

REXE. Revista de Estudios y Experiencias en

Educación

ISSN: 0717-6945 ISSN: 0718-5162 rexe@ucsc.cl

Universidad Católica de la Santísima Concepción

Chile

Ampliando los conocimientos matemáticos en Educación Infantil: la incorporación de la probabilidad

Alsina, Ángel; Salgado, María

Ampliando los conocimientos matemáticos en Educación Infantil: la incorporación de la probabilidad REXE. Revista de Estudios y Experiencias en Educación, vol. 18, núm. 36, 2019 Universidad Católica de la Santísima Concepción, Chile

Disponible en: https://www.redalyc.org/articulo.oa?id=243158860013

DOI: https://doi.org/10.21703/rexe.20191836alsina6

Experiencias Pedagógicas

Ampliando los conocimientos matemáticos en Educación Infantil: la incorporación de la probabilidad

Ángel Alsina angel.alsina@udg.edu

Universidad de Girona, España

María Salgado maria.salgado@usc.es

Universidad de Santiago de Compostela, España

REXE. Revista de Estudios y Experiencias en Educación, vol. 18, núm. 36, 2019

Universidad Católica de la Santísima Concepción, Chile

Recepción: 15 Febrero 2018 Aprobación: 07 Mayo 2018

DOI: https://doi.org/10.21703/rexe.20191836alsina6

Redalyc: https://www.redalyc.org/articulo.oa?id=243158860013

Resumen: En los últimos años se ha incorporado la enseñanza de la probabilidad en el currículo de matemáticas a partir de los 3 años. Desde esta perspectiva, se presenta una propuesta para trabajar la probabilidad en Educación Infantil a través de una actividad matemática competencial, cuyo rasgo más característico es que se trabajan los primeros contenidos de probabilidad a través de los procesos matemáticos de resolución de problemas, razonamiento y prueba, comunicación, conexiones y representación. En concreto, se describe y analiza la experiencia "Probabilidad con cacahuetes" realizada con 22 niños de 5 años de un colegio público de la provincia de A Coruña (España). El grado de riqueza competencial de la experiencia se analiza a partir de 10 indicadores competenciales sobre el planteamiento y la gestión de las actividades matemáticas competenciales.

Palabras clave: Probabilidad, lenguaje probabilístico, actividad matemática competencial, indicadores competenciales, Educación Infantil.

Abstract: Over recent years, the teaching of probability has been incorporated into the mathematics curriculum from the age of 3. Within this context, a proposal is presented for working on probability in Preschool Education through a competency-based mathematics activity. The most characteristic feature of this activity is that probability is approached for the irst time through the mathematical processes of problem solving, reasoning and proof, communication, connections and representation. Namely, this article describes and analyses the "Probability with peanuts" ex- perience carried out with 22 ive-year-old children at a state school in the province of A Coruña (Spain). The degree of competency-based richness of the experience is analysed on the basis of 10 competency indicators on the approach to and management of competency-based mathematics activities.

Keywords: Probability, probabilistic language, competency-based mathematics activities, competency-based indicators, Preschool Education.

1. INTRODUCCIÓN

En las últimas décadas la probabilidad se ha incorporado con fuerza en el currículo escolar de diversos países (NCTM, 1989, 2000; National Curriculum, 1999; CCSSI, 2010), adelantando su enseñanza a los primeros niveles educativos. Esto se debe, por un lado, a su utilidad y aplicabilidad en diversos campos de conocimiento en los que su aprendizaje constituye una base para la comprensión y estudio de temas más avanzados (Scheafer, Watkins y Landwehr, 1998), al proporcionar modelos probabilísticos para medir la incertidumbre, que fundamentan,

por ejemplo, parte de la teoría estadística. Por otro lado, el aprendizaje de la probabilidad contribuye al desarrollo de un pensamiento crítico, que permite a los ciudadanos comprender y comunicar distintos tipos de información presentes en numerosas situaciones de la vida diaria en las que están presentes los fenómenos aleatorios, el azar y la incertidumbre (Bennett, 1998; Everitt, 1999). Desde esta perspectiva, la probabilidad "proporciona una excelente oportunidad para mostrar a los alumnos cómo matematizar, cómo aplicar la matemática para resolver problemas reales" (Godino, Batanero y Cañizares, 1997, p. 12). En consecuencia, surge la necesidad de educar a los alumnos en esta área desde Educación Infantil, para así contar con ciudadanos alfabetizados probabilísticamente, "capaces de hacer frente a una amplia gama de situaciones del mundo real que implican la interpretación o la generación de mensajes probabilísticos, así como la toma de decisiones" (Gal, 2005, p. 40). Sin embargo, a pesar de esta necesidad, las orientaciones en torno a la probabilidad y su enseñanza en Educación Infantil siguen siendo escasas, aunque en los últimos años han aumentado debido al impulso dado por el National Council of Teachers of Mathematics (NCTM, 2000), al incorporar la enseñanza de la estadística y la probabilidad a partir de los

Unos años después, la National Association for the Education of Young Children y el NCTM pu- blican una declaración conjunta de posición sobre las matemáticas en Educación Infantil. En esta declaración, que hace referencia a niños de 3 a 6 años, se indican algunas recomendaciones que se deberían considerar en las prácticas de aula para lograr una educación matemática de calidad. Una de estas recomendaciones se refiere a "la importancia de utilizar currículos y prácticas docentes que fortalezcan los procesos infantiles de resolución de problemas y razonamiento, así como los de representación, comunicación y conexión de ideas matemáticas" (NAEYC y NCTM, 2013, p. 7). Estos procesos se desarrollan a lo largo del tiempo, siempre que sean fomentados a través de actividades de aula bien diseñadas, y hacen posible que los niños adquieran el conocimiento de los contenidos, en nuestro caso de probabilidad.

En algunos trabajos preliminares (Alsina, 2013a, Alsina, 2017, Alsina y Vásquez, 2017, Beltrán-Pellicer, 2017) se han realizado propuestas sobre la posible secuenciación de los contenidos de probabilidad en los distintos niveles de la Educación Infantil; itinerarios didácticos para trabajar la probabilidad en distintos contextos de enseñanza (situaciones de vida cotidiana, materiales manipulativos y juegos, recursos tecnológicos, etc.); o bien propuestas más concretas para trabajar la probabilidad a través de juegos de mesa. Sin embargo, la mayoría de estos trabajos se han centrado en el contenido, sin fijar la atención en los procesos matemáticos.

En este artículo se asume que la utilización de los procesos matemáticos para comprender y usar los contenidos de forma eficaz es la característica más importante que define a una actividad matemática competencial (NCTM, 2000). La planificación y el diseño de actividades matemáticas competenciales implica partir de un enfoque mucho más globalizado

que no se limite a trabajar los contenidos de forma fragmentada en el contexto escolar, sino trabajar de forma integrada, explorando como se potencian y usándolos sin prejuicios en diferentes contextos. Además, exige trabajar para favorecer la autonomía mental del alumnado, potenciando la elaboración de hipótesis, las estrategias creativas de resolución de problemas, la discusión, el contraste, la negociación de significados, la construcción conjunta de soluciones y la búsqueda de formas para comunicar y representar planteamientos y resultados (Alsina, 2012a, 2014, 2016).

A pesar de la importante función de los procesos matemáticos, su presencia en las prácticas de aula en las primeras edades es todavía insuficiente (Coronata, 2014). Desde este punto de vista, nuestros objetivos consisten en presentar un ejemplo de actividad matemática competencial para trabajar la probabilidad en Educación Infantil y analizar la presencia de los procesos matemáticos en dicha actividad. En concreto, se describe y analiza la experiencia "Probabilidad con cacahuetes" realizada con 22 niños de 5 años de un colegio público de la provincia de A Coruña (España).

2. LA PROBABILIDAD EN EL CURRÍCULO DE EDUCACIÓN INFANTIL

La incorporación de la probabilidad en Educación Infantil, junto con la estadística, pretende que los alumnos de las primeras edades adquieran conocimientos de recogida, descripción e interpretación de datos, para obtener conclusiones (Alsina, 2017). Para conseguir este propósito, el profesorado de esta etapa educativa debería ofrecer recursos y herramientas para facilitar el análisis de datos, ya que es en esta etapa cuando se sientan las bases de futuros conocimientos matemáticos.

Alsina (2017) señala tres razones por las que se justifica la necesidad de la presencia de estos nuevos conocimientos en las aulas desde la edad infantil (figura 1).

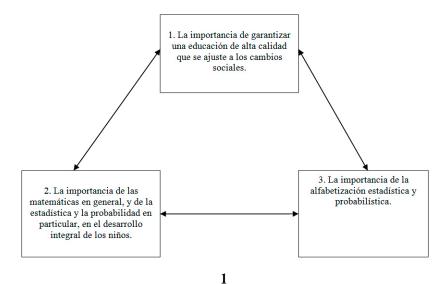


Figura 1. Razones que justifican la incorporación de la estadística y la probabilidad en Educación Infantil.

Las razones expuestas en la figura 1 giran en torno a la idea que en una sociedad altamente tecnificada como la actual es necesario que los ciudadanos tengan recursos a su alcance para conocer la realidad, representarla e interpretarla críticamente, con el objeto de poder transformarla o, simplemente, predecir su futuro. Con la incorporación de la estadística y la probabilidad en Educación Infantil se intenta promover, pues, que los alumnos aprendan desde pequeños conocimientos que les sirvan de base para la recogida, descripción e interpretación de datos, como se ha indicado. En definitiva, se trata de ofrecerles herramientas que les ayuden a responder preguntas cuyas respuestas no son inmediatamente obvias, a la vez que les faciliten la toma de decisiones en situaciones en las que la incertidumbre es relevante. Todo ello, para que progresivamente sean ciudadanos bien informados y consumidores inteligentes, es decir, personas con una adecuada alfabetización estadística y probabilística.

En relación con las orientaciones curriculares sobre la probabilidad, en este artículo se asumen las aportaciones del National Council of Teachers of Mathematics (NCTM) de Estados Unidos, una organización internacional comprometida con la enseñanza y aprendizaje de las matemáticas que organiza el currículo con base en dos pilares, los principios y los estándares.

Los principios son enunciados que pautan conceptos básicos fundamentales para lograr una educación matemática de gran calidad. Los principios curriculares propuestos por el NCTM (2015) son los siguientes:

- Enseñanza y Aprendizaje. Un programa de matemáticas de excelencia requiere de una enseñanza efectiva que involucre al alumno en un aprendizaje significativo, a través de experiencias individuales y colectivas, que promuevan sus habilidades para dar sentido a las ideas matemáticas y razonar matemáticamente.
- Acceso y Equidad. Un programa de matemáticas de excelencia requiere que todos los alumnos tengan acceso a un currículo de matemáticas de alta calidad, una enseñanza y aprendizajes efectivos, altas expectativas, y el apoyo y los recursos necesarios para maximizar su potencial aprendizaje.
- Currículo. Un programa de matemáticas de excelencia incluye un currículo que desarrolla matemáticas que son relevantes a lo largo de progresiones de aprendizaje coherentes y desarrolla conexiones entre áreas de estudio de las matemáticas y entre las matemáticas y el mundo real.
- Herramientas y Tecnología. Un programa de matemáticas de excelencia integra el uso de herramientas matemáticas y tecnología como recursos esenciales para ayudar a los alumnos a aprender y entender las ideas matemáticas, razonar matemáticamente y comunicar su pensamiento matemático.
- Evaluación. Un programa de matemáticas de excelencia asegura que las evaluaciones son una parte integral de la enseñanza, provee evidencias de la competencia que hay en contenidos y prácticas de matemáticas que son importantes, incluye una variedad de estrategias y fuentes de

datos, y entrega retroalimentación para los alumnos, para las decisiones instruccionales y para el mejoramiento del programa.

- Profesionalismo. En un programa de matemáticas de excelencia, los educadores se hacen responsables y se rinden cuentas a sí mismos y a sus colegas por el éxito matemático de cada uno de sus alumnos, y por un crecimiento profesional personal y colectivo dirigido a una enseñanza y aprendizaje efectivo de las matemáticas.

Con respecto a los estándares, describen los contenidos matemáticos y los procesos que los alumnos deberían aprender. En relación a los estándares de contenido matemático, se organizan en cinco bloques: números y operaciones, álgebra, geometría, medida y análisis de datos y probabilidad. En la Tabla 1 se describen los estándares de análisis de datos y probabilidad:

Tabla 1. Estándares de estadística y probabilidad (NCTM, 2000).

Estándares para todas las etapas	Estándares para la etapa Pre-K-2 (3-8 años)
Formular cuestiones sobre datos y recoger, organizar y presentar datos relevantes para responderlo.	Proponer preguntas y recoger datos relativos a ellos y a su entorno. Ordenar y clasificar objetos de acuerdo con sus atributos y organizar datos relativos a aquellos. Representar datos mediante objetos concretos, dibujos y gráficos.
Desarrollar y evaluar inferencias y predicciones basadas en los datos.	Describir parte de los datos y el conjunto total de los mismos para determinar lo que muestran los datos.
Comprender y aplicar conceptos básicos de probabilidad.	Discutir sucesos probables e improbables relacionados con las experiencias de los alumnos.

Como puede apreciarse, el último de los estándares hace referencia explícita a la probabilidad, y se indica que en los primeros niveles el trabajo se debería focalizar en fomentar que los alumnos discutan sucesos probables e improbables relacionados con sus experiencias. De forma más concreta, Alsina (2013a, 2017) plantea la siguiente propuesta de secuenciación de contenidos por niveles:

2

Tabla 2. Contenidos de probabilidad para niños de 3 a 6 años.

3-4 años	4-5 años	5-6 años
Reconocimiento de la posibilidad de ocurrencia de hechos: hechos seguros (por ejemplo, es seguro que un niño de 3° de Educación Infantil es mayor que uno de 1°, etc.).	Reconocimiento de la posibilidad de ocurrencia de hechos: hechos imposibles (por ejemplo, es imposible que un elefante sea rojo). Comparación de la posibilidad de ocurrencia de hechos sencillos, según si son seguros o imposibles.	ejemplo, es probable que si se tira un dado salga un 3). Comparación de la posibilidad de ocurrencia de hechos sencillos, según si son imposibles, pro-

Como puede apreciarse en la tabla 2, la propuesta de contenidos de probabilidad para el 2º ciclo de Educación Infantil se centra sobre todo en que los alumnos empiecen a usar de forma comprensiva lenguaje probabilístico elemental: "imposible", "probable" y "seguro" a partir de sucesos inciertos que forman parte del entorno de los alumnos, de acuerdo con el significado intuitivo de la probabilidad.

Para que el trabajo de estos contenidos sea competencial, como se ha indicado, el NCTM (2000) propone que deberían trabajarse a través de los procesos matemáticos, que son las formas de adquisición y uso del conocimiento matemático (Alsina, 2012a): pensar, razonar, modelizar, etc. La combinación de contenidos y procesos matemáticos favorece nuevas miradas que enfatizan no solo el contenido y el proceso, sino -y especialmente- las relaciones que se establecen entre ellos.

Partir de este enfoque competencial ya desde las primeras edades, en las que todo está integrado, es especialmente significativo dado que cuando los niños usan las relaciones existentes en los contenidos matemáticos, en los procesos matemáticos y las existentes entre ambos, progresa su conocimiento de la disciplina y crece la habilidad para aplicar conceptos y destrezas con más eficacia en diferentes ámbitos de su vida cotidiana (Alsina, 2016, p. 9).

3. DESCRIPCIÓN DE UNA ACTIVIDAD MATEMÁTICA COMPETENCIAL

Se presenta un problema real en el que se trabaja la probabilidad a través de los diferentes procesos matemáticos (NCTM, 2000), fomentando

un enfoque globalizador (Alsina, 2012b). Como se ha indicado en la introducción, la actividad matemática competencial que se describe se ha llevado a cabo en un aula de 22 niños de 5 años de un colegio público de la provincia de A Coruña.

El contexto de aprendizaje es la propia aula. Para llevarlo a cabo, fueron necesarias 2 bolsas de cacahuetes de colores y 5 dados convencionales.

3.1. Situación problemática

El enunciado del problema que se planteó a los alumnos es el siguiente: Tenemos 6 cacahuetes de colores diferentes.

¿Cuál es la probabilidad de que me coma uno amarillo?;

¿y de que me coma uno azul?;¿y de color X?, ¿por qué?

3.2. Desarrollo de la actividad

Primera fase: asamblea en gran grupo

A través de preguntas realizadas por la maestra se introduce al alumnado en el lenguaje probabilístico elemental. A continuación, a través del lanzamiento de dados, se formulan hipótesis al alumnado y se le invita a responder justificando su respuesta.

Los contenidos trabajados en esta fase son los siguientes:

- Primeros conceptos probabilísticos a través de juegos de azar: seguro, probable, imposible.
 - Sucesos equiprobables.
 - Argumentación de las ideas propias.

1 Figura 1. Dados

En la siguiente transcripción se muestra el diálogo que se establece entre la maestra y los alumnos durante esta fase:

Maestra: Vamos a coger un dado... ¿Cuántos números tiene? Niña S: Seis.

Maestra: ¿Tiene seis números? Lo comprobamos... Busca el número 1, ¿tiene el 1?, Niña S: Sí.

Maestra: ¿Tiene el 2? Niños: 3, 4, 5, 6...

Maestra: Entonces, ¿qué números pueden salir al tirar el dado?, es decir, ¿cuál es el espacio muestral de este dado?

Niños: 1, 2, 3, 4, 5 y 6.

Maestra: ¿Tiene el 8? Niños: Noooo.

Maestra: Ah, entonces el 8 no pertenece al espacio muestral. ¿Y el 10? Niño R: Tampoco, ese nunca puede salir. Es imposible.

Maestra: Vale, entonces podemos decir que el espacio muestral es todo lo que pueda salir, ¿sí?

Maestra: La probabilidad de que salga un número del dado es igual a los casos favorables entre los casos posibles. ¿Cuál es la probabilidad de que salga el número 6? Yo pregunto, ¿cuántos números "6" hay en un dado?

Niña S: Uno.

Maestra: Entonces arriba ponemos uno. Y ¿cuántos casos posibles?, ¿cuántos números hay en un dado?

Niño D: Seis.

Maestra: ¿Cuántos Dani? Niña D: Seis.

Maestra: Pues abajo tenemos que poner el número 6. La probabilidad es uno entre seis, un sexto.

A partir de preguntas breves y de interacciones con los dados, los alumnos discuten y al final analizan resultados individuales, introduciéndose en los primeros conceptos probabilísticos (imposible, probable, etc.).

Segunda fase: trabajo en equipo

Primeramente con dados y a continuación con 6 cacahuetes de distintos colores, se invita al alumnado a realizar y registrar por escrito lanzamientos y sucesos. A continuación, en grupos, los alumnos reflexionan sobre lo ocurrido, intentando justificar los sucesos ocurridos.

2

Figuras 2 y 3. Lanzamiento de un dado y botes de cacahuetes.

Los contenidos trabajados en la segunda fase son los siguientes:

- Concepto de suceso.
- Realización y registro de lanzamientos con dados.
- Descripción y organización de los datos recogidos.
- Interpretación de sucesos.
- Interés por hacerlo de forma correcta.

El diálogo que se produce en el experimento con los dados durante esta fase es el siguiente: Maestra: Candela, ¿qué te salió?

Niña C: 2.

Maestra: ¿Y a ti Dani?

Niño D: 5

Maestra: Pero podría haberte salido 3 ó 4. Niño D: o 6.

Maestra: Y el 8, ¿podría salir? Niño D: No.

Maestra: ¿Por qué?

Niño D: Porque no lo tiene.

Y en relación con el experimento con cacahuetes, en la transcripción siguiente se describen las interacciones que se producen:

Maestra: Martín, ¿puedo sacar un cacahuete violeta? Niño M: No, porque no lo hay, a mí me salió azul. Maestra: ¿Y a ti Dani?

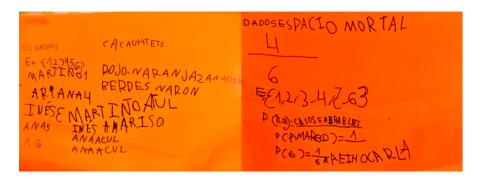
Niño D: También azul. Niño U: A mí, azul.

Maestra: ¿Pero hay más azules?

Niño U: No solamente hay uno. Pero sale mucho. Es el más "suertudo".

4

Figura 4. Elección aleatoria de cacahuete


Paralelamente se pide a los alumnos que registren los sucesos que se van produciendo: Maestra: Cuál es el espacio muestral de los cacahuetes?

Niña A: Los colores. Maestra: Entonces.

Niña A: Amarillo, Rojo, Naranja, Azul, Negro y Verde.

Figura 5. Registro de sucesos

6

Figuras 6 y 7. Resultados de los equipos 2 y 3

Durante esta segunda fase, la experimentación directa con materiales, concretamente dados y cacahuetes, favoreció el análisis de datos y de hechos seguros, probables o imposibles. De este modo, a través de la acción

y la recogida de información, los alumnos se inician en la compresión y análisis de datos a partir de actividades informales.

Tercera fase: puesta en común

En esta última fase se ponen en común los resultados obtenidos por los distintos equipos. Cada equipo registró sus lanzamientos y los mostró al grupo. En asamblea se conversa y se analizan algunos de los resultados.

Los contenidos trabajados en esta tercera fase son los siguientes:

- Datos y resultados probabilísticos.
- Observación y comprensión de datos y resultados probabilísticos.
- Explicación de los resultados obtenidos a partir del análisis realizado.
- Argumentación sobre la probabilidad del número que sale en un dado o del color del cacahuete extraído.
 - Actitud crítica ante resultados.

El diálogo que se produce durante esta última fase es el siguiente:

Niño H: El 6 sale mucho porque es el más grande.

Niño R: Eso no tiene que ver, que sea grande con salir más. Niño M: El azul sale mucho.

Niño U: Es muy "suertudo". Salió 3 veces en nuestro equipo. Maestra: Entonces, ¿es el más probable?

Niño U: Sí.

Niño M: No, de todos los colores hay uno, es el que tiene más suerte. Maestra: ¿Es el color rosa?

Niña I: De este color no hay cacahuetes.

Maestra: Entonces, ¿cuál es la probabilidad de que salga un cacahuete rosa? Niña I: No hay ninguna.

Maestra: Efectivamente no hay ninguna, eso es probabilidad cero. Y, ¿cuál sería la probabilidad de sacar un cacahuete de algún color? Niño R: Siempre. Todos tienen color.

Por último, esta fase permite al alumnado manifestar y verbalizar las experiencias y resultados vividos y obtenidos, así como manifestar los sucesos observados y las conclusiones obtenidas.

La puesta en común, y la argumentación de resultados, ayudan a apreciar el fenómeno de la convergencia mediante la acumulación de los resultados del resto de la clase y también comparar la fiabilidad de pequeñas y grandes muestras.

3.3 Análisis de la presencia de los procesos matemáticos

Para la evaluación de una actividad matemática competencial es necesario disponer de indicado- res genéricos que permitan orientar al profesorado sobre el grado en que se cultivan las competencias matemáticas en una actividad concreta o en una pequeña secuencia de actividades. Desde esta perspectiva, hace ya algunos años el Centre de Recursos per Ensenyar i Aprendre Matemàtiques (CREAMAT) de la Generalitat de Catalunya (España) elaboró un documento de referencia para poder evaluar de forma sencilla, pero eficaz, el grado de riqueza competencial de una actividad. Este documento gira en torno a diez preguntas que pueden orientar el profesorado sobre el grado en que en una actividad se trabajan las competencias matemáticas del alumnado. En dicho documento, que se reproduce a continuación, se indica que el grado

de riqueza competencial de una actividad depende de cómo se plantea la actividad, es decir, de sus características, pero también de cómo se gestiona en el aula. Por esto las diez preguntas se agrupan en dos bloques:

3

Tabla 3: Indicadores competenciales (CREAMAT, 2009).

Bloque 1: Planteamiento de la actividad

1. ¿Se trata de una actividad que tiene por objetivo responder a un reto? El reto puede referirse a un contexto cotidiano, puede enmarcarse en un juego, o bien puede tratar de una regularidad o hecho matemático. 2. ¿Permite aplicar conocimientos ya adquiridos y hacer nuevos aprendizajes? 3. ¿Ayuda a relacionar conocimientos diversos dentro de la matemática o con otras materias? 4. ¿Es una actividad que se puede desarrollar de diferentes formas y estimula la curiosidad y la creatividad de los niños y las niñas? 5. ¿Implica el uso de instrumentos diversos como por ejemplo material que se pueda manipular, herramientas de dibujo, software, etc.?

Bloque 2: Gestión de la actividad

6. ¿Se fomenta la autonomía y la iniciativa de los niños y niñas? 7. ¿Se interviene a partir de preguntas adecuadas más que con explicaciones? 8. ¿Se pone en juego el trabajo y el esfuerzo individual pero también el trabajo en parejas o en grupos que implica conversar, argumentar, convencer, consensuar, etc.? 9. ¿Implica razonar sobre lo que se ha hecho y justificar los resultados? 10. ¿Se avanza en la representación de manera cada vez más precisa y se usa progresivamente lenguaje matemático más preciso?

Como se indica en Alsina (2013b), se trata de un documento fuertemente inspirado en los procesos matemáticos del NCTM (2000), por lo que están estrechamente relacionados:

- Resolución de problemas: indicadores 1, 4, 5 y 6.
- Razonamiento y prueba: indicador 9.
- Comunicación: indicadores 7 y 8.
- Conexiones: indicadores 2 y 3.
- Representación: indicador 10.

El análisis que se muestra a continuación, pues, se ha realizado a partir de los indicadores expuestos.

4

Tabla 4. Presencia de la resolución de problemas.

5

Tabla 5. Presencia del razonamiento y la prueba.

Indicadores de razonamiento y prueba	Evidencias
Indicador 9: ¿Implica razonar sobre el que se ha hecho y justificar los resultados?	GEST4/IM1 A medida que el alumnado realiza la actividad, van registrando resulta- dos y reflexionando sobre los mismos. Son los niños en pequeño grupo, quienes tratan de justificar a través de la acción sus propios resultados. Finalmente se muestra al grupo aula los resultados de equipo, permitiendo autoevaluarse y evaluar el resto de compañeros.

6 Tabla 6. Presencia de la comunicación.

Indicadores de comunica- ción	Evidencias
Indicador 7: ¿Se interviene a partir de preguntas adecua- das más que con explicacio- nes?	GEST2/IM1
	Se introduce en gran grupo la actividad, definiendo y describiendo nocio- nes de probabilidad. Es el propio alumnado en pequeño grupo, quienes a través del diálogo, de la acción y de la reflexión extraen y registran sus propias conclusiones.
Indicador 8: ¿Se pone en juego el trabajo y el esfuerzo individual pero también el trabajo en parejas o en grupos que implica conversar, argumentar, convencer, consensuar, etc.?	GEST3/IM1 Las propuestas de actividades se plantean para realizar en pequeño grupo,
	a través del diálogo y consensuando las acciones, con el propósito de que tomen decisiones que condicionen los resultados.

Indicador 2. ¿Permite aplicar conocimientos ya adquiridos y hacer nuevos aprendizajes?	PLANT3/IM1
	E = { ROJO, MAROM, MARBLO, MEULIVER DE . NA RANKA }
	En la actividad descrita los alumnos han aprendido nociones vinculadas a la probabilidad, como por ejemplo el uso comprensivo de nociones como "imposible", "probable" y "seguro", además de un conocimiento intuitivo de aspectos más complejos, que no son propios de la etapa de Educación Infantil, como por ejemplo el espacio muestral.
Indicador 3: ¿Ayuda a relacionar conocimientos diversos dentro de la matemática o con otras materias?	Las conexiones más evidentes son intradisciplinares, ya que se han conec- tado conocimientos de la numeración con la probabilidad por ejemplo. También se han producido algunas conexiones interdisciplinares, princi- palmente con la adquisición de nuevo lenguaje (seguro, probable, impo- sible) o bien con el medio que nos rodea (situaciones de incertidumbre).

7 7. Presencia de las conexiones.

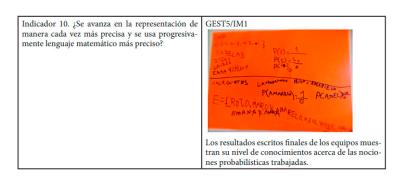


Tabla 8. Presencia de la representación.

4. CONSIDERACIONES FINALES

En este artículo se ha presentado y analizado una actividad matemática competencial cuyo propósito es trabajar los primeros contenidos de probabilidad en Educación Infantil. A pesar de que en muchos casos el profesorado de esta etapa educativa ha tenido una formación deficiente

en este ámbito (Alsina y Vásquez, 2016), los cambios sociales de las últimas décadas requieren conocimientos que permitan a los ciudadanos responder preguntas cuyas respuestas no son in- mediatamente obvias, a la vez que les faciliten la toma de decisiones en situaciones en las que la incertidumbre es relevante. Desde este prisma, tal como señala Alsina (2017) es necesario ofrecer a los alumnos una educación de alta calidad que se ajuste a estas nuevas exigencias.

La actividad descrita pretende ser un ejemplo de cómo planificar y gestionar actividades matemáticas competenciales en Educación Infantil, de manera que se trabajen los contenidos (en este caso concreto de probabilidad) a través de los procesos matemáticos de resolución de problemas, razonamiento y prueba, comunicación, conexiones y representación. En el caso concreto de la actividad presentada, se ha puesto de manifiesto la presencia de los distintos procesos:

- Resolución de problemas: se ha partido del planteamiento de un reto y de distintas preguntas que han generado curiosidad a los alumnos.
- Razonamiento y prueba: a través de la indagación y del ensayo-error han ido registrando resultados y reflexionando sobre los mismos. Además, los alumnos han justificado sus propios resultados.
- Comunicación: la gestión de la actividad se ha basado en la interacción, la negociación y el diálogo, planteando preguntas que han permitido interiorizar algunas nociones elementales vinculadas a la probabilidad, como seguro, probable o imposible.
- Conexiones: se han producido conexiones tanto intradisciplinares (entre bloques de contenido diversos) como interdisciplinares (con otras disciplinas y con el entorno).
- Representación: a medida que los alumnos iban realizando los experimentos estocásticos se ha impulsado que representen por escrito los resultados, con el propósito de impulsar la comprensión de nociones probabilísticas.

Desde el punto de vista de los contenidos, la actividad matemática competencial descrita se ha centrado principalmente en los significados intuitivo y clásico (laplaciano) de la probabilidad, que parte de sucesos equiprobables exclusivamente, dando lugar a un sesgo que debería controlarse desde las primeras edades para evitar que los alumnos asocien la probabilidad exclusivamente a este tipo de sucesos. En cambio, aunque en la actividad descrita se han realizado algunas predicciones a partir de los datos observados, en términos generales se ha considerado poco el significado frecuencial de la probabilidad, a pesar de que organismos como la International Association for Statistical Education (IASE) recomiendan que este significado esté explícitamente presente en las prácticas de enseñanza de la probabilidad en las primeras edades (Chernof y Sriramann, 2014). Por otro lado, la propuesta planteada ha hecho necesaria la construcción de las nociones de "espacio muestral" y de "fracción" o "proporción", que son contenidos muy elaborados para alumnos de Educación Infantil. A pesar de que en la experiencia descrita se realiza únicamente una primera aproximación muy intuitiva a estos

conceptos, el grado de abstracción que conllevan no garantiza que los alumnos los hayan comprendido.

Estos elementos deberían considerarse para el diseño y gestión de nuevas actividades, con el pro- pósito de mejorar la enseñanza de la probabilidad en las primeras edades. Como se ha indicado en la introducción, en los últimos años se están produciendo algunos cambios importantes en el currículo de matemáticas de Educación Infantil. Estos cambios abogan por incorporar nuevos contenidos que permitan dar respuesta a las necesidades sociales del S. XXI, como es el caso de la probabilidad. Si bien es cierto que las orientaciones para trabajar la probabilidad en las primeras edades son todavía escasas (Batanero y Godino, 2004; Batanero, Henry y Parzysz, 2005; Batanero, Ortiz y Serrano, 2007), es de esperar que en las directrices curriculares de los próximos años se explicite esta ampliación con el propósito de que los alumnos tengan la oportunidad de recibir formación estocástica adecuada desde las primeras edades.

AGRADECIMIENTOS: Se agradece a FEDER/Ministerio de Ciencia, Innovación y Universidades – Agencia Estatal de Investigación/Proyecto EDU2017-84979-R.

Referencias

- Alsina, Á. (2012a). Más allá de los contenidos, los procesos matemáticos en Educación Infantil. Edma 0-6: Educación Matemática en la Infancia, 1(1), 1-14.
- Alsina, Á. (2012b). Hacia un enfoque globalizado de la educación matemática en las primeras edades. Números, 80, 7-24.
- Alsina, Á. (2013a). La estadística y la probabilidad en Educación Infantil: conocimientos disciplinares, didácticos y experienciales. Revista de Didácticas Específicas, 7, 4-22.
- Alsina, Á. (2013b). Sobre el sentit de les matemàtiques a l'educació infantil. Noubiaix, 33, 49-62. Alsina, Á. (2014). Procesos matemáticos en Educación Infantil: 50 ideas clave. Números, 86, 5-28.
- Alsina, Á. (2016). Diseño, gestión y evaluación de actividades matemáticas competenciales en el aula. Épsilon, Revista de Educación Matemática, 33(1), 7-29.
- Alsina, Á. (2017). Contextos y propuestas para la enseñanza de la estadística y la probabilidad en Educación Infantil: un itinerario didáctico. Épsilon, 95, 25-48.
- Alsina, Á., y Vásquez, C. (2016). De la competencia matemática a la alfabetización probabilística en el aula: elementos para su caracterización y Desarrollo. UNIÓN, Revista Iberoamericana de Educación Matemática, 48, 41-58.
- Alsina, Á., y Vásquez, C. (2017). Hacia una enseñanza eficaz de la estadística y la probabilidad en las primeras edades. Didasc@lia: Didáctica y Educación, 8(4), 199-212.
- Batanero, C., y Godino, J. D. (2004). VI. Estocástica: estadística y probabilidad. En J.D. Godino (Ed.), Didáctica de las matemáticas para maestros (pp.

- 405-455). Departamento de Didáctica de las Matemáticas: Universidad de Granada.
- Batanero, C., Henry, M., y Parzysz, B. (2005). The nature of chance and probability. En G. Jones (Eds.), Exploring probability in school: Challenges for teaching and learning (pp. 15-37). Nueva York: Springer.
- Batanero, C., Ortiz, J.J., y Serrano, L. (2007). Investigación en didáctica de la probabilidad. Uno, Revista de Didáctica de las Matemáticas, 44, 7-16.
- Beltrán-Pellicer, P. (2017). Una propuesta sobre probabilidad en educación infantil con juegos de mesa. Edma 0-6: Educación Matemática en la Infancia, 6(1), 53-61
- Bennett, D. J. (1998). Randomness. Cambridge. MA: Harvard University Press.
- CCSSI (2010). Common Core State Standards for Mathematics. Recuperado de: http://www.co-restandards.org.
- Chernof, E.J., y Sriraman, B. (Eds.) (2014). Probabilistic hinking: Presenting Plural Perspectives. Dordrecht: Springer Science+Business Media.
- Coronata, C. (2014). Presencia de los procesos matemáticos en la enseñanza del número de 4 a 8 años. Transición entre la Educación Infantil y Elemental. (Tesis doctoral). Girona: Universidad de Girona. Recuperado de: http://dugi-doc.udg.edu/handle/10256/9750
- Everitt, B. S. (1999). Chance rules: An informal guide to probability, risk, and statistics. Nueva York: CopemicusSpringer-Verlag.
- Gal, I. (2005). Towards 'probability literacy' for all citizens. En G. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 43-71). Kluwer Academic Publishers.
- Godino, J. D., Batanero, C., y Cañizares, M. J. (1997). Azar y Probabilidad. Fundamentos didácticos y propuestas curriculares. Madrid: Síntesis.
- National Council of Teachers of Mathematics (1989). Curriculum and Evaluation Standards for School Mathematics. Reston, VA: NCTM.
- National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, Va.: The National Council of Teachers of Mathematics.
- National Council of Teachers of Mathematics (2015). De los principios a la acción. Reston, VA: NCTM.
- National Association for the Education of Young Children y National Council for Teachers of Mathematics (2013). Matemáticas en la educación infantil: Facilitando un buen inicio. Declaración conjunta de posición. Edma 0-6: Educación Matemática en la Infancia, 2(1), 1-23.
- National Curriculum (1999). he National Curriculum for England, Mathematics. Recuperado de: www.nc.uk.net.
- Scheafer, R. L., Watkins, A. E., y Landwehr, J. M. (1998). What every highschool graduate should know about statistics. En S.P. Lajoie (Ed.), Relections on statistics: Learning, teaching and assessment in Grades K-I2 (pp. 3-31). Mahwah, NJ: Lawrence Erlbaum.

