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Actualmente, hay un aumento en la utilizacién de la polea cénica en el entrenamiento de fuerza; por lo tanto, es necesario

monitorearlo con un dispositivo preciso y confiable. El presente estudio probé: (1) la precisién de un dispositivo de medicién
inercial (IMU), para medir correctamente la velocidad angular y (2) su confiabilidad entre unidades para la medicién de carga
externa. El andlisis se realizé utilizando la correlacién de Pearson y el Coeficiente de Correlacién Intra-clase (CCI). La precisién
de la IMU se probé usando Bland-Altman y la confiabilidad con el Coeficiente de Variacién (CV). Diez jugadores de futbol de
nivel élite realizaron 10 series de 5 repeticiones en un ¢jercicio de fila de pie con una mano (5 series con cada brazo). Se encontrd
una precision casi perfecta (ICC =.999) y una muy buena confiabilidad entre dispositivos (Sesgo = -. 010; CV =.017%). IMU ’s
es un dispositivo confiable y vilido para evaluar objetivamente la velocidad angular en el entrenamiento inercial de la polea cénica.

PALABRAS CLAVE: tecnologia, levantamiento de pesas, ejercicio, aptitud fisica, deportes.
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There is currently an increase in inertial flywheel application in strength training; thus, it must be monitored by an accurate
and reliable device. The present study tested: (1) the accuracy of an inertial measurement device (IMU) to correctly measure
angular velocity and (2) its inter-unit reliability for the measurement of external load. The analysis was performed using Pearson
Correlation and Intraclass Correlation Coefficient (ICC). The IMU accuracy was tested using Bland-Altman and the reliability
with the coefficient of variation (CV). Ten elite-level football players performed ten series of 5 repetitions in a one-hand standing
row exercise (5 series with each arm). A nearly perfect accuracy (ICC=.999) and a very good between-device reliability (Bias=-.010;
CV=.017%) was found. IMU is a reliable and valid device to assess angular velocity in inertial flywheel workout objectively.

KEYWORDS: technology, weightlifting, exercise, physical fitness, sports.

REsumoO:

Atualmente, h4 um aumento na utilizagio da polia cdnica no treinamento de forga; portanto, ¢ necessirio monitord-lo com um
dispositivo preciso e confidvel. O presente estudo testou: (1) a precisio de um dispositivo de medigio inercial (IMU), para medir
corretamente a velocidade angular ¢ (2) sua confiabilidade interunidades para medigio de carga externa. A andlise foi realizada por
meio da correlagio de Pearson e do Coeficiente de Correlagio Intraclasse (ICC). A precisio do IMU foi testada usando Bland-
Altman e a confiabilidade com o Coeficiente de Variagio (CV). Dez jogadores de futebol de elite realizaram 10 séries de S repetigoes
em um exercicio de linha em pé com uma mio (5 séries com cada braco). Foi encontrado uma precisio quase perfeita (ICC =
0,999) e confiabilidade entre dispositivos muito boa (Bias = - 0,010; CV = 0,017%). IMU's ¢ um dispositivo confidvel e vilido
para avaliar objetivamente a velocidade angular no treinamento inercial da polia conica.

PALAVRAS-CHAVE: tecnologia, levantamento de pesos, exercicio, aptidao fisica, esportes.

INTRODUCTION

Muscle strength is defined as the ability to develop a force to an external object or resistance; it is considered
the main component of physical fitness as related to the quality of life (Geirsdottir et al., 2012). This basic
physical ability has an effect from the realization of daily tasks for older adults (Burton et al., 2013) to
sports performance (Suchomel et al., 2016) and injury prevention (Lauersen et al., 2014). When a strength
training program is started, it is important to evaluate the athlete's initial level (Gémez-Carmona et al.,
2020) with the purpose of elaborating an individual protocol, and to verify the improvements of the applied
training program (Gonzélez-Badillo & Sédnchez-Medina, 2010). Researchers have currently made significant
advances in evaluating strength, with the execution velocity measurement (Mordn-Navarro et al., 2019).
Velocity in strength training can be evaluated by different systems, such as dynamometric force platforms,
telephone applications, accelerometers, or linear velocity transducers (LT) (Garcfa-Orea et al.,, 2017). LT
has been the most used instrument thanks to the great results in validity and reliability exhibited in different
publications (Garcfa-Ramos et al., 2016; Garnacho-Castafo et al,, 2015; Pérez-Castilla et al., 2017). The use
of LTs is limited to vertical movements only. Therefore, most researchers use the Smith machine to ensure
movements' verticality (Garcfa-Ramos et al., 2017; Sinchez-Medina et al., 2014). When deviations occur in
the horizontal plane of the execution, the LT overestimates the measurement (Cormie, Deane, et al., 2007;
Cormie, McBride, et al., 2007; Crewther et al., 2011; Hori et al., 2007).

However, most exercises available in the strength training area, whose movement is performed on
the transverse or anteroposterior axis, require accurate and reliable instruments for velocity and power
measurement. Recently, new machines have been developed, known as inertial flywheels because of their
conical shape. This instrument is characterized by using a mechanism to produce resistance during movement
(Maroto-Izquierdo et al., 2017). The actual increase of inertial flywheel use is for its effectiveness in terms
of injury prevention (Goode et al., 2015; Hibbert et al., 2008), muscle hypertrophy (Hedayatpour & Falla,
2015; Roig et al., 2009), and improving sports performance (de Hoyo et al., 2016).

Unlike the linear velocity generated by the Smith Machine, which is used for vertical movement, the
inertial flywheel generates a circular movement due to its turning wheel; this circular movement can be
measured using angular velocity. This velocity is characterized by the rotation of an object around a turning
center. This magnitude can be measured in different units, such as revolutions per minute (rpm) (Mollinedo-
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Ponce-de-Ledn et al., 2012), radians per second (rad/s), or grades per second (deg/s) (Arai et al., 2017;
Sliwowski et al., 2017a). However, the measurement of angular velocity in strength training is limited to
non-linear or rotational velocity transducers implementing few inertial flywheels.

Recently, technological development has allowed for the integration of different sensors in the same
unit, such as accelerometers, gyroscopes, or magnetometers. These units are known as inertial devices
(Fong & Chan, 2010). The gyroscopes containing these units have offered a new possibility for angular
velocity measurement, especially for the evaluation of swimming performance (Mooney et al., 2016), gait
biomechanics (Glowinski et al., 2017), or the joints movement (Edwan et al., 2012). For this reason, to
monitor strength training through velocity measurement and obtain angular velocity data for rotational
exercises, there is a need to implement these new devices within a gyroscope. Therefore, the aims of
this research are (1) to examine the accuracy of an inertial device WIMU PROTM to angular velocity
measurement and (2) to verify inter-unit reliability to measure this variable.

PARTICIPANTS

Ten elite-level Spanish male football players (age: 23.243.62 years; height: 180.81+5.81 cm, and weight:
76.16+6.32 kg) participated voluntarily in this research. All the participants met the following requirements:
(i) more than two years of strength training experience, and (ii) no musculoskeletal injuries. The study, which
was conducted according to the Declaration of Helsinki, was approved by the Bioethics Commission of the
University of Murcia (R 2061/2018). Participants were informed of the risks and discomforts associated
with testing and provided written informed consent.

INSTRUMENTS

Height was measured using a wall-mounted stadiometer (SECA, Hamburg, Germany). Body weight was
determined using an 8-contact electrode segmental body composition analyzer (TANITA BC-601, Tokyo,
Japan).

An Eccotek Training Force” inertial flywheel (Byomedic System, Barcelona, Spain) was used for all testing.
Since this machine uses a rotational inertia cone, it offers a free gravity resistance system that stores an
athlete's energy in the concentric phase and releases it back in the eccentric phase.

WIMU PROTM (RealTrack Systems, Almeria, Spain): This is an inertial device composed of different
sensors (accelerometers, gyroscopes, magnetometers, GPS, UWB, etc.). In this research, the 3-D gyroscopes
(recording sampling rate of 1000Hz) that compose this inertial device were used. The average data point
accumulation (signal redundancy) in the 3-D gyroscope’s three axes, with a full-scale output range of 2000
grades per second, was registered

Smart Coach Versapulley Sensor” (SmartCoach Europe, Estocolm, Sweden): This is an optical receiver
that measures the revolutions per minute of the inertial flywheel movement to which it is attached. From the
angular velocity, the power generated by the participant in the concentric and eccentric phases was registered
at a sampling frequency of 1000 Hz.

PROCEDURES

All participants attended the laboratory twice for about an hour. The study was conducted for two weeks. In
the first week, the familiarization session was carried out to acquaint athletes with experimental equipment,
procedures, and the anthropometric and physiological assessment. In the second week, the testing protocol
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comprised ten series of five repetitions in a one-hand standing row exercise (five series with each arm) using
an inertial flywheel.

To start, participants must be standing in front of the machine. The pulling arm must be attached to the
rope by gripping the handle. The opposite arm should be parallel to the trunk. It was determined that the grip
should reach the chest in the last phase of the pull to standardize the course. Both legs should be placed in a
semi-flexed position. A rigid base was placed to support the participant's front foot to avoid any imbalances
during the execution. The participants selected the leg that was placed on the base to make the movement
comfortable. The participant will then voluntarily pull the cable attached to the inertial flywheel at maximum
velocity for each repetition. Between series, an active rest of 20 seconds was taken (Bastida-Castillo et al,,
2016).

Before beginning the protocols, athletes performed a standardized warm-up of 5 minutes of indoor
rowing at acrobic intensity (RPE 4-5/10) and a further ten minutes of specific warm-up composed of
joint mobility, dynamic stretching, and four series of eight repetitions of standing rowing at submaximal
intensity. The warm-up period was monitored in real-time with S PROTM software to verify the devices'
perfect functioning. When athletes had finished the testing, they performed five minutes of indoor rowing
at recovery intensity (RPE 2-3/10).

The main variable analyzed was the number of rotations that the inertial flywheel realized per second in
the concentric and eccentric phase of each execution, expressed in revolutions per second (rps). This variable
was obtained through the angular velocity measured by the WIMU PROTM inertial device in grades per
second, dividing the value by 360°. To analyze the accuracy of the revolutions per second that the inertial
device measured, a SmartCoach Versapulley Sensora was employed as a criterion measure. The revolutions
per second were calculated using the following formula (Figure 1):

Angular Velocity / 3602

rps = - -
Execution time (Seconds)

FIGURE 1
Formula to calculate revolutions per second, measured by the inertial device.

Data analysis of the WIMU PROTM inertial device was performed using S PROTM software (Real Track
Systems, Almeria, Spain). Raw files were exported into the S PROTM software (sce figure 2) to synchronize
the Smart Coach Versapulley Sensor4 and inertial device's data.



Jost PINO-ORTEGA, ET AL. ACCURACY AND RELIABILITY OF INERTIAL DEVICES FOR LOAD ASSESSMENT DURING F...

SmartCoach

Power Encoder® Vit

‘ SmartCoach
Sensor®

WIMU PRO™
(1000 Hz)

> Inertial Flywheel

Wifi 802.11 B/G

/- N

DATA PROCESSING

~

> Software SmartCoach®

Router ‘

N
csv archive

Wifi 802.11 B/G
Software S PRO™ <«

FIGURE 2
Devices placement and data processing to measure angular velocity in this research.

STATISTICAL ANALYSIS

Data obtained were shown as mean + standard deviation. A Pearson correlation coefficient and intraclass
correlation coefficient (ICC) were used to analyze the accuracy of the angular velocity between the
SmartCoach Versapulley Sensord and the WIMU PROTM, with 95% confidence intervals. ICC values were
interpreted following Vincent and Weir (2012) (Vincent & Weir, 2012): >0.90 high, 0.80-0.89 moderate,
and <0.80 questionable. Pearson’s r was interpreted according to Hopkins et al. (2009) (Hopkins et al.,
2009) as follows: trivial (r2<0.1), small (0.10.9), and perfect (r2=1). For the reliability analysis, a Bland-
Altman calculation was performed, showing a bias with 95% limits of agreement (LOA), and the magnitude
of differences was shown through the coeflicient of variation (CV).

REsSULTS

Table 1 shows the accuracy analysis of the revolutions per second variable for a one-hand standing row in an
inertial flywheel between the WIMU PROTM inertial device and the SmartCoach Versapulley Sensori. In
a global analysis, a nearly perfect correlation was found between the two systems (ICC=.999; r=.999).
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TABLE 1
Validity analysis of the WIMU PROTM inertial device compared to the SmartCoach Versapulley

Sensord as a criterion measure through ICC with 95% interval confidence and Pearson’s coefficient

Velocity SmartCoach® WIMU PRO™ 1cC CI95 % v
(Mean = SD) (Mean = SD) L U
Low 1.21+0.47 1.23 £ 0.49 995 .995 995 995
Medium 2.78+£0.34 2.79£0.35 998 .998 .998 .998
High 3.75+0.28 3.75+£0.28 999 .999 999 999
Total 258+ 1.11 2.59+1.11 .999 .999 999 999

Note. SD: Standard deviation; ICC: Intraclass correlation coefficient; CI: Confidence interval (values L: Low y U: Upper).

Table 2 shows the WIMU PROTM unit’s reliability analysis for a one-hand standing row exercise in an
inertial flywheel. Great between-device reliability was found (Bias=.012; CV=.840%).

TABLE 2
Between-unit’s reliability analysis. Bland-Altman bias,

95% limits of agreement and coefficient of variation (%)

. WIMU PRO™1 WIMUPRO™2 95% LOA
Velocity (Mean + SD) (Mean+SD)  D#s | y VO
Low 124+ 047 123+050 065 -659 791 572
Medium 2794035 278+034 002 -924 920 253

High 3724029 3702026 061 -137 136 .38
Total 2544 1.10 251107 012 -245 876  .840

Note. SD: Standard deviation; Bias: Mean difference between units of
measurement; LOA: Limits of agreement; CV: Coefficient of variation.

DiscussioN

The objectives of the present research were the following: (1) to examine the accuracy of WIMU PROTM as
an inertial device for the measurement of angular velocity and (2) verify the inter-device reliability to measure
this variable. As for the first objective, the results obtained show the nearly perfect accuracy of the WIMU
PROTM inertial device for angular velocity measurement in resistance training with an inertial flywheel
(r=.999). In the analysis by velocities, a greater accuracy at high velocity was shown (r=.999) compared to the
low-velocity repetitions group (r=.995). In the reliability analysis, great results between the WIMU PROTM
inertial devices were found (CV=.840), with a value less than 1%. A slight decrease in reliability was found
at low velocity (CV=.572).

Regarding the comparison of two different systems, such as the integrated gyroscope in an inertial
device and a rotatory encoder, no research could be found that compares both devices to analyze the
angular velocity parameter. Therefore, the present investigation can be considered as a pioneering analysis
in this subject. Alternatively, as far as angular velocity measurement is concerned, several authors have
examined the gyroscope's validity and reliability when integrated into inertial devices. Walker et al. (2017)
examined the validity of an inertial device compared with a 3D optical system (Cortex 3.3 Motion analysis
Corporation, USA) for trampoline jump analysis. These authors used a drilling machine to compare inertial
devices, obtaining excellent results (r=1.000). Ex-Lubeskie (2013) evaluated the reliability of angular velocity
measurements by an inertial device versus a video#analysis system, concluding that there was great data
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stability in the inertial device to gait biomechanics analysis. This result could be caused by the fact that a
video-analysis system obtains the angular velocity indirectly through displacement and time, while an inertial
device registers the angular velocity using a gyroscope, which is directly incorporated. Misu et al. (2017)
(Misuetal.,, 2017) also analyzed the validity of an inertial device (located in the foot heel) for angular velocity
measurement in comparison to a force sensor, obtaining great values on both devices (ICC=0.80-1.00).
Moreover, research to evaluate angular velocity in strength training by an inertial device has not been
identified.

The participants’ strength is evaluated in most investigations using an isokinetic machine (Andrade et al,,
2012; Igari et al.,, 2014; Sliwowski et al., 2017b). However, these devices present drawbacks such as their
high economic cost, the complexity of their use, and the lack of specificity in the test. All these disadvantages
create the need to develop and implement other possibilities to measure angular velocity in strength training,
In conclusion, the inertial device WIMU PROTM, analyzed in the present study, is both a valid and reliable
tool for measuring angular velocity in strength training with an inertial flywheel.

Some limitations of the present study should be considered when interpreting the findings. Participants
were elite-level male football players, well-trained in strength and conditioning, It is unclear whether these
findings can be extrapolated to other populations. Finally, only two WIMU PROTM inertial devices and
one SmartCoach Versapulley Sensora optical receiver at a specific sampling rate were tested. Both the sensor
components within the IMU, the sensors' calibration, and the sampling rate could influence the results. All
processes were realized following the manufacturer’s recommendations. Future studies aiming to explore the
accuracy and reliability of inertial devices to measure load during flywheel exercises must include a greater
sample size to confirm these results.

Considering the possibility of having instruments that objectively measure the load of the flywheel
instruments, it is deemed necessary to carry out future studies on the effectiveness of these methods compared
with other traditional methods for training physical qualities such as power.

CONCLUSION

The inertial measurement devices (WIMU PROTM) are valid and reliable tools for measuring angular
velocity in strength training with an inertial flywheel. Due to the lack of objective methods to measure
these kinds of resistance exercises, the present findings indicate that an inertial device could be used for
monitoring movement velocity during strength training, both in linear and angular movements (with a
center of rotation). These results expand the measurement possibilities using inertial devices in individual
and team sports, whereas these instruments are already available in professional sport clubs.
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