99. https://revistavirtual.ucn.edu.co/index.php/RevistaUCN/article/view/762
- Santa Ramírez, Z. M. (2016). *Producción de conocimiento geométrico escolar en un colectivo de profesores-con-doblado-de-papel* [Tesis de doctorado, Universidad de Antioquia]. <a href="http://www.rc.unesp.br/gpimem/downloads/teses/zaida\_margot\_santa\_ramirez\_tesis\_doctora\_udea\_1.pdf">http://www.rc.unesp.br/gpimem/downloads/teses/zaida\_margot\_santa\_ramirez\_tesis\_doctora\_udea\_1.pdf</a>
- Schmidt, B. (2011). Modelling in the Classroom: Obstacles from the Teacher's Perspective [Modelado en el Aula: Obstáculos desde la Perspectiva del Docente]. En G. Kaiser, W. Blum, R. Borromeo-Ferri, & G. Stillman (Eds.), *Trends in Teaching and Learning of Mathematical Modelling*. *International Perspectives on the Teaching and Learning of Mathematical Modelling* (Vol. 1, pp. 641-651). Springer. <a href="https://doi.org/10.1007/978-94-007-0910-2">https://doi.org/10.1007/978-94-007-0910-2</a> 61
- Stillman, G. (2008). Blum, W., Galbraith, P. L., Henn, H-W., & Niss, M. (eds) (2007). Modelling and applications in mathematics education: the 14th ICMI study. New ICMI Study Series Volume 10. *ZDM*, 40(2), 337-340. https://doi.org/10.1007/s11858-007-0070-z



Un análisis sobre las barreras | Revista Virtual Universidad Católica del Norte, **68**, 255-285

- Strauss, A., & Corbin, J. (2016). Bases de la investigación cualitativa: Técnicas y procedimientos para desarrollar la teoría fundamentada (2ª Ed.). Universidad de Antioquia.
- Velásquez. (2015). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura Parte 4. *DYNA*, 82(190), 9-12. <a href="https://www.redalyc.org/pdf/496/49632758001.pdf">https://www.redalyc.org/pdf/496/49632758001.pdf</a>
- Villa Ochoa, J. A., & Ruiz Vahos, H. M. (2009, mayo-agosto). Modelación en educación matemática: una mirada desde los lineamientos y estándares curriculares colombianos. Revista Virtual Universidad Católica del Norte, (27), 1-21. <a href="https://www.redalyc.org/articulo.oa?id=194215432007">https://www.redalyc.org/articulo.oa?id=194215432007</a>
- Villa-Ochoa, J. A. (2013). Contextos, intereses y sentido de realidad en la modelación matemática.

  Una experiencia con el profesor de matemáticas. *Conferencia Nacional Sobre Modelación En Educación Matemáticas*.

  http://funes.uniandes.edu.co/2091/2/CONF\_2\_Jhony\_Ochoa.pdf
- Villa-Ochoa, J. A., Castrillón-Yepes, A., & Sánchez-Cardona, J. (2017). Tipos de tareas de modelación para la clase de matemática. *Espaço Plural*, (36), 219-251. http://funes.uniandes.edu.co/11774/1/19718-72370-1-PB\_(1).pdf
- Villa-Ochoa, J. A., & Alencar, E. S. (2019). Profesores de matemáticas: investigación sobre los saberes, competencias y modelos para su formación profesional. *Unipluriversidad*, 19(2), 10–16. <a href="https://doi.org/10.17533/udea.unipluri.19.2.01">https://doi.org/10.17533/udea.unipluri.19.2.01</a>
- Villarreal, M., Esteley, C., & Smith, S. (2011). Desafíos y decisiones de profesores de matemática en escenarios de modelización: el diseño de un proyecto para el aula. *XIII Conferencia Interamericana de Educación Matemática*. <a href="https://xiii.ciaem-redumate.org/index.php/xiii\_ciaem/xiii\_ciaem/paper/view/973/772">https://xiii.ciaem-redumate.org/index.php/xiii\_ciaem/xiii\_ciaem/paper/view/973/772</a>
- Zapata, S. M. (2019). Transformación del conocimiento profesional del profesor de matemáticas de primaria en el contexto del pensamiento algebraico temprano [Tesis de doctorado, Universidad de Antioquia]. Repositorio digital Universidad de Antioquia. <a href="https://bibliotecadigital.udea.edu.co/handle/10495/14855">https://bibliotecadigital.udea.edu.co/handle/10495/14855</a>
- Zapata, S. M., Santa Ramírez, Z. M., & Jaramillo López, C. M. (2018, septiembre-diciembre). El profesor de primaria: una reflexión sobre su papel en la inclusión del álgebra temprano en el currículo escolar. *Revista Virtual Universidad Católica del Norte*, (55), 192-209. <a href="https://revistavirtual.ucn.edu.co/index.php/RevistaUCN/article/view/1005">https://revistavirtual.ucn.edu.co/index.php/RevistaUCN/article/view/1005</a>

